

Harald Hartl Edwin Krasser Wolfgang Pribyl Peter Söser Gunter Winkler

Elektronische Schaltungstechnik Mit Beispielen in PSpice

PEARSON Studium Elekronische Schaltungstechnik

Harald Hartl Edwin Krasser Wolfgang Pribyl Peter Söser Gunter Winkler

Elekronische Schaltungstechnik

Mit Beispielen in PSpice

ein Imprint von Pearson Education München • Boston • San Francisco • Harlow, England Don Mills, Ontario • Sydney • Mexico City Madrid • Amsterdam Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <<u>http://dnb.ddb.de</u>> abrufbar.

Die Informationen in diesem Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht. Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht ausgeschlossen werden. Verlag, Herausgeber und Autoren können für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine Haftung übernehmen. Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien. Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulässig.

Fast alle Hardware- und Softwarebezeichnungen und weitere Stichworte und sonstige Angaben, die in diesem Buch verwendet werden, sind als eingetragene Marken geschützt. Da es nicht möglich ist, in allen Fällen zeitnah zu ermitteln, ob ein Markenschutz besteht, wird das ® Symbol in diesem Buch nicht verwendet.

Umwelthinweis: Dieses Produkt wurde auf chlorfrei gebleichtem Papier gedruckt. Die Einschrumpffolie – zum Schutz vor Verschmutzung – ist aus umweltverträglichem und recyclingfähigem PE-Material.

10 9 8 7 6 5 4 3 2 1

08 07

ISBN 978-3-8273-7321-2

© 2008 by Pearson Studium ein Imprint der Pearson Education Deutschland GmbH, Martin-Kollar-Straße 10–12, D-81829 München/Germany Alle Rechte vorbehalten www.pearson-studium.de

Lektorat: Birger Peil, bpeil@pearson.de Korrektorat: Brigitta Keul, München Umschlaggestaltung: Thomas Arlt, tarlt@adesso21.net Herstellung: Philipp Burkart, pburkart@pearson.de Satz: le-tex publishing services oHG, Leipzig Druck und Verarbeitung: Kösel, Krugzell (www.KoeselBuch.de)

Printed in Germany

Inhaltsverzeichnis

Gast	Gastvorwort				
Vorw	Vorwort				
Einle	Einleitung 2				
Kapi	tel 1	Grundlagen	27		
1.1	Einfüh	rung	28		
	1.1.1	Elektrostatisches Feld	29		
	1.1.2	Elektrisches Strömungsfeld	30		
	1.1.3	Definition der Einheiten	30		
	1.1.4	Rechnen mit Gleichgrößen	31		
	1.1.5	Rechnen mit Wechselgrößen	48		
	1.1.6	Betrachtung von Vierpolen	63		
1.2	Passive	Netzwerke	66		
	1.2.1	Tiefpass	66		
	1.2.2	Hochpass	75		
	1.2.3	Bandpass	80		
	1.2.4	Bandsperre	83		
	1.2.5	Schwingkreise	88		
	1.2.6	Computerunterstützte Betrachtung passiver Netzwerke	92		
Zusar	nmenfas	sung	93		
Kapi	tel 2	Halbleiter	95		
2.1	Einfüh	rung	96		
2.2	Aufbau	ı von Halbleitermaterialien	98		
	2.2.1	Atommodell – Bändermodell	98		

	2.2.2	Undotierte Halbleiter – Eigenleitung 101		
	2.2.3	Dotierte Halbleiter – Störstellenleitung 104		
2.3	pn-Üb	ergang		
	2.3.1	pn-Übergang ohne äußere Spannung		
	2.3.2	nn-Übergang mit äußerer Spannung 110		
	2.3.2	Durchbruchsmechanismen 111		
7.1.00	2.0.0			
Zusa	mmennas	ssung 113		
Карі	tel 3	Halbleiterdioden115		
3.1	Siliziu	mdiode 116		
3.2	Arten	von Halbleiterdioden 121		
	3.2.1	Schaltdioden 121		
	3.2.2	Z-Dioden 122		
	3.2.3	Kapazitätsdioden 124		
	3.2.4	Leuchtdioden und Fotodioden 124		
3.3	Schalt	ungsbeispiele mit Halbleiterdioden 126		
	3.3.1	Gleichrichterschaltungen 129		
	3.3.2	Kleinstnetzgeräte für 230 V ~		
	3.3.3	Spannungsverdoppler 146		
Zusa	mmenfas	ssung 149		
Карі	tel 4	Transistoren 151		
4.1	Einfüh	urung 152		
4.2	Bipola	rtransistor		
	4.2.1	Aufbau und Funktion 155		
	4.2.2	Betriebszustände des bipolaren Transistors		
	4.2.3	Modell und Kennlinien 162		
	4.2.4	Temperaturverhalten		
4.3	Sperrs	chicht-Feldeffekttransistor		
-	1			

	4.3.1	Kennlinien 177
	4.3.2	Temperaturverhalten 179
4.4	MOS-I	Feldeffekttransistoren 180
4.5	Einstu	fige Transistorverstärker 188
	4.5.1	Einstellung und Stabilisierung des Arbeitspunktes 188
	4.5.2	Transistorgrundschaltungen im Vergleich 200
4.6	Strom	quellen und Stromsenken 211
	4.6.1	Stromsenke mit Bipolartransistor
	4.6.2	Stromsenke mit MOSFET 215
4.7	Strom	spiegel 219
	4.7.1	Einfacher Stromspiegel 219
	4.7.2	Stromspiegel mit Kaskode 221
	4.7.3	Wilson-Stromspiegel 222
4.8	Differe	enzverstärker
	4.8.1	Gleichtaktaussteuerung 225
	4.8.2	Gegentaktaussteuerung 227
	4.8.3	Gleichtaktunterdrückung 228
	4.8.4	Weitere Kennwerte 228
Zusa	mmenfas	ssung 230
Карі	tel 5	Operationsverstärker 231
5.1	Ideale	r Operationsverstärker 233
	5.1.1	Prinzip der Gegenkopplung 235
5.2	Realer	Operationsverstärker
	5.2.1	Aufbau 237
	5.2.2	Frequenzgang 240
	5.2.3	Frequenzgangkorrektur 241
	5.2.4	Spezifikationen

5.3	Grund	schaltungen mit Operationsverstärkern 248
	5.3.1	Nicht invertierender Verstärker 248
	5.3.2	Invertierender Verstärker 249
	5.3.3	Subtrahierverstärker 254
	5.3.4	Instrumentierungsverstärker 256
	5.3.5	Stabilität von Operationsverstärkerschaltungen 257
	5.3.6	Differenzierer
	5.3.7	Integrator
	5.3.8	Differenzintegrator
	5.3.9	Stromsenke
5.4	Kompa	aratoren
Zusai	nmenfas	sung
Kani	tol 6	Epoppupacyorcorgupa 950
карі		Spannungsversorgung 273
6.1	Einfüh	rung 275
6.1 6.2	Einfüh Referei	rung 275 nzspannungsquellen 276
6.1 6.2	Einfüh Referen 6.2.1	rung
6.1 6.2	Einfüh Referen 6.2.1 6.2.2	rung
6.1 6.2	Einfüh Referen 6.2.1 6.2.2 6.2.3	rung
6.16.26.3	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear	rung
6.16.26.3	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1	rung
6.16.26.3	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1 6.3.2	rung
6.16.26.3	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1 6.3.2 6.3.3	rung
6.16.26.36.4	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1 6.3.2 6.3.3 Schalt	rung
6.16.26.36.4	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1 6.3.2 6.3.3 Schalt 6.4.1	rung
6.16.26.36.4	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1 6.3.2 6.3.3 Schaltt 6.4.1 6.4.2	rung275nzspannungsquellen276Spannungsstabilisierung mit Dioden
6.16.26.36.4	Einfüh Referen 6.2.1 6.2.2 6.2.3 Linear 6.3.1 6.3.2 6.3.3 Schalt 6.4.1 6.4.2 6.4.3	rung

Карі	itel 7	Allgemeine Digitaltechnik 29	93
7.1	Einfüh	irung 29	95
7.2	Kontin	nuierliche und diskrete Signale 29	95
7.3	Elektri	sche Darstellung von zweiwertigen Variablen 29	97
	7.3.1	Signalpegel, Schwellspannung und Störabstände 29	99
	7.3.2	Störbeeinflussung der Signalpegel 30	01
	7.3.3	Schalter	03
	7.3.4	Dynamisches Verhalten von zweiwertigen Signalen 30	05
Zusa	mmenfas	ssung 30	07
Карі	itel 8	Kombinatorische Logik 30	09
8.1	Einfüh	irung 3 [±]	10
8.2	Logisc	he Grundfunktionen 3	12
8.3	Abgele	aitete Funktionen 32	14
8.4	Schalt	algebra und Rechenregeln 3	16
8.5	NAND	-NOR-Technik	18
	8.5.1	Logische Grundfunktionen mit NAND bzw. NOR 37	18
	8.5.2	Umwandlung einer logischen Funktion in NAND- bzw. NOR-Verknüpfungen 32	20
Zusa	mmenfas	ssung 32	21
Kani	itel 9	Logische Funktionen	
Rapi		mit MOS-Transistoren: CMOS 32	23
9.1	Einfüh	ırung 3:	25
9.2	CMOS	32	27
	9.2.1	Inverter 32	27
	9.2.2	Logische Funktionen 3:	32
	9.2.3	Leistungsaufnahme 34	40
9.3	Physik	alischer Aufbau von CMOS-Schaltungen 34	43

	9.3.1	Latch-Up 34	4
	9.3.2	Schutzstruktur	5
9.4	Transm	nissionsgatter	7
	9.4.1	Logikschaltungen mit Transmissionsgattern 35	0
Zusar	nmenfas	sung 35	2
Kanit	lal 10	Logisshe Funktionen	
карп		mit bipolaren Elementen 35	3
10.1	Logik r	nit Dioden und Bipolartransistoren 35	4
10.2	Transis	stor Transistor Logic (TTL) 35	7
10.3	Andere	e Logikfamilien mit bipolaren Elementen 36	0
Zusar	nmenfas	sung 36	0
Kapit	tel 11	Kippstufen 36	1
11.1	Bistabi	le Kippstufen 36	3
	11.1.1	Flip-Flops 36	3
	11.1.2	Schmitt-Trigger	3
11.2	Monos	tabile Kippstufen 37	8
	11.2.1	Monoflops mit sehr kurzer Eigenzeit 37	9
	11.2.2	Monoflops mit langer Eigenzeit	1
11.3	Astabil	le Kippstufen 38	2
	11.3.1	Ringoszillator	3
	11.3.2	Relaxationsoszillator	4
Zusar	nmenfas	sung 38	6
Kapit	tel 12	Oszillatorschaltungen 38	7
12.1	Einfüh	rung 38	8
	12.1.1	Amplituden- und Phasenbedingung 38	9
12.2	RC-Osz	zillatoren	0
	12.2.1	Wien-Robinson-Oszillator 39	0

12.3	LC-Osz	zillatoren
	12.3.1	CMOS-Inverter als Oszillator
	12.3.2	Emittergekoppelter Oszillator
12.4	Quarzo	szillatoren
	12.4.1	Schwingquarz
	12.4.2	Pierce-Oszillator
12.5	Phase l	Locked Loop (PLL)
Zusai	mmenfas	sung
Карі	tel 13	Digitale Schnittstellen 405
13.1	Einfüh	rung
13.2	Komm	unikation zwischen Geräten 408
	13.2.1	RS-232 oder EIA/TIA-232 408
	13.2.2	Standards bei Schnittstellen (Hardware)
	13.2.3	CAN
	13.2.4	Ethernet
	13.2.5	USB
13.3	Komm	unikation zwischen Modulen 418
	13.3.1	Synchrone Serielle Schnittstelle 419
	13.3.2	Inter Integrated Circuit Bus (I ² C-Bus)
	13.3.3	UART und CAN-Bus
13.4	Potenti	altrennung
	13.4.1	Optokoppler
	13.4.2	Magnetkoppler 426
Zusai	mmenfas	sung 427
Карі	tel 14	Analog/Digital- und Digital/Analog-Umsetzung 429
14.1	Einfüh	rung
14.2	Kennli	nien

	14.2.1	Der ideale ADC
	14.2.2	Der ideale DAC
14.3	Statisc	he Fehler
	14.3.1	Offset-Fehler
	14.3.2	Verstärkungsfehler
	14.3.3	Differentielle Nichtlinearität 437
	14.3.4	Integrale Nichtlinearität 439
14.4	Eigens	chaften und Fehler bei dynamischen Signalen 442
	14.4.1	Aperturfehler
	14.4.2	Aliasing
	14.4.3	Spurious Free Dynamic Range
14.5	Linear	es Modell der Quantisierung 448
	14.5.1	Signal-Rausch-Verhältnis 450
Zusar	nmenfas	sung 451
Zubu	innomuo	build
Kapit	tel 15	Digital/Analog-Umsetzer 453
Kapi	tel 15 Einfüh	Digital/Analog-Umsetzer 453
Kapi 15.1	tel 15 Einfüh Additie	Digital/Analog-Umsetzer 453 rung
Kapi 15.1 15.2	tel 15 Einfüh Additio	Digital/Analog-Umsetzer 453 rung
Kapi 15.1 15.2	tel 15 Einfüh Additio 15.2.1	Digital/Analog-Umsetzer 453 rung
Kapi 15.1 15.2	tel 15 Einfüh Additie 15.2.1 15.2.2 15.2.3	Digital/Analog-Umsetzer 453 rung
Kapit 15.1 15.2	tel 15 Einfüh Additie 15.2.1 15.2.2 15.2.3 Additie	Digital/Analog-Umsetzer 453 rung
Kapi 15.1 15.2 15.3	tel 15 Einfüh Additio 15.2.1 15.2.2 15.2.3 Additio	Digital/Analog-Umsetzer453rung.455on gleicher Größen456Addition gleicher Ströme.456Addition gleicher Spannungen458Digitales Potenziometer460on dual gewichteter Größen461
Kapi 15.1 15.2 15.3	tel 15 Einfüh Additio 15.2.1 15.2.2 15.2.3 Additio 15.3.1	Digital/Analog-Umsetzer453rung.455on gleicher Größen456Addition gleicher Ströme456Addition gleicher Spannungen458Digitales Potenziometer460on dual gewichteter Größen461Spannungssummierung461
Kapi 15.1 15.2 15.3	tel 15 Einfüh Additio 15.2.1 15.2.2 15.2.3 Additio 15.3.1 15.3.2 R-2R-I	Digital/Analog-Umsetzer453rung.455on gleicher Größen456Addition gleicher Ströme456Addition gleicher Spannungen458Digitales Potenziometer460on dual gewichteter Größen461Spannungssummierung461Stromsummierung462
Kapi 15.1 15.2 15.3 15.4	tel 15 Einfüh Additie 15.2.1 15.2.2 15.2.3 Additie 15.3.1 15.3.2 R-2R-L 15.4 1	Digital/Analog-Umsetzer453rung.455on gleicher Größen456Addition gleicher Ströme456Addition gleicher Spannungen458Digitales Potenziometer460on dual gewichteter Größen461Spannungssummierung461Stromsummierung462eiternetzwerk462R-2R-Leiternetzwerk als Stromteiler463
Kapi 15.1 15.2 15.3 15.4	tel 15 Einfüh Additie 15.2.1 15.2.2 15.2.3 Additie 15.3.1 15.3.2 R-2R-L 15.4.1	Digital/Analog-Umsetzer453rung.455on gleicher Größen456Addition gleicher Ströme456Addition gleicher Spannungen458Digitales Potenziometer460on dual gewichteter Größen461Spannungssummierung461Stromsummierung462eiternetzwerk462R-2R-Leiternetzwerk als Stromteiler464
Kapi 15.1 15.2 15.3 15.4	tel 15 Einfüh Additio 15.2.1 15.2.2 15.2.3 Additio 15.3.1 15.3.2 R-2R-L 15.4.1 15.4.2	Digital/Analog-Umsetzer453rung.455on gleicher Größen456Addition gleicher Ströme.456Addition gleicher Spannungen458Digitales Potenziometer460on dual gewichteter Größen461Spannungssummierung461Stromsummierung462eiternetzwerk462R-2R-Leiternetzwerk als Stromteiler464höltnisumsetzung464

	15.5.1	Digitale Pulsweitenmodulation 466	3	
	15.5.2	Tiefpassfilter	3	
15.6	Multip	lizierender DAC)	
15.7	Auswa	hl von DACs)	
Zusar	Zusammenfassung 4			
Kapi	tel 16	Analog/Digital-Umsetzer 473	3	
16.1	Einfüh	rung 475	5	
16.2	Paralle	lverfahren und Kaskadenumsetzer 477	7	
	16.2.1	Parallelumsetzer	3	
	16.2.2	Kaskadenumsetzer 479)	
	16.2.3	Kaskadenumsetzer mit Fehlerkorrektur	L	
	16.2.4	Pipelined ADC	3	
16.3	Wägev	erfahren	5	
	16.3.1	Prinzip des Wägeverfahrens 485	5	
	16.3.2	Wägeverfahren mit SC-Prinzip 488	3	
16.4	Integri	erende Verfahren und Zählverfahren 490)	
	16.4.1	Eigenschaften der Mittelwertbildung bei integrierenden Verfahren 490)	
	16.4.2	Zweirampenverfahren	2	
	16.4.3	Spannungs/Frequenz-Umsetzer 495	5	
	16.4.4	Ladungsausgleichsintegrator	7	
	16.4.5	$\Sigma \Delta$ -ADCs (Sigma-Delta-ADCs))	
16.5	Auswa	hl von ADCs 504	ł	
Zusar	nmenfas	sung 506	3	
Kapi	tel 17	Beschaltung von A/D- und D/A-Umsetzern 507	7	
17.1	Analog	e Pegelumsetzung 509)	
	17.1.1	Ausgänge von DACs 511	L	

	17.1.2	Eingänge von ADCs 512
17.2	Tiefpas	sfilter
	17.2.1	Übertragungsfunktion eines Tiefpassfilters 515
	17.2.2	Passive RC-Filter 516
	17.2.3	Filter mit Einfachmitkopplung (Sallen-Key) 517
	17.2.4	Filter mit Mehrfachgegenkopplung 522
	17.2.5	Filtercharakteristika
	17.2.6	Filterkoeffizienten 528
17.3	Sample	e&Hold-Eingänge
17.4	Differe	ntielle ADC-Eingänge 532
	17.4.1	Erweiterung zu einem Tiefpassfilter 535
Zusar	nmenfas	sung 537
Kapit	tel 18	Anwendungsspezifische
		mikroelektronische Schaltungen 539
18.1	Einfüh	rung 541
18.1 18.2	Einfüh Grundl	rung
18.1 18.2	Einfüh Grundl 18.2.1	rung
18.1 18.2	Einfüh Grundl 18.2.1 18.2.2	rung
18.1 18.2	Einfüh Grundl 18.2.1 18.2.2 18.2.3	rung
18.1 18.2	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4	rung
18.1	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5	rung
18.1	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6	rung
18.1 18.2 18.3	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 ASIC-T	rung
18.1 18.2 18.3 18.4	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 ASIC-T Entwu	rung
 18.1 18.2 18.3 18.4 18.5 	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 ASIC-T Entwur Entwur	rung
 18.1 18.2 18.3 18.4 18.5 18.6 	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 ASIC-T Entwur Entwur Entwur	rung
18.1 18.2 18.3 18.4 18.5 18.6	Einfüh Grundl 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 ASIC-T Entwur Entwur Entwur 18.6.1	rung

	18.6.3	Simulation	590
	18.6.4	Schaltungssynthese	596
	18.6.5	Layout-Erstellung	599
	18.6.6	Backannotation, Fertigungsüberleitung	600
	18.6.7	Test und Design for Test	602
18.7	Therm	ometerdesign unter Verwendung von ASICs	606
Zusar	nmenfas	sung	607
Kapi	tel 19	Elektromagnetische Verträglichkeit elektronischer Systeme	609
19.1	Einfüh	rung	610
	19.1.1	Begriffsdefinitionen	611
	19.1.2	Störquellen	614
	19.1.3	Betrachtung der Störgrößen im Frequenz- und Zeitbereich	615
	19.1.4	Störkopplung	619
19.2	Prüf- u	nd Messtechnik	639
	19.2.1	Prüfung der Störfestigkeit	640
	19.2.2	Messung der Störaussendung	656
19.3	EMV-g	erechtes Gerätedesign	663
	19.3.1	Filter-Maßnahmen	664
	19.3.2	Schaltungstechnische Maßnahmen	677
	19.3.3	Layout-Maßnahmen	688
19.4	CE-Ker	unzeichnung und relevante Normen	692
	19.4.1	Grundlagen der CE-Kennzeichnung	692
Zusar	nmenfas	sung	699
Kapi	tel 20	Thermometer	701
20.1	Sensor		703
	20.1.1	Sensorauswahl	703

	20.1.2	Signalgröße und benötigte Auflösung	705
20.2	Sensor	interface	709
	20.2.1	Zweileiter-Anschluss	709
	20.2.2	Vierleiter-Anschluss	710
	20.2.3	Dreileiter-Anschluss	714
	20.2.4	Realisierung des Sensorinterfaces	715
20.3	Analog	/Digital-Umsetzung	717
	20.3.1	Realisierung des A/D-Umsetzers	721
	20.3.2	Überlegungen zur Dimensionierung	725
	20.3.3	Berechnung der Temperatur	730
Zusar	nmenfas	sung	732
Litera	atur		733

Index

737

Gastvorwort

Elektronische Schaltungen steuern und regeln, erzeugen, konvertieren und übertragen Information, generieren und wandeln elektrische Energie, übernehmen die Automatisierung von Prozessen usw. Praktisch alle technischen Geräte enthalten elektronische Schaltungen, von der Auto-Rückleuchte über die Spülmaschine bis hin zu den Mikroprozessoren in unseren Handys und PCs. Die preiswerte Verfügbarkeit selbst kompliziertester elektronischer Schaltungen ist eine der Grundlagen des Informationszeitalters und damit auch unseres Lebensstandards. Für Studierende der Elektrotechnik, aber auch verwandter Ingenieurs- und Naturwissenschaften ist die Kenntnis der Vielfalt und der Möglichkeiten elektronischer Schaltungen heutzutage unabdingbar.

Das vorliegende Buch gibt dem Leser eine Einführung in die Schaltungstechnik, von der Beschreibung einzelner elektronischer Bauelemente bis hin zur Herstellung von "Application Specific Integrated Circuits" (ASICs). Dabei wird der Leser bei den Grundlagen der Elektrotechnik abgeholt und fachlich sowie didaktisch hervorragend aufbereitet in die faszinierende Welt der Schaltungstechnik mitgenommen. Die Auswahl der behandelten Themen ist sehr gelungen. Auf die komplexe physikalische Beschreibung der Arbeitsweise von Halbleiterbauelementen wird zu Gunsten des Anwendungsaspektes verzichtet. Alle grundlegenden Schaltungen werden ausführlich behandelt. Das Buch fügt sich damit ideal ein in die Grundlagenausbildung von Studierenden der Elektrotechnik und verwandter Fächer wie Maschinenbau oder Physik. Ausgehend von diesem Buch können dann im Anschluss vertiefend die physikalischen Grundlagen von Halbleiter-Bauelementen sowie das Design, der Aufbau und die Funktion von Integrierten Schaltungen (ICs) studiert werden, um so einen umfassenden Einblick in das spannende und überaus wichtige Gebiet der Mikroelektronik zu bekommen.

> Prof. Andreas Waag Institut für Halbleitertechnik TU Braunschweig

Vorwort

Elektronische Schaltungen sind nach wie vor die notwendige und wesentliche Basis aller modernen Geräte des täglichen Lebens im privaten und professionellen Bereich. Man denke nur an die nahezu unglaublichen Entwicklungen, die beispielsweise im Bereich der Kommunikationstechnik durch die Miniaturisierung der elektronischen Schaltungen möglich geworden sind. Anstelle des "Fräuleins vom Amt", das früher durch Stöpseln von Kabeln Fernmeldeverbindungen hergestellt hat, sind komplexe, rechnergesteuerte Funksysteme der heutigen Mobilkommunikation getreten. Zusätzlich zum Sprachkanal werden viele weitere Dienste wie Internetzugang, Textnachrichten und sogar mobiles Fernsehen angeboten.

Für all diese Systeme werden elektronische Schaltungen benötigt, die teilweise rein digitaler Natur sind, aber zunehmend auch analoge Funktionen hoher Präzision umfassen. Die Schnittstelle zum Menschen und zur Umwelt ist nach wie vor analog und wird dies auch bleiben (Ton- und Bildsignale, Helligkeit, Temperatur, andere Sensordaten). Aus diesem Grund wird das Feld der elektronischen und mikroelektronischen Schaltungstechnik noch lange Zeit ein interessantes Betätigungsfeld für Forschung und Entwicklung darstellen.

Dieses Buch soll für Interessierte einen Einstieg in dieses weite Gebiet ermöglichen und begleiten. Es entstand unter Nutzung der Erfahrungen in mehrjährig abgehaltenen Vorlesungen und Übungen am Institut für Elektronik der TU Graz. Im Sinne des Ziels "Forschungsgeleitete Lehre" flossen auch wesentliche Erkenntnisse ein, die in Forschungs- und Entwicklungsprojekten der letzten Jahre auf dem Gebiet elektronischer Systeme erzielt wurden. So ist ein Text entstanden, der sich an den Bedürfnissen bei der Entwicklung elektronischer Geräte orientiert.

Um das Verständnis der Materie zu vertiefen und mit praktischen Erlebnissen anzureichern, wird die im Text dargestellte Theorie durch Simulationsbeispiele auf der Companion Website zum Buch ergänzt. Simulationsprogramme sind nunmehr kostengünstig verfügbar, die Rechenleistung gängiger PCs genügt für diese Beispiele. Die Interaktivität der virtuellen Experimente ermöglicht bei geringem Aufwand einen großen Lerneffekt.

Wir hoffen, dass die für diesen Text gewählte praxisnahe Herangehensweise den Einstieg in das Gebiet der elektronischen Schaltungstechnik interessant und attraktiv macht. Es ist uns bewusst, dass das weite Themenfeld der elektronischen Schaltungstechnik im Rahmen des vorliegenden Buchs nicht erschöpfend behandelt werden kann. Hinweise und Anregungen zum Text und zur Companion Website werden von den Autoren gerne entgegengenommen. Des Weiteren bedanken sich die Autoren bei Frau Brigitta Keul für die wertvolle Unterstützung bei der Korrektur des Textes und bei unserem Lektor, Herrn Birger Peil, für die hervorragende Zusammenarbeit und so manche innovative Idee.

Graz, im Juni 2008

Wolfgang PRIBYL

Zum Inhalt des Buches

Anfänglich werden die wichtigsten Grundlagen praxisnah vorgestellt, daran anschließend folgt die Betrachtung der benötigten passiven und aktiven Bauelemente sowie deren Verknüpfung zu einfachen Schaltungen für digitale und analoge Anwendungen. Beispielsweise werden analoge Verstärkerschaltungen und Grundbausteine digitaler Rechenwerke betrachtet.

Als roter Faden durch das Buch wurde ein elektronisches Thermometer als typische Anwendung ausgewählt. Die innerhalb dieses Gerätes auftretenden Funktionen werden als Motivation für die Betrachtung bestimmter Teilaspekte der elektronischen Schaltungstechnik verwendet und sind mit einem Thermometersymbol gekennzeichnet.

Typische Geräte weisen analoge und digitale Ein- und Ausgänge sowie Anzeige-Elemente auf und benötigen eine Stromversorgung. Innerhalb des Gerätes erfolgt häufig eine Transformation der analogen Größen in die digitale Welt und umgekehrt. Demzufolge finden sich im vorliegenden Buch Abschnitte über Analog/Digital- und Digital/Analog-Umsetzer, Stromversorgungsmodule, Schnittstellen und Anzeige-Elemente.

Ein wesentlicher Aspekt in der Geräte-Entwicklung ist die Berücksichtigung gängiger Normen, insbesondere hinsichtlich der elektromagnetischen Verträglichkeit (EMV), diesen Fragestellungen ist ein eigener Abschnitt gewidmet.

Im Zuge der Miniaturisierung elektronischer Schaltungen wurde es möglich, eine immer höhere Komplexität auf einer einzigen integrierten Schaltung unterzubringen. Letztendlich werden heute komplette, gemischt analog/digitale Systeme auf einem Chip realisiert (SoC ... System on Chip). Wenngleich die allgemeinen Prinzipien der Schaltungsentwicklung auch im Falle der integrierten Realisierung gültig sind, gibt es doch aufgrund der kleinen Strukturen und Abstände auf dem Halbleitersubstrat spezielle Randbedingungen, die zu berücksichtigen sind. Eine Einführung in die mikroelektronische Welt soll dazu die Grundlagen schaffen und ein Studium der weiterführenden Literatur vereinfachen.

Zur Handhabung des Buches

Dozent Das vorliegende Buch umfasst den Stoff, der im Rahmen des Bachelor-Studiums in den ersten beiden zweistündigen Vorlesungen zur elektronischen Schaltungstechnik gebracht wird. Zusätzlich sind je ein Kapitel als Überleitung zu weiterführenden Vorlesungen im Bereich der Elektromagnetischen Verträglichkeit und der Mikroelektronik im Buch enthalten.

Student Jedes Kapitel startet mit einer kurzen Beschreibung des kommenden Themenkreises. Die Lernziele werden in einem Kasten explizit genannt und sollen helfen, das Wesentliche im Auge zu behalten. Der Abschluss eines Kapitels erfolgt immer mit einer Wiederholung der wesentlichen Inhalte in Form einer kurzen Zusammenfassung.

Bei einigen Abschnitten sind als Beispiele markierte Fragestellungen gegeben, deren Beantwortung zur Festigung des theoretischen Wissens nachvollzogen werden sollte.

Das Zusatzmaterial auf der Website soll den Bezug zu modernen Bauteilen und praxisnahen Werkzeugen herstellen. Das Ausprobieren fertiger Simulationsbeispiele, zusammen mit "Was wäre, wenn ich diesen Bauteilwert veränderte?" ermöglicht die Entwicklung von ein wenig Fingerspitzengefühl im Umgang mit elektronischen Schaltungen ohne den Aufwand eines Laboraufbaues.

Damit soll dem interessierten Leser die Möglichkeit geboten werden, eigene Dimensionierungen zu überprüfen und sich optimal auf kommende Laborübungen vorzubereiten. In Kombination mit dem echten Laborbetrieb im Rahmen eines Studiums kann so die kritische Interpretation von Simulationsergebnissen im Vergleich mit der Wirklichkeit erlernt werden.

Website

Alle Inhalte, die Änderungen unterworfen sind, werden über die *Companion Website* angeboten. Die Webseite des Buches steht unter www.pearson-studium.de. Am schnellsten gelangen Sie von dort zur Buchseite, wenn Sie in das Feld "Schnellsuche" die Buchnummer **7321** eingeben. Dadurch ergibt sich die Möglichkeit, das Zusatzmaterial unabhängig von den Grundlagen im gedruckten Buch aktuell zu halten und damit der raschen Entwicklung der Technik gerecht zu werden.

Im Buch werden die folgenden drei Symbole als Hinweis auf die Website verwendet:

Dieses Symbol kennzeichnet einen Verweis auf einen Inhalt aus dem Internet. Typische Beispiele sind aktuelle Datenblätter interessanter Bauteile, Links auf frei verfügbare Normen oder Standards sowie Links auf weiterführende Websites.

weist auf eine Unterstützung durch ein Werkzeug zum analytischen oder numerischen Lösen von mathematischen Problemen wie zum Beispiel eines Gleichungssystems höherer Ordnung auf der Website hin.

Das Vorkommen dieses Symbols im Text bedeutet, dass auf der Website ein Simulationsbeispiel angeboten wird. Diese Simulationsbeispiele können mit geringfügigen Anpassungen mit allen Simulatoren, die auf einem SPICE-Kern beruhen, simuliert werden. Der bei jedem Beispiel verwendete Simulator ist angegeben. Typische Simulatoren sind die Evaluierungsversion von Microsim PSpice 8.0, LTspice oder Tina-Ti. Jeder dieser Simulatoren ist zum Erscheinungszeitpunkt des Buches frei verfügbar und verfügt über spezifische Stärken und Schwächen. Es steht dem Leser frei, die für einen bestimmten Simulator angebotenen Beispiele an andere Simulatoren anzupassen und mit diesen die Berechnungen nachzuvollziehen.

Einleitung

Erinnert man sich als Lehrender an sein Studium zurück, so fällt auf, dass das Grundwissen, dessen Anwendung anhand von Beispielen klar gezeigt wurde, leichter erlernbar war als jenes, das für sich allein stehend gebracht wurde. Im Rahmen des vorliegenden Buches werden wir – von dieser Überlegung ausgehend – immer auch einen Blick auf die Anwendung werfen. Des Weiteren werden wir bewusst auf sehr umfassende theoretische Betrachtungen verzichten, da diese besonders dem Einsteiger oft den Blick für die wesentlichen Zusammenhänge nehmen. Stattdessen wird des Öfteren ein Verweis auf die aktuelle (spezialisierte) Fachliteratur zu lesen sein. Viele aus der Sicht der Autoren wichtige Aspekte der elektronischen Schaltungstechnik können am Beispiel eines typischen elektronischen Messgerätes gezeigt und erklärt werden. Ein Blockschaltbild eines solchen Gerätes ist in ►Abbildung E.1 dargestellt.

Abbildung E.1: Ein typisches elektronisches Gerät

Durch einen Sensor wird eine nicht elektrische Größe wie zum Beispiel Druck, Temperatur, Länge, Kraft, Lichtstärke oder Drehzahl in ein elektrisches Signal umgewandelt. Im Fall der Messung einer elektrischen Größe entfällt häufig der Sensor, da bereits ein elektrisches Signal vorliegt.

Die von Sensoren gelieferten Signale müssen meist durch ein so genanntes Sensorinterface verstärkt und an die nachfolgende Auswerte-Elektronik angepasst werden. Zu diesem Zweck werden im Allgemeinen Operationsverstärker verwendet, deren Aufbau und Grundschaltungen im Kapitel 5 vorgestellt werden. Um die Funktion von Operationsverstärkern verstehen zu können, wird Wissen über typische Halbleiterbauelemente wie Dioden und Transistoren sowie deren Anwendung benötigt. Wir beginnen daher mit einer kurzen Einführung in die Physik der Halbleiter in **Kapitel 2** und werden in weiterer Folge in **Kapitel 3** die verschiedenen Halbleiterdioden und typische Anwendungen wie Gleichrichterschaltung und Spannungsverdoppler kennen lernen.

In **Kapitel 4** werden die wesentlichen Transistortypen vorgestellt und ihre Funktion erklärt. Davon ausgehend erfolgt eine Betrachtung von einstufigen Transistorverstärkern, Stromquellen, Stromspiegeln und des Differenzverstärkers. All diese Lernschritte bilden die Basis zum Verständnis der Elemente des schon erwähnten Operationsverstärkers (**Kapitel 5**).

In einem modernen elektronischen Gerät wird das vom Sensorinterface gelieferte analoge Signal von einem Analog/Digital-Umsetzer in ein für digitale Rechenwerke (Mikrocontroller) verarbeitbares digitales Signal umgesetzt. Die Grundlagen der Analog/Digital- beziehungsweise Digital/Analog-Umsetzung werden in **Kapitel 14** besprochen. In **Kapitel 15** folgt eine Vorstellung der wichtigsten Analog/Digital-Umsetzer-Topologien. Die dabei verwendete digitale Darstellung von Signalen wird in **Kapitel 7** erklärt.

Die Berechnung eines Messwertes aus dem gemessenen Sensorsignal wird über das digitale Rechenwerk durchgeführt. Im Rahmen unseres Buches werden wir uns nicht mit dem Entwurf von Rechenwerken beschäftigen, hier sei auf weitere Grundlagenwerke wie zum Beispiel [46] verwiesen. Ein Rechenwerk besteht aus logischen Grundfunktionen und so genannter zeitsequenzieller Logik. Unter diesem Begriff versteht man logische Funktionen, bei denen die Vorgeschichte eine Rolle spielt.

Im **Kapitel 8** werden die wesentlichen logischen Grundfunktionen vorgestellt und die Schaltalgebra erklärt. In weiterer Folge wird die praktische Umsetzung von logischen Funktionen mit MOSFETs und bipolaren Transistoren in den **Kapiteln 9** und **10** besprochen.

Zur Realisierung zeitsequenzieller Logik werden die in **Kapitel 11** vorgestellten Kippstufen verwendet. Sie benötigen einen Takt in Form eines Rechteck-Signales. Diese und andere Signalformen können mit den in **Kapitel 12** vorgestellten Signalgeneratoren erzeugt werden.

Der berechnete Messwert wird über eine oder mehrere Schnittstellen zur Verfügung gestellt. Eine wichtige Schnittstelle ist jene zum Menschen (*Human Interface*). Sie wird üblicherweise über eine Anzeige und eine Tastatur realisiert. Weitere Möglichkeiten sind die in **Kapitel 13** besprochenen digitalen Schnittstellen wie zum Beispiel USB, Ethernet oder die serielle Schnittstelle.

Auch eine Ausgabe eines analogen Wertes ist in bestimmten Fällen sinnvoll. Dazu muss das digital vorliegende Ergebnis in ein analoges Signal umgesetzt werden. Wir werden die dazu verwendeten Digital/Analog-Umsetzer in **Kapitel 14** kennen lernen. Der Beschaltung von Umsetzern ist mit **Kapitel 17** ein eigener Abschnitt gewidmet. Hier werden die in der praktischen Anwendung auftretenden Fragen zur Pegelumsetzung und zur Filterung von Signalen behandelt.

In Abbildung E.1 ist ein weiterer Block, die so genannte Strom- beziehungsweise Spannungsversorgung gezeigt. Im **Kapitel 6** werden die wichtigsten Spannungsregler-Topologien vorgestellt und ein kurzer Überblick über die drei grundlegenden Schaltreglerarten gegeben.

Den Abschluss des Buches bilden drei Kapitel, die eine Sonderstellung einnehmen. In **Kapitel 18** werden wir anwendungsspezifische mikroelektronische Schaltungen kennen lernen. Es bildet die Brücke zum im Rahmen der Miniaturisierung sehr wichtigen Bereich der Mikroelektronik.

Kapitel 19 bietet einen Einstieg in den für die Geräte-Entwicklung wesentlichen Bereich der elektromagnetischen Verträglichkeit. Hier wird der Entwurf störsicherer Geräte besprochen, die wenig Störungen an die Umgebung abgeben. Da sowohl die Mikroelektronik als auch die elektromagnetische Verträglichkeit große eigenständige Fachgebiete darstellen, können die beiden genannten Abschnitte nur einen Überblick bieten und eine Brücke zur spezialisierten Fachliteratur darstellen.

Das letzte Kapitel ist einer realen Geräte-Entwicklung gewidmet. Es wird die schrittweise Entwicklung eines elektronischen Thermometers gezeigt. Dabei werden wir das in den verschiedenen Kapiteln gelernte Wissen anwenden und erweitern.

Nach dieser "Wegbeschreibung" aus der Sicht der Autoren werden wir im ersten Kapitel mit einer Begriffsbestimmung starten und einige Beispiele typischer passiver Netzwerke kennen lernen.

Grundlagen

1.1 Einführung	28		
1.2 Passive Netzwerke	66		
Zusammenfassung	93	C K	
		S B L	
		ш 8	
		5	

Einleitung

Am Beginn der Beschäftigung mit der elektronischen Schaltungstechnik ist es notwendig, die verwendeten Begriffe zu klären. Im einführenden Kapitel beschäftigen wir uns mit Fragen wie: Was ist eine elektrische Spannung, was ist ein elektrischer Strom? Wie passen diese Begriffe zu meiner physikalischen Grundausbildung? In weiterer Folge werden ein minimaler Satz an Formeln und die grundsätzliche Vorgehensweise so weit vorgestellt, dass die Anwendung an den in den weiteren Kapiteln zu besprechenden Schaltungen möglich ist. Diese Konzepte werden wir anhand von zeitlich nicht veränderlichen Größen, so genannten Gleichgrößen, kennen lernen. Danach werden Methoden gezeigt, die dieses Wissen auch für zeitlich veränderliche Größen (Wechselgrößen) anwendbar machen.

Da das eigentliche Thema des vorliegenden Buches die elektronische Schaltungstechnik ist, kann das einleitende Kapitel keinesfalls die Grundlagen vollständig darstellen. Für eine weitergehende Beschäftigung mit den Grundlagen sei dem interessierten Leser das im selben Verlag erschienene dreibändige Werk [1], [2], [34] zu den Grundlagen der Elektrotechnik empfohlen.

LERNZIELE

- Verstehen der Begriffe: Strom, Spannung, elektrischer Widerstand und Leitfähigkeit
- Kennenlernen der wichtigsten Gesetze und Methoden zur Berechnung von Gleichstromkreisen
- Darstellung von Wechselgrößen, Kennenlernen der symbolischen Methode
- Grundsätzliches zur Betrachtung von Zweitoren

1.1 Einführung

Beschäftigt man sich mit elektrischen Phänomenen, so ist man recht bald mit dem Begriff Feld konfrontiert. Die Physik versteht unter einem Feld einen physikalischen Zustand im Raum, der durch seine Wirkung auf Teilchen definiert ist. In der Elektrotechnik wird zwischen magnetischen und elektrischen Feldern unterschieden. Eine weitere Unterscheidungsmöglichkeit gibt es zwischen statischen Feldern und Strömungsfeldern.

1.1.1 Elektrostatisches Feld

Für einfache Überlegungen zu elektrischen Phänomenen reicht es aus, die Materie mit dem Bohr'schen¹ Atommodell zu beschreiben. In diesem Modell gibt es einen positiv geladenen Atomkern, der von negativ geladenen Elektronen umkreist wird. Zwischen diesen unterschiedlich geladenen Teilchen besteht eine Kraftwirkung, sie ziehen sich an.

Betrachtet man nun den Einfluss des Feldes auf das Elektron, so erkennt man eine Kraftwirkung \vec{F} , die durch ein elektrostatisches Feld (das von einer positiven Ladung erzeugt wurde) beschrieben werden kann. Jedem Punkt im Raum wird eine elektrische Feldstärke \vec{E} zugeordnet, aus der mithilfe der Ladung Q des Teilchens der Kraftvektor \vec{F} (Betrag und Richtung der Kraftwirkung) bestimmt werden kann. Das elektrische Feld wird daher als **Vektorfeld** bezeichnet. Zum Unterschied davon kennt man auch skalare Felder. Hier wird jedem Punkt im Raum eine skalare Größe zugeordnet, ein Beispiel wäre eine Temperaturverteilung.

$$\vec{F} = Q \cdot \vec{E} \tag{1.1}$$

Bewegt man die elektrische Ladung innerhalb dieses Kraftfeldes entlang eines Weges d \vec{s} , so wird dabei eine Arbeit W im physikalischen Sinne verrichtet.

$$W = \vec{F} \cdot d\vec{s} \tag{1.2}$$

Die verrichtete Arbeit hängt im Fall des elektrostatischen Feldes nicht von der Form des Weges, sondern nur vom Anfangs- und Endpunkt ab. Anders formuliert ist die Arbeit auf einem geschlossenen Weg innerhalb des Feldes gleich Null.

$$\oint \vec{E} \cdot \vec{ds} = 0 \tag{1.3}$$

Ein Feld mit dieser Eigenschaft wird in der Physik wirbelfrei genannt. Jedem Punkt eines wirbelfreien Feldes kann ein Potential φ zugeordnet werden. Dieses Potential ist die Fähigkeit des Feldes, Arbeit zu verrichten. Den Potentialunterschied zwischen zwei Punkten des Feldes bezeichnet man als elektrische **Spannung** V^2 .

$$V_{XY} = \varphi(X) - \varphi(Y) = \int_X^Y \vec{E} \cdot d\vec{s}$$
(1.4)

Tauscht man den Anfangs- und den Endpunkt unserer Betrachtung aus, so ändert sich nur das Vorzeichen: $V_{XY} = -V_{YX}$.

¹ Niels Henrik David Bohr, * 7. Oktober 1885 in Kopenhagen, † 18. November 1962 in Kopenhagen, dänischer Physiker, Nobelpreis für Physik im Jahr 1922

² In der deutschsprachigen Literatur wird die Spannung üblicherweise mit *U* bezeichnet. Wir haben, um mit der dominierenden englischen Fachliteratur konform zu sein, die Bezeichnung *V* (*Voltage*) gewählt.

1.1.2 Elektrisches Strömungsfeld

Bringt man ein leitfähiges Material in ein elektrostatisches Feld, so beginnt ein Strom zu fließen, wir gelangen zum elektrischen Strömungsfeld. Legt man eine Fläche durch das entstehende Strömungsfeld, so kann man auf dieser Fläche das Integral über die Stromdichte *J* bilden und damit den durch die Fläche fließenden Strom *I* bestimmen.

$$I = \int \vec{J} \cdot \vec{dA}$$
(1.5)

Der elektrische **Strom** *I* ist die Anzahl der (Elementar-)Ladungen, die pro Zeiteinheit durch eine Fläche fließen.

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t} \tag{1.6}$$

Auch das elektrische Strömungsfeld hat eine besondere Eigenschaft. Es wird als quellenfrei bezeichnet. Mathematisch kann die Quellenfreiheit durch folgende Beziehung beschrieben werden:

$$\oint \vec{J} \cdot \vec{dA} = 0 .$$
 (1.7)

Legt man um einen beliebigen Punkt im Raum eine geschlossene Fläche, zum Beispiel eine Kugel, und integriert auf dieser Fläche die Stromdichten, so ist das Ergebnis Null. Der Strom, der aus dem Inneren der Kugel kommt, muss an einer anderen Stelle wieder in die Kugel zurückfließen. (Ein Stromfluss ist nur in geschlossenen Schleifen möglich.)

1.1.3 Definition der Einheiten

Zu Bezeichnung von Messergebnissen wurde bereits im 19. Jahrhundert ein Einheitensystem aus Meter, Kilogramm und Sekunden eingeführt. Dieses MKS-System wurde im 20. Jahrhundert um die Einheit des Stromes, das Ampere³, erweitert.

Weitere Basiseinheiten sind das Kelvin⁴ für die thermodynamische Temperatur (absolute Temperatur) sowie das Candela für die Lichtstärke und das Mol für die Stoffmenge. Das aus diesen Grundeinheiten bestehende System wird SI-System⁵ genannt.

 ³ André-Marie Ampère, * 20. Januar 1775 in Poleymieux-au-Mont-d'Or bei Lyon (Frankreich),
 † 10. Juni 1836 in Marseille, französischer Physiker und Mathematiker

⁴ William Thomson, ★ 26. Juni 1824 in Belfast (Nordirland), † 17. Dezember 1907 in Netherhall bei Largs (Schottland), britischer Physiker; Wiliam Thomson wurde 1892 Baron Kelvin of Largs, er wird daher meist Lord Kelvin genannt.

⁵ Internationales Einheitensystem oder SI-System: Système International d'Unitès

Im Rahmen der Schaltungstechnik werden wir mit folgenden physikalischen und ihren von den Grundeinheiten abgeleiteten Größen konfrontiert sein:

- Kraft in Newton⁶ ^{kg m}/_{s²}
- Arbeit bzw. Energie in Joule⁷ $\frac{\text{kg m}^2}{s^2}$
- Leistung in Watt⁸ $\frac{\text{kg m}^2}{s^3}$
- Spannung in Volt⁹ $\frac{\text{kg m}^2}{\sqrt{3}}$
- Ladung in Coulomb¹⁰ A s

Abschließend seien noch zwei Definitionen erwähnt:

Ein Strom von einem Ampere ruft in zwei unendlich langen Leitern, die im Vakuum im Abstand von einem Meter verlegt sind, eine Kraftwirkung von $2 \cdot 10^{-7}$ N/m hervor. Eine Spannung von einem Volt fällt an einem auf konstanter Temperatur gehaltenen Leiter dann ab, wenn ein Strom von einem Ampere fließt und eine Leistung von einem Watt umgesetzt wird.

Nach diesen eher theoretischen Betrachtungen und Begriffsbestimmungen wenden wir uns einfachen Gesetzen und Rechenregeln zu, die uns die Analyse von elektronischen Schaltungen ermöglichen.

1.1.4 Rechnen mit Gleichgrößen

Die einfachste Form von elektronischen Schaltungen arbeitet nur mit zeitlich nicht veränderlichen Strömen und Spannungen. Man spricht in diesem Fall von Gleichgrößen. Der Zusammenhang zwischen der Spannung und dem Strom wird durch das Ohm'sche¹¹ Gesetz beschrieben:

$$V = R \cdot I \tag{1.8}$$

⁶ Sir Isaac Newton, * 25. Dezember 1642 in Woolsthorpe-by-Colsterworth in Lincolnshire, † 20. März 1727 in Kensington, englischer Physiker, Mathematiker

⁷ James Prescott Joule, * 24. Dezember 1818 in Salford bei Manchester, † 11. Oktober 1889 in Sale bei London, britischer Physiker

⁸ James Watt, \star 19. Januar 1736 in Greenock, †
 19. August 1819 in Handsworth, schottischer Erfinder

⁹ Alessandro Giuseppe Antonio Anastasio Graf von Volta, * 18. Februar 1745 in Como (Italien), † 5. März 1827 in Camnago bei Como, italienischer Physiker

¹⁰ Charles Augustin Coulomb, \star 14. Juni 1736 in Angoulême, † 23. August 1806 in Paris, französischer Physiker

¹¹ Georg Simon Ohm, * 16. März 1789 in Erlangen, † 6. Juli 1854 in München, deutscher Physiker

Der Proportionalitätsfaktor R hängt von der Geometrie und vom verwendeten Material ab. Er wird allgemein als elektrischer Widerstand bezeichnet. Die Einheit des elektrischen Widerstandes ist das Ohm Ω . Fällt bei einem Strom von einem Ampere an einem Widerstand eine Spannung von einem Volt ab, so besitzt der Widerstand einen Wert von einem Ohm.

Meint man die Materialeigenschaft eines bestimmten Leitermaterials, so spricht man vom spezifischen Widerstand. Er wird meist mit ρ bezeichnet. Der Zusammenhang zwischen R und ρ wird im Kapitel 2 genauer betrachtet.

Oft ist der Widerstand eines Leiters eine unerwünschte Eigenschaft, da er zur Erwärmung des Leiters und somit zu Verlusten führt. Wird die Eigenschaft des elektrischen Widerstandes gezielt für die Schaltungstechnik benötigt, so kommt ein Bauteil zum Einsatz, welches als ohmscher Widerstand bezeichnet wird.

Widerstände:

Der Widerstand ist das einfachste aller Bauteile. Mit einem Festwiderstand kann aus einer Spannung ein bestimmter Strom oder aus einem Strom eine bestimmte Spannung gewonnen werden. Festwiderstände haben einen bei der Herstellung genau definierten elektrischen Widerstand, der idealerweise nur wenig von der Temperatur abhängt und sich durch Alterung kaum ändert. Sie werden im Bereich von 1/100 Ω bis 10⁷ Ω gebaut. Die Toleranzen des Ausgangswertes liegen zwischen 0,01 % und 5 %. Die Temperaturkoeffizienten stabiler Widerstände sind kleiner als 1/1000 000 pro Grad Temperaturänderung.

Widerstände werden als Normwerte gebaut und in Reihen eingeteilt. E24 bedeutet zum Beispiel, dass pro Dekade 24 verschiedene Widerstandswerte zur Verfügung stehen. Bei E12 sind es nur 12 Werte. Die Abstufung der Widerstände innerhalb der Dekade wird entsprechend einer geometrischen Reihe durchgeführt. Der Abstufungsfaktor k wird aus der Anzahl der Widerstände N pro Dekade nach folgender Beziehung errechnet.

$$k_N = \sqrt[N]{10} \tag{1.9}$$

Für E12 erhält man $k_{12} = \sqrt[12]{10} = 1,21$. Die einzelnen Widerstandswerte sind das Produkt aus dem Startwert *s* der Dekade und den Potenzen von *k*. Als Beispiel sind in **>** Tabelle **1.1** die Widerstandswerte von 10 bis 100 Ω für eine E12-Reihe angegeben.

Die Toleranzen der Widerstandswerte werden entsprechend der jeweiligen E-Reihe so gewählt, dass keine Lücken entstehen und jeder produzierte Widerstand einem Normwert mit einer zulässigen Toleranz zugeordnet werden kann. Die zur jeweiligen E-Reihe gehörenden Toleranzbänder sind der ►Tabelle 1.2 zu entnehmen.

										Tabelle 1.1		
Normwerte der E12-Reihe von 10 bis 100 Ω												
sk ⁰	sk ¹	sk ²	sk ³	sk ⁴	sk ⁵	sk ⁶	sk ⁷	sk ⁸	sk ⁹	sk ¹⁰	sk ¹¹	
10	12	15	18	22	27	33	39	47	56	68	82	
										Tabelle 1.2		
[oler	anzh	ändo	r dei	wic	htia	ston	F-Ro	ihon				
				VVIC	intrg:	Juen		men				
Reihe			E6			E12		E2	4	E	96	
Tolera	ınzban	d	+3	20%		+10%	6	+	5 %	±1 %		

Eine weitere wesentliche Eigenschaft bei der Spezifikation dieses Bauteiles ist die elektrische Belastbarkeit. Sie reicht von weniger als 100 mW bei kleinen SMD-Widerständen (*SMD...Surface Mounted Device*) bis zu Sonderbauformen mit 150 Watt. Natürlich gibt es Widerstände, die mit wesentlich größeren Leistungen auch noch zurecht kommen. Diese werden jedoch eher als Heizkörper und weniger als elektronisches Bauteil betrachtet.

Die Kennzeichnung der Widerstände erfolgt durch einen Farbcode oder bei SMD-Bauteilen durch Aufdruck eines Wertes. Typisch sind Bezeichnungen wie gelb-lilarot oder der Aufdruck 472, beides bedeutet 4700Ω . Wenn Zweifel an der Bezeichnung bzw. den Kenndaten eines Bauteiles bestehen, sollte man immer auf die Website des Herstellers zurückgreifen, da die Daten aller aktuellen Bauteile im Internet verfügbar sind. Kritisch sind lediglich obsolete Bauteile, die nicht mehr produziert wurden. Solche Datenblätter verschwinden meist sehr rasch, daher sollte der Geräte-Entwickler die Datenblätter der verwendeten Bauteile unbedingt mit den Projektdaten archivieren.

Abbildung 1.1: Schaltsymbole: v.l.n.r. Festwiderstand, Trimmer, Potenziometer, LDR, PTC, NTC, VDR

In Abbildung 1.1 sind die Schaltsymbole üblicher Widerstände dargestellt. Zusätzlich zu den Festwiderständen gibt es einstellbare Widerstände, wobei zwischen Trimmern und Potenziometern unterschieden wird. Trimmer werden nur selten, üblicherweise bei der ersten Inbetriebnahme beim Abgleich des Gerätes, verstellt, während Potenziometer eine Achse besitzen und häufig bedient werden. Ein typisches Beispiel für ein Potenziometer ist der Lautstärkeregler eines Radios.

Eine weitere Gruppe von Widerständen werden als Sensoren verwendet. Beispiele sind der lichtempfindliche Widerstand (*LDR* ... *Light dependent Resistor*) oder der temperaturabhängige Widerstand. Bei temperaturabhängigen Widerständen unterscheidet man zwischen Heißleitern (*NTC* ... *Negative Temperature Coefficient*) und Kaltleitern (*PTC* ... *Positive Temperature Coefficient*). Im Schaltsymbol sind temperaturabhängige Widerstände durch das Formelzeichen für die Temperatur ϑ gekennzeichet. Zeigen zwei Pfeile in dieselbe Richtung, so ist eine Widerstandserhöhung bei Temperatursteigerung (PTC) gemeint, anderenfalls meint man einen NTC. Ein weiterer Widerstandstyp wird als **spannungsabhängiger Widerstand** (*VDR* ... *Voltage Dependent Resistor*) oder **Varistor** bezeichnet. Er wird als Bauelement zur Spannungsbegrenzung in Schutzschaltungen eingesetzt.

Thermometer

Zur Temperaturmessung werden temperaturabhängige Spannungsteiler verwendet. Steht bei der Entwicklung des Thermometers der Preis im Vordergrund bzw. sind die angestrebten Messunsicherheiten im Bereich von ± 1 °C, so kommt man mit NTCs aus. Sie haben einen großen Temperaturkoeffizienten, wodurch ein großes temperaturabhängiges Signal gewonnen werden kann. Der Schaltungsaufwand zur Auswertung ist dadurch vergleichsweise gering.

Werden hingegen ein großer Messbereich und kleine Messfehler sowie eine hohe Stabilität und Wiederholgenauigkeit benötigt, so verwendet man Widerstände aus Platin. Diese Widerstände gibt es mit verschiedenen Ausgangswerten bei 0°C. Dieser Bezugswiderstand wird als Zahl hinter der Bezeichnung *PT* angegeben. Typisch sind der *PT*25, der *PT*100 und der *PT*1000. Das in Kapitel 20 beschriebene Beispielthermometer verwendet einen *PT*1000.

Nachdem wir jetzt ohmsche Widerstände kennen gelernt haben, beschäftigen wir uns im nächsten Schritt mit einfachen Schaltungen, die aus diesen Bauteilen bestehen.

Serien- und Parallelschaltung:

In \triangleright Abbildung 1.2 ist links die Serienschaltung zweier Widerstände gezeigt. Der Strom *I* ist für beide Widerstände gleich, während sich die Gesamtspannung *V* in die beiden Spannungsabfälle V_1 und V_2 aufteilt. Diese Aufteilung erfolgt im Verhältnis der beiden Widerstände.

$$V_1/V_2 = R_1/R_2 \tag{1.10}$$

Abbildung 1.2: Serienschaltung und Parallelschaltung von Widerständen

Der Strom kann aus der Gesamtspannung V und dem Gesamtwiderstand R_{Ges} berechnet werden. Als Gesamt- oder Ersatzwiderstand bezeichnet man jenen gedachten Einzelwiderstand, der denselben ohmschen Widerstand wie die betrachtete Schaltung besitzt. Der Gesamtwiderstand ist im Fall der Serienschaltung immer größer als der größte Einzelwiderstand.

$$I = \frac{V}{R_{Ges}} = \frac{V}{R_1 + R_2}$$
(1.11)

Die Spannungsabfälle an den einzelnen Widerständen können mit der **Spannungsteilerregel** sofort angegeben werden. Der gesuchte Spannungsabfall ist die Gesamtspannung multipliziert mit dem Teilerverhältnis. Das Teilerverhältnis enthält im Zähler den beteiligten Widerstand (an dem der Spannungsabfall berechnet werden soll) und im Nenner die Summe aus beiden Widerständen.

$$V = V_1 + V_2$$
, $V_1 = V \frac{R_1}{R_1 + R_2}$, $V_2 = V \frac{R_2}{R_1 + R_2}$ (1.12)

Für die Parallelschaltung von zwei Widerständen können duale Gesetzmäßigkeiten angegeben werden. In diesem Fall ist die Spannung an beiden Widerständen gleich groß. Der zufließende Strom teilt sich auf die beiden Widerstände auf. Die Aufteilung erfolgt umgekehrt proportional zur Größe der Widerstände.

$$I_1/I_2 = R_2/R_1 \tag{1.13}$$

Der Gesamtwiderstand ist im Fall der Parallelschaltung sicher kleiner als der kleinste Einzelwiderstand. Für zwei Widerstände kann der Gesamtwiderstand einer Parallelschaltung leicht angegeben werden:

$$R_{Ges} = \frac{R_1 \cdot R_2}{R_1 + R_2} \ . \tag{1.14}$$

Für eine Parallelschaltung mit mehr als zwei Widerständen rechnet man zweckmäßigerweise mit den Kehrwerten der Widerstände, den so genannten Leitwerten. Leit-
werte werden im Normalfall mit *G* bezeichnet. Die Aufteilung der Ströme ist proportional zu den Leitwerten, der Gesamtleitwert ist die Summe der Einzelleitwerte.

$$I_1/I_2 = G_1/G_2$$
, $G_{Ges} = G_1 + G_2 + \dots G_N$ (1.15)

$$1/R_{Ges} = 1/R_1 + 1/R_2 + \dots + 1/R_N \tag{1.16}$$

Der Gesamtstrom I berechnet sich auch in diesem Fall aus der Spannung V und dem Gesamtwiderstand der Parallelschaltung R_{Ges} .

Es kann natürlich auch mit dem Leitwert G_{Ges} gerechnet werden.

$$I = \frac{V}{R_{Ges}} = V(G_1 + G_2) = V \cdot G_{Ges}$$
(1.17)

Die Einzelströme werden aus dem Gesamtstrom mit der **Stromteilerregel** berechnet. Man multipliziert den Gesamtstrom mit einem Teilerverhältnis, wobei im Zähler der unbeteiligte Widerstand (dessen Strom nicht berechnet wird) und im Nenner die Summe der beiden Widerstände steht.

$$I = I_1 + I_2$$
, $I_1 = I \cdot \frac{R_2}{R_1 + R_2}$, $I_2 = I \cdot \frac{R_1}{R_1 + R_2}$ (1.18)

Kirchhoff'sche Gesetze:

Das erste Kirchhoff'sche¹² Gesetz, die Knotenregel (KCL ... *Kirchhoff Current Law*) besagt, dass die Summe der Ströme in einem Knoten gleich 0 ist.

$$\sum_{k=1}^{n} I_n = 0 \tag{1.19}$$

In der Einleitung haben wir eine etwas allgemeinere Formulierung dieses Sachverhaltes als Bedingung für die Quellenfreiheit des elektrischen Stömungsfeldes kennen gelernt. Das Integral der Stromdichte über eine geschlossene Hülle im Raum ist gleich 0. Befinden sich innerhalb des Raumes nur einzelne Leiter mit konstanten Stromdichten, so muss nur die Stromdichte im Leiter mit der Leiterfläche multipliziert werden und man erhält den Strom im jeweiligen Leiter. Aus dem Hüllenintegral wird die Summe der Leiterströme. Zum Vergleich sehen Sie hier nochmals die allgemeinere Formulierung, die verwendet werden muss, wenn die Stromdichte im Leiter nicht konstant ist:

$$\oint \vec{J} \cdot \vec{\mathrm{d}} A = 0$$

In der Praxis werden die zufließenden Ströme üblicherweise positiv gezählt, während man die abfließenden Ströme negativ zählt. Ein Beispiel für die Anwendung

¹² Gustav Robert Kirchhoff, \star 12. März 1824 in Königsberg, †
 17. Oktober 1887 in Berlin, deutscher Physiker

Abbildung 1.3: Knoten- und Maschenregel

der Knotenregel ist links in ►Abbildung 1.3 zu sehen. Die Knotenregel liefert für diesen Beispielknoten:

$$I_1 - I_2 - I_3 - I_4 = 0 \Rightarrow I_1 = I_2 + I_3 + I_4$$

Das zweite Kirchhoff'sche Gesetz, die Maschenregel (KVL . . . *Kirchhoff Voltage Law*), besagt, dass die Summe der Spannungen in einer geschlossenen Masche Null ist.

$$\sum_{k=1}^{n} V_n = 0 \tag{1.20}$$

Auch dieses Gesetz kennen wir schon. Es entspricht der Bedingung für Wirbelfreiheit des elektrostatischen Feldes. Das Integral der Feldstärke entlang eines geschlossenen Weges ist gleich 0. Zur Wiederholung nochmals als Formel angeschrieben:

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Will man mit der Maschenregel arbeiten, so nimmt man, wie in Abbildung 1.3 rechts gezeigt, einen Umlaufsinn innerhalb der Masche an. Spannungsabfälle, die in Richtung des Umlaufsinnes zeigen, werden positiv gezählt, die anderen negativ. Die Masche M_1 zeigt, dass die Spannungen an allen Elementen einer Parallelschaltung gleich sind.

$$M1: -V_1 + V_{R1} = 0 \Rightarrow V_1 = V_{R1}$$

Die Gleichung für die Masche M_2 lautet:

$$M2: -V_{R1} + V_{R2} + V_{R3} = 0 \Rightarrow V_{R1} = V_{R2} + V_{R3}$$

Strom- und Spannungsquellen:

Bis jetzt haben wir über die Herkunft der Ströme und Spannungen nicht nachgedacht. Sobald man diesen Aspekt in die Überlegungen einbezieht, werden so genannte Quellen benötigt. Die einfachste Form ist die unabhängige Quelle, die je nach Typ entweder einen genau definierten Strom oder eine genau definierte Spannung liefert. Sobald man sich mit aktiven Bauelementen beschäftigt, kommt ein weiterer Typ, die gesteuerte Quelle, hinzu. Hier hängt die Ausgangsgröße entweder von einer Steuerspannung oder von einem Steuerstrom ab. Vorerst beschäftigen wir uns nur mit unabhängigen Quellen.

Spannungsquellen:

Eine ideale Spannungsquelle liefert unabhängig vom entnommenen Strom immer die gleiche Spannung. Da die von der Quelle gelieferte Leistung dem Produkt aus Strom und Spannung entspricht, ist leicht erklärbar, warum es keine idealen Spannungsquellen gibt. Würde bei konstanter Ausgangsspannung der Lastwiderstand immer weiter verkleinert, so würde die abgegebene Leistung einer idealen Quelle beliebig groß werden. Das ist natürlich nur theoretisch möglich. Reale Spannungsquellen bestehen aus einer idealen Spannungsquelle mit der Quellenspannung V_0 und einem Innenwiderstand R_{is} . In \blacktriangleright Abbildung 1.4 ist zusätzlich noch ein Lastwiderstand eingezeichnet.

Abbildung 1.4: Reale Spannungsquelle

Die Zählpfeile für Ströme und Spannungen sind entsprechend dem Verbraucherzählpfeilsystem eingezeichnet. In diesem System zeigen die Pfeile für Strom und Spannung am Verbraucher in dieselbe Richtung, während sie am Erzeuger in die entgegengesetzten Richtungen weisen. Eine andere Möglichkeit zur Annahme der Zählpfeile bietet das Erzeugerzählpfeilsystem. Hier zeigen Strom und Spannung an der Quelle in dieselbe Richtung.

Zur Beurteilung der Eigenschaften der realen Spannungsquelle betrachten wir die beiden Extremfälle für den Lastwiderstand:

Im so genannten Leerlauf ist der Lastwiderstand unendlich groß (oder es ist kein Lastwiderstand angeschlossen). Da kein Strom entnommen wird, ist es für die Spannungsquelle einfach, ihre Nennspannung zu liefern. Die Klemmenspannung V_a ist gleich groß wie die Quellenspannung der idealen Spannungsquelle V_0 , da am Innenwiderstand keine Spannung abfällt.

Im anderen Extremfall, dem so genannten Kurzschluss, ist der Lastwiderstand sehr klein. Der Spannungsabfall am Kurzschluss kann vernachlässigt werden. Die Quellenspannung fällt praktisch komplett am Innenwiderstand der Quelle ab. Der Strom hängt in diesem Fall von der Quellenspannung und vom Innenwiderstand ab.

$$I_a = V_0/R_{is}$$

Zwischen diesen beiden Extremen existiert ein Punkt, bei dem das Produkt aus Klemmenspannung und abgegebenem Strom maximal ist. In diesem Fall wird von der Quelle die maximale Leistung geliefert, man spricht von Leistungsanpassung. Bei welchem Lastwiderstand wird von einer realen Quelle die maximale Leistung an den Lastwiderstand abgegeben?

$$P_L = V_a \cdot I_a = (V_0 - I_a \cdot R_{is}) \cdot I_a = V_0 \cdot I_a - I_a^2 \cdot R_{is}$$

Ein Maximum der Leistung tritt genau dann auf, wenn die erste Ableitung gleich 0 wird.

$$\frac{\mathrm{d}P_L}{\mathrm{d}I_a} = V_0 - 2I_a \cdot R_{is} \stackrel{!}{=} 0 \to V_0 = 2I_a \cdot R_{is}$$

Der Spannungsabfall am Innenwiderstand V_i ist im Fall der maximalen Leistung gleich der halben Quellenspannung.

$$V_i = V_0/2 = I_a \cdot R_{is} \to V_a = \frac{V_0}{2}$$

Die zweite Hälfte der Quellenspannung fällt an R_L ab. Da sich die Spannungsabfälle wie die Widerstände verhalten, tritt das nur bei einer Gleichheit von Lastund Innenwiderstand auf. Für Leistungsanpassung gilt $R_L = R_{is}$. Die Leistung am Lastwiderstand ist:

$$P = \frac{V_a^2}{R_L} = \frac{V_0^2}{4R_L} \,. \tag{1.21}$$

Stromquellen:

Eine ideale Stromquelle liefert unabhängig vom angeschlossenen Lastwiderstand immer einen konstanten Ausgangsstrom. Erhöht man den Lastwiderstand, der an eine ideale Stromquelle angeschlossen ist, so steigt die Ausgangsspannung der Quelle beliebig an, da der Ausgangsstrom der Quelle konstant bleibt. Auch das ist bei realen Stromquellen nicht erreichbar. Ähnlich wie im Fall der realen Spannungsquelle wird auch die reale Stromquelle durch eine ideale Stromquelle und einen Innenwiderstand, der jedoch hier parallel zur Quelle liegt, dargestellt Abbildung 1.5.

Abbildung 1.5: Reale Stromguelle

Im Kurzschlussfall liefert die Stromquelle ihren Nennstrom in den Kurzschluss. Da der Innenwiderstand verschieden von 0 ist, fließt durch diesen praktisch kein Strom. Im Leerlauf treibt die Stromquelle ihren Nennstrom durch ihren Innenwiderstand, an den Klemmen tritt folgende Leerlaufspannung V_a auf.

$$V_a = I_0 \cdot R_{ip}$$

Je kleiner der Innenwiderstand einer in der Praxis zu modellierenden Quelle ist umso näher ist ihr Verhalten dem einer Spannungsquelle ($R_{is} \ll$). Ist die Quelle sehr hochohmig, so wird man sie eher durch eine Stromquelle ($R_{ip} \gg$) darstellen.

Die Anwendung der bis jetzt bekannten Regeln sei an folgendem einfachen Netzwerk nochmals im Detail gezeigt.

Der am nächsten liegende Weg ist die Anwendung der Kirchhoff'schen Regeln, um das lineare Gleichungssystem mit sieben Gleichungen zu erhalten. Dabei treten folgende Gleichungen auf:

$$K_1: I = I_1 + I_2 .$$

Man könnte auch die Gleichung für den anderen Knoten aufstellen, erhält aber dadurch keine zusätzliche Information.

$$M_1: V_0 = V_{Ris} + V_{R1}$$

 $M_2: V_{R1} = V_{R2} + V_{R3}$

Es gibt auch eine weitere Maschengleichung, die keine zusätzliche Information enthält:

$$M_3: V_0 = V_{Ris} + V_{R2} + V_{R3}$$

Wie viele Maschen- beziehungsweise Knotengleichungen linear unabhängig sind, kann durch entsprechendes Wissen aus der Graphentheorie sofort festgestellt werden. Die Erklärungen dazu seien aber der Fachliteratur über Netzwerkanalyse überlassen. Eine sehr schöne Darstellung zu diesem Thema ist auch in Kapitel 3.9 des im selben Verlag erschienen Werkes zu den Grundlagen der Elektrotechnik [1] zu finden.

Für ein eindeutig lösbares Gleichungssystem fehlen uns noch vier Gleichungen. Diese können durch Anwendung des Ohm'schen Gesetzes für die einzelnen Widerstände gewonnen werden:

$$V_{Ris} = I \cdot R_{is}$$
$$V_{R1} = I_1 \cdot R_1$$
$$V_{R2} = I_2 \cdot R_2$$
$$V_{R3} = I_3 \cdot R_3$$

Jetzt kann das Gleichungssystem zum Beispiel durch Einsetzen der Gleichungen ineinander gelöst werden. Diese Vorgangsweise setzt jedoch eine gewisse Rechenfertigkeit voraus und ist für die Handrechnung etwas unbequem. Auch für die Lösung mittels eines symbolischen Rechenprogrammes gibt es Methoden zum Ansetzen der Gleichungen, die eine Auswertung vereinfachen. Wir werden bei der Analyse von Filterschaltungen im zweiten Teil dieses Kapitels das Knotenspannungsverfahren kennen lernen.

Soll mit der Hand gerechnet werden, sind Vorgangsweisen, bei denen in jedem Schritt der Bezug zur Schaltung hergestellt werden kann, zu bevorzugen, da jederzeit eine Überprüfung der Sinnhaftigkeit der Berechnungen möglich ist. Ein möglicher Weg für das gegebene Beispiel sei im Folgenden skizziert.

1. Berechnung des Quellenstromes:

Dazu berechnen wir den Gesamt- oder Ersatzwiderstand der Schaltung, die Strom aus der Spannungsquelle entnimmt.

$$R_{ges} = R_{is} + R_1 \| (R_2 + R_3)$$

Die Summe von R_2 und R_3 ergibt 20 Ω . Der Widerstand der Parallelschaltung $R_1 || (R_2 + R_3)$ kann über die Leitwerte oder die folgende schon bekannte Formel berechnet werden:

$$R_P = \frac{R_1 \cdot (R_2 + R_3)}{R_1 + R_2 + R_3} \; .$$

Bei der Betrachtung der Werte fällt jedoch auf, dass es sich um eine Parallelschaltung gleicher Widerständen handelt. In diesem Fall ist der resultierende Widerstand die Hälfte der Einzelwiderstände, also 10Ω . Damit ergibt sich für den Gesamtwiderstand ein Wert von 20Ω .

Für den Quellenstrom erhält man daher $I = V_0/R_{Ges} = 10 \text{ V}/20 \Omega = 500 \text{ mA}.$

2. Berechnung der Einzelströme:

Aus dem Quellenstrom kann mit der Stromteilerregel einer der Teilströme, zum Beispiel der Strom *I*₁, berechnet werden.

$$I_1 = I \cdot \frac{R_2 + R_3}{R_1 + R_2 + R_3} = \frac{15\,\Omega + 5\,\Omega}{20\,\Omega + 15\,\Omega + 5\,\Omega} = 250\,\mathrm{mA}$$

Auch dieses Ergebnis hätte man sofort ablesen können. Da die Widerstände in beiden Zweigen gleich sind, teilt sich der Strom zu gleichen Teilen auf.

3. Berechnung der Teilspannungen an den Widerständen:

Da nun alle Ströme bekannt sind, können mit den gegebenen Widerstandswerten die Spannungsabfälle berechnet werden. Eine Betrachtung der gegebenen Werte erspart jedoch den größten Teil der Berechnung.

Das Netzwerk kann als Serienschaltung zweier Widerstände gesehen werden. Für den ersten Widerstand ist ein Wert von 10Ω gegeben, für die Parallelschaltung haben wir im ersten Schritt ebenfalls diesen Wert erhalten. Die Spannung der Quelle teilt sich daher zu gleichen Teilen auf die Elemente der Serienschaltung auf: $V_{Ris} = 5 V$ und $V_{R1} = 5 V$.

Die Masche M_2 liefert uns $V_{R1} = V_{R2} + V_{R3}$. Mit anderen Worten, die Spannung an beiden Zweigen der Parallelschaltung ist gleich. Diese Spannung teilt sich entsprechend dem Verhältnis der Widerstände auf:

$$V_{R2}/V_{R3} = R_2/R_3$$

Nun kann mit dem Ohm'schen Gesetz zum Beispiel die Spannung V_{R3} berechnet werden.

$$V_{R3} = I_2 \cdot R_3 = 0,25 \,\mathrm{A} \cdot 5 \,\Omega = 1,25 \,\mathrm{V}$$

Die Spannung am Widerstand R_2 ist dann:

$$V_{R2} = R_2/R_3 \cdot V_{R3} = 3 \cdot 1,25 \text{ V} = 3,75 \text{ V}$$
.

Alternativ kann natürlich auch die Spannungsteilerregel verwendet werden.

Bei der Analyse von Netzwerken in der elektronischen Schaltungstechnik treten auch Netzwerke mit mehreren Quellen auf. Ein typisches Beispiel ist das Laden von Batterien. Wenn das Netzwerk linear ist, können die verschiedenen Quellen nacheinander betrachtet werden, wodurch sich eine wesentliche Vereinfachung in der Berechnung ergibt.

Überlagerungssatz nach Helmholtz:

Das Helmholtz'sche¹³ Überlagerungsprinzip besagt, dass im Fall eines linearen Netzwerkes (lineare Zusammenhänge zwischen dem Strom durch das Bauteil und der am Bauteil anliegenden Spannung) die Wirkung einzelner Quellen nacheinander berechnet werden kann und das Zusammenwirken aller Quellen sich aus der Summation der einzelnen Wirkungen ergibt.

In jedem Schritt der Berechnung werden alle Quellen bis auf eine außer Betrieb gesetzt und die Wirkung errechnet. Aufgrund des Innenwiderstandes werden Spannungsquellen kurzgeschlossen und Stromquellen unterbrochen. Wir erinnern uns: Ideale Spannungsquellen besitzen einen Innenwiderstand von 0Ω , während der Innenwiderstand einer idealen Stromquelle unendlich ist.

Die Anwendung des Überlagerungsprinzips sei an einem einfachen Netzwerk mit mehreren idealen Quellen erklärt.

Im ersten Schritt betrachten wir nur die Wirkung der Spannungsquelle. Die Stromquelle wird entsprechend unserer Rechenvorschrift unterbrochen.

¹³ Hermann Ludwig Ferdinand von Helmholtz, * 31. August 1821 in Potsdam, † 8. September 1894 in Charlottenburg, deutscher Mediziner und Physiker

Es ergibt sich folgendes Schaltbild:

Der Strom I'_1 für diesen Fall kann direkt mit dem Ohm'schen Gesetz berechnet werden, da der zweite Zweig unterbrochen ist.

$$I'_1 = I'_2 = \frac{V_0}{R_1 + R_2} = \frac{10 \text{ V}}{10 \Omega + 30 \Omega} = 0,25 \text{ A}$$

Im zweiten Schritt berechnen wir die Wirkung der Stromquelle. Die Spannungsquelle wird zu diesem Zweck kurzgeschlossen. Wir erhalten folgendes Bild:

Einer der Teilströme, zum Beispiel I''_1 , wird mit der Stromteilerregel berechnet, der zweite Teilstrom ergibt sich aus der Knotenregel.

$$I_1'' = I_0 \cdot \frac{R_2}{R_1 + R_2} = 0.1 \,\mathrm{A} \cdot \frac{30 \,\Omega}{10 \,\Omega + 30 \,\Omega} = 0.075 \,\mathrm{A}$$
$$I_2'' = I_0 - I_1'' = 0.1 \,\mathrm{A} - 0.075 \,\mathrm{A} = 0.025 \,\mathrm{A}$$

Da die Teilströme I'_2 und I''_2 in der Zählpfeilrichtung des gesuchten Stromes I_2 angenommen wurden, müssen die Teilergebnisse nur addiert werden. Nimmt man die Ströme wie im Fall von I_1 , I'_1 und I''_1 unterschiedlich an, so muss man vorzeichenrichtig addieren. Allgemein kann gesagt werden, dass die Annahme der Zählpfeile unkritisch ist. Sie muss nur während der Rechnung beibehalten oder durch eine Änderung des Vorzeichens berücksichtigt werden. Ein negatives Ergebnis zeigt einen Strom an, der gegen die angenommene Richtung fließt.

Die gesuchten Ströme sind damit:

$$\begin{split} I_1 &= I_1' - I_1'' = 0.25 \,\mathrm{A} - 0.075 \,\mathrm{A} = 0.175 \,\mathrm{A} \\ I_2 &= I_2' + I_2'' = 0.25 \,\mathrm{A} + 0.025 \,\mathrm{A} = 0.275 \,\mathrm{A} \;. \end{split}$$

Als Abschluss der Methoden zur Berechnung von Netzwerken in Zusammenhang mit Gleichgrößen sei das Konzept der Ersatzstrom- und Ersatzspannungsquellen erwähnt.

Berechnung von Ersatzquellen und Quellenumwandlung:

In vielen Anwendungsfällen ist es wünschenswert, ein gegebenes Netzwerk durch eine einzelne Quelle mit Innenwiderstand darzustellen. Die Berechnung dieser Ersatzquellen folgt einer genauen Rechenvorschrift und ist mit den bis jetzt vorgestellten Methoden leicht durchführbar. Der Berechnungsvorgang wird an folgendem Beispiel gezeigt.

Die Berechnung erfolgt in zwei Schritten. Im ersten Schritt bestimmen wir den Innenwiderstand der Ersatzquelle. Er gilt für beide Quellenvarianten. Dazu werden genauso wie beim Überlagerungssatz Stromquellen unterbrochen, Spannungsquellen kurzgeschlossen und der Widerstand des verbleibenden Netzwerkes berechnet. Die folgende Abbildung zeigt das Schaltbild für die Bestimmung des Innenwiderstandes.

$$R_{i} = R_{3} + (R_{1}||R_{2}) = R_{3} + \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} = 50 \,\Omega + \frac{10 \,\Omega \cdot 30 \,\Omega}{10 \,\Omega + 30 \,\Omega} = 57,5 \,\Omega$$

Soll eine Ersatzspannungsquelle verwendet werden, so wird in einem zweiten Schritt die Leerlaufspannung des Netzwerkes berechnet. Die verwendete Schaltung ist in der folgenden Abbildung nochmals gezeigt. Zur Berechnung könnte man Maschenund Knotenregel verwenden, da jedoch mehrere Quellen vorliegen, empfiehlt sich die Verwendung des Überlagerungssatzes.

Wir berechnen zuerst V'_0 durch die Wirkung der Spannungsquelle. Danach wird die Spannung V''_0 , verursacht durch den Einfluss der Stromquelle, berechnet¹⁴.

$$V'_{0} = V_{1} \frac{R_{2}}{R_{1} + R_{2}} = 10 \text{ V} \frac{30 \Omega}{10 \Omega + 30 \Omega} = 7,5 \text{ V}$$
$$V''_{0} = I_{3} \cdot R_{i} = 0,1 \text{ A} \cdot 57,5 \Omega = 5,75 \text{ V}$$

Die Quellenspannung der Ersatzspannungsquelle V_0 ist die Überlagerung dieser beiden Fälle:

$$V_0 = V'_0 + V''_0 = 7,5 \,\mathrm{V} + 5,75 \,\mathrm{V} = 13,25 \,\mathrm{V}$$
 .

Die berechnete Ersatzspannungsquelle mit einer Quellenspannung $V_0 = 13,25$ V und einem Innenwiderstand $R_i = 57,5 \Omega$ ist in der folgenden Abbildung dargestellt.

Wird hingegen eine Ersatzstromquelle berechnet, so verbindet man die Klemmen mit einem idealen Leiter (Kurzschluss) und berechnet den durch diesen Leiter fließenden Strom. Er entspricht dem Quellenstrom I_k der gesuchten Ersatzstromquelle. Die der Berechnung zugrunde liegende Schaltung ist in folgender Abbildung gezeigt.

¹⁴ Zu Übungszwecken wird dem Leser empfohlen, sich die Schaltbilder der beiden Fälle getrennt aufzuzeichnen. Die Vorgehensweise wurde bei der Erklärung des Überlagerungsprinzips schon an einem Beispiel gezeigt.

Zuerst wird der Ausgangsstrom I'_k , verursacht durch die Spannungsquelle, berechnet. Der Strom für den zweiten Fall I''_k entspricht dem Strom I_3 , da das Netzwerk durch den Kurzschluss an den Klemmen überbrückt wird und der Strom nur durch den Kurzschluss fließt.

Durch die Spannungsquelle wird der Strom I'_1 in das Netzwerk getrieben.

$$I_1' = \frac{V_1}{R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3}} = \frac{10 \,\text{V}}{10 \,\Omega + \frac{30 \,\Omega \cdot 50 \,\Omega}{30 \,\Omega + 50 \,\Omega}} = 0,348 \,\text{A}$$

Der Strom I'_k kann durch die Stromteilerregel aus dem Strom I'_1 bestimmt werden.

$$I'_{k} = I'_{1} \cdot \frac{R_{2}}{R_{2} + R_{3}} = 0,348 \,\mathrm{A} \cdot \frac{30 \,\Omega}{30 \,\Omega + 50 \,\Omega} = 0,130 \,\mathrm{A}$$

Damit erhält man für den Quellenstrom:

$$I_k = I'_k + I''_k = I'_k + I_3 = 0,130 \text{ A} + 0,1 \text{ A} = 0,23 \text{ A}$$

Die Ersatzstromquelle mit $I_k = 0,23$ A und $R_i = 57,5 \Omega$ ist in der folgenden Abbildung gezeigt.

Da beide Ersatzquellen dasselbe Netzwerk symbolisieren, kann der Strom der Ersatzstromquelle auch aus der Quellenspannung der Ersatzspannungsquelle und dem Innenwiderstand berechnet werden. Diese Vorgehensweise bezeichnet man als Quellenumwandlung.

$$I_k = \frac{V_0}{R_i} = \frac{13,25 \,\mathrm{V}}{57,5 \,\Omega} = 0,23 \,\mathrm{A}$$

1.1.5 Rechnen mit Wechselgrößen

Nach der Betrachtung einiger für das Verständnis der Schaltungstechnik wichtiger Zusammenhänge bei Gleichstromkreisen wenden wir uns nun den zeitlich veränderlichen Größen zu. Man spricht in diesem Zusammenhang auch von Wechselgrößen, wobei zwischen periodischen und nicht periodischen Vorgängen unterschieden wird. Des Weiteren unterscheidet man auch zwischen sinusförmigen und nicht sinusförmigen Wechselgrößen.

Da eine umfassende Behandlung der Wechselgrößen wiederum ein eigenes Buch füllen würde, werden wir nur einige, im Zusammenhang mit der Schaltungstechnik wichtige Grundlagen genauer besprechen. Der an einer umfassenderen Darstellung interessierte Leser sei wiederum auf die Grundlagen der Elektrotechnik [2] verwiesen. Zu Beginn werden wir uns mit den sinusförmigen Wechselgrößen beschäftigen, wie sie in der Schaltungstechnik zum Beispiel als Eingangsspannungen bei Netzgeräten vorkommen.

Sinusförmige Wechselgrößen:

Zur Beschreibung eines sinusförmigen Signals, wie zum Beispiel des in ►Abbildung 1.6 gezeigten Stromes werden folgende Kenngrößen verwendet:

Abbildung 1.6: Zeitlicher Verlauf eines Wechselstromes

Scheitelwert:

Unter dem Scheitelwert, Spitzenwert oder der Amplitude des Wechselsignals versteht man die maximale Auslenkung aus der Ruhelage. Will man herausstreichen, dass es sich um einen Scheitelwert handelt, verwendet man üblicherweise die Schreibweise \hat{V} , \hat{I} .

Spitze-Spitze-Wert:

Der Spitze-Spitze-Wert entspricht dem doppelten Scheitelwert und wird mit I_{SS} oder V_{SS} bezeichnet.

Periodendauer:

Als Periodendauer wird die Zeit zwischen zwei Punkten des Signals mit demselben Schwingungszustand bezeichnet.

Frequenz:

Die Frequenz des Signals gibt an, wie viele Schwingungen das Signal pro Sekunde macht. Sie ist der Kehrwert der Periodendauer.

Phasenlage:

Die Phasenlage oder Phase eines Signals bezeichnet ihre zeitliche Lage relativ zu einem Bezugssignal. Sobald ein Netzwerk frequenzabhängige Bauteile enthält, ist das Ausgangssignal bezogen auf das Eingangssignal verschoben. Man spricht von einer Phasenverschiebung oder einer Phasenlage des Ausgangssignals.

Zusätzlich zu diesen Grundbegriffen bei der Beschreibung von elektrischen Schwingungen gibt es weitere Begriffe, die mit den physikalischen Wirkungen der elektrischen Wechselgrößen zusammenhängen.

Mittelwert:

Der Mittelwert eines elektrischen Wechselsignals entspricht dem enthaltenen Gleichanteil. Er ist für rein sinusförmige Größen, die symmetrisch bezogen auf die Nulllinie liegen, gleich 0. Jede Verschiebung des Wechselsignals, bezogen auf die Nullinie, führt zu unterschiedlichen Flächen unter den positiven und negativen Kurvenanteilen und ist gleichbedeutend mit einem aus Gleichanteil und Wechselanteil zusammengesetzten Signal.

$$\bar{I} = \frac{1}{T} \int_{t=t_0}^{t_0+T} i(t) \,\mathrm{d}t$$
(1.22)

Gleichrichtwert:

Unter dem Gleichrichtwert versteht man jenen gedachten Gleichstrom, der dieselbe Ladung transportiert wie der gleichgerichtete Wechselstrom.

$$|\bar{I}| = \frac{1}{T} \int_{t=t_0}^{t_0+T} |i(t)| \,\mathrm{d}t$$
(1.23)

Für sinusförmige Größen gilt:

$$|\bar{I}| = \hat{I} \cdot \frac{2}{\pi} . \tag{1.24}$$

Effektivwert:

Als Effektivwert eines Wechselstromes wird jener gedachte Gleichstrom bezeichnet, der im Mittel die gleichen Verluste an einem ohmschen Widerstand erzeugt wie der Wechselstrom.

$$I_{eff} = \sqrt{\frac{1}{T} \int_{t=t_0}^{t_0+T} i^2(t) \,\mathrm{d}t} \,. \tag{1.25}$$

Für sinusförmige Größen gilt:

$$I_{eff} = \frac{\hat{I}}{\sqrt{2}} . \tag{1.26}$$

Die Definitionen wurden am Beispiel eines Stromes gezeigt. Sie werden auch für Spannungen in der gleichen Form verwendet. Bei allen Überlegungen, die Wirkleistungen betreffen, wird mit Effektivwerten gerechnet. Vorsicht ist bei den Lade- und Entladeprozessen von Batterien geboten, da hier die transportierte Ladung ausschlaggebend ist. In diesem Fall muss der Gleichrichtwert bzw. der Mittelwert der Ströme beachtet werden.

Da wir in weiterer Folge bei Wechselgrößen hauptsächlich mit Effektivwerten arbeiten, wird der Index $_{eff}$ weggelassen, Mittelwerte oder Scheitelwerte werden zur Unterscheidung gekennzeichnet.

Zeigerdarstellung und Zeigerdiagramm:

Sinusförmige Wechselgrößen werden oft als Funktion eines Winkels dargestellt. Am Beispiel einer Spannung würde das folgendermaßen aussehen:

$$v(t) = \hat{V} \cdot \sin(2\pi f t + \varphi_V) . \tag{1.27}$$

Der Winkel hängt von der Frequenz der Schwingung f, von der Zeit t und vom so genannten Nullphasenwinkel φ_v ab. Alternativ kann man mit der Kreisfrequenz $\omega = 2\pi f$ rechnen.

$$v(t) = \hat{V} \cdot \sin(\omega t + \varphi_V) \tag{1.28}$$

Statt der Darstellung des Signals als Funktion der Zeit bzw. des Winkels ist es in vielen Fällen günstiger, mit einer Darstellung als rotierender Zeiger zu operieren. Legt man die Zeiger so, dass ein Nullphasenwinkel von 0 einem waagerechten Zeiger entspricht, und wählt man die Zeigerlänge entsprechend dem Spitzenwert des Signals, so kann der Momentanwert des Wechselsignals durch Projektion des Zeigers auf eine senkrechte Achse bestimmt werden. Die Zusammenhänge sind in ►Abbildung 1.7 gezeigt.

Abbildung 1.7: Zeigerdiagramm und zeitlicher Verlauf, Addition zweier Spannungen

Liegen mehrere Signale mit derselben Frequenz vor, so können diese in einem Zeigerdiagramm dargestellt werden. Da alle Zeiger gleich schnell rotieren, bleibt ihre Lage zueinander gleich und man kann die Rotation gedanklich weglassen. Jetzt ist es möglich, Wechselsignale einfach grafisch zu addieren oder zu subtrahieren. Will man die Operationen rechnerisch durchführen, so muss mit Additionstheoremen für Winkelfunktionen gearbeitet werden. Dieser Weg wird in der Praxis selten beschritten, da es ein viel eleganteres Verfahren, die so genannte **symbolische Methode**, gibt.

Durch die Verwendung der Euler'schen Identität kann jede sinusförmige Größe zu einer komplexen Exponentialfunktion erweitert werden.

$$e^{j\alpha} = \cos(\alpha) + j\sin(\alpha) \tag{1.29}$$

Betrachten wir die Vorgangsweise anhand einer physikalisch vorliegenden sinusförmigen Spannung, die wir als Imaginärteil der folgenden komplexen Exponentialfunktion betrachten.

$$\underline{V} = \hat{V} \cdot \cos(\omega t + \varphi_V) + j\hat{V} \cdot \sin(\omega t + \varphi_V) = \hat{V} \cdot e^{j(\omega t + \varphi_V)}$$
(1.30)

Durch diese Erweiterung entsteht eine symbolische Darstellung, die einem rotierenden Zeiger in der komplexen Ebene entspricht. Dadurch ist die grafische Addition und Subtraktion dieser komplexen Zeiger wiederum leicht möglich, allerdings können durch Verwendung der Gesetze für komplexe Zahlen viele Rechenoperationen einfach durchgeführt werden. Als Beispiel sollen einige Rechenoperationen durchgeführt werden. Für das Beispiel verwenden wir zwei Spannungen:

$$v_1(t) = \hat{V}_1 \cdot \sin(\omega t + \varphi_{v1}) \tag{1.31}$$

$$v_2(t) = V_2 \cdot \sin(\omega t + \varphi_{V2})$$
 (1.32)

Die symbolische Darstellung als rotierende Zeiger in der komplexen Ebene lautet:

$$\underline{V_1} = \hat{V}_1 \cdot e^{j\varphi_{V_1}} = \hat{V}_1 \angle \varphi_{V_1}$$
(1.33)

$$\underline{V_2} = \hat{V}_2 \cdot e^{j\varphi_{V2}} = \hat{V}_2 \angle \varphi_{V2} . \tag{1.34}$$

Die Darstellung als komplexe Exponentialfunktion kann auch als Darstellung in Polarkoordinaten, als Betrag der Zeigerlänge \hat{V}_1 und Winkel des Zeigers φ_{V1} betrachtet werden. Alternativ dazu kann man die komplexen Zeiger auch durch rechtwinkelige Koordinaten, als Real- und Imaginärteil beschreiben.

$$V_1 = \hat{V}_1 \cos(\varphi_{V1}) + j\hat{V}_1 \sin(\varphi_{V1})$$
(1.35)

$$\underline{V_2} = \hat{V}_2 \cos(\varphi_{V2}) + j\hat{V}_2 \sin(\varphi_{V2}) .$$
(1.36)

Addition, Subtraktion:

Man bestimmt Real- und Imaginärteil der komplexen Zeiger, danach kann komponentenweise addiert oder subtrahiert werden. Durch Zusammensetzen der Komponenten erhält man den komplexen Zeiger der (das physikalische) Ergebnis enthält.

$$\underline{V_3} = \hat{V}_1 \cos(\varphi_{V1}) + \hat{V}_2 \cos(\varphi_{V2}) + j \left(\hat{V}_1 \sin(\varphi_{V1}) + \hat{V}_2 \sin(\varphi_{V2}) \right)$$
(1.37)

$$\underline{V_4} = \hat{V}_1 \cos(\varphi_{V1}) - \hat{V}_2 \cos(\varphi_{V2}) + j \left(\hat{V}_1 \sin(\varphi_{V1}) - \hat{V}_2 \sin(\varphi_{V2}) \right)$$
(1.38)

Multiplikation, Division:

Im Fall dieser Operationen wird die Zeigerlänge der beiden Ausgangszeiger miteinander multipliziert oder es wird der Quotient der Zeigerlängen gebildet. Dadurch erhält man die Länge des Ergebniszeigers. Die Zeigerlänge entspricht dem Betrag des komplexen Zeigers in der Polarkoordinaten-Darstellung. Die Phasenlage des Ergebnisses wird durch Addition beziehungsweise Subtraktion der Ausgangsphasenlagen berechnet.

$$\underline{V_5} = \hat{V}_1 \cdot \hat{V}_2 \cdot e^{j(\varphi_{V1} + \varphi_{V2})} = \hat{V}_1 \cdot \hat{V}_2 \angle \varphi_{V1} + \varphi_{V2}$$
(1.39)

$$\frac{V_6}{\hat{V}_2} = \frac{\hat{V}_1}{\hat{V}_2} \cdot e^{j(\varphi_{V1} - \varphi_{V2})} = \frac{\hat{V}_1}{\hat{V}_2} \angle \varphi_{V1} - \varphi_{V2}$$
(1.40)

Potenzieren, Wurzelziehen:

Hier wird wieder die Darstellung in Polarkoordinaten verwendet. Man potenziert den Betrag beziehungsweise zieht die Wurzel aus diesem. Die Phase des Ergebnisses erhält man im Fall des Potenzierenes durch Multiplikation der Ausgangsphase mit der Hochzahl, während man im Fall des Wurzelziehens durch die Hochzahl dividiert.

$$\underline{V_7} = \hat{V}_1^n \cdot e^{j(n \cdot \varphi_{V_1})} = \hat{V}_1^n \angle n \cdot \varphi_{V_1}$$
(1.41)

$$\underline{V_8} = \sqrt[n]{\hat{V}_1} \cdot e^{j(\varphi_{V1}/n)} = \sqrt[n]{\hat{V}_1} \angle \varphi_{V1}/n$$
(1.42)

Nach der Durchführung der Berechnung im symbolischen Bereich soll nun das physikalische Ergebnis bestimmt werden. Dazu erinnern wir uns an den Übergang zur symbolischen Methode. Da beim Übergang zur symbolischen Rechnung die physikalische Größe durch den Imaginärteil eines komplexen Zeigers dargestellt wurde, erhält man das physikalische Ergebnis, indem man vom komplexen Ergebniszeiger nur den Imaginärteil verwendet. Bei der Addition und Subtraktion liegt das Ergebnis bereits als Real- und Imaginärteil vor. In allen anderen Fällen kann der Imaginärteil bestimmt werden, indem man den Betrag des komplexen Zeigers mit dem Sinus des Phasenwinkels multipliziert.

Der Übergang zur symbolischen Methode kann ebenso gut mit dem Realteil erfolgen; in diesem Fall müsste man den Realteil des Ergebnisses verwenden.

Mithilfe der symbolischen Methode können lineare Netzwerke im Fall von sinusförmigen Wechselgrößen wie Gleichstromnetzwerke behandelt werden. Die Gesetzmäßigkeiten, die wir bei den Gleichgrößen kennen gelernt haben, gelten hier ebenso.

Bezüglich der Frequenz dieser sinusförmigen Wechselgrößen muss allerdings die Einschränkung gelten, dass die Leitungen zwischen den Bauelementen zu keinen Laufzeiten führen und die Schaltungselemente als konzentriert betrachtet werden können. Diese Einschränkung bedeutet, dass alle Änderungen in der Schaltung gleichzeitig stattfinden. Man spricht in diesem Fall von **quasistationären** Verhältnissen.

Bei der Betrachtung elektrischer Netzwerke in Zusammenhang mit sinusförmigen Wechselgrößen gelten die schon bekannten Gesetzmäßigkeiten. Allerdings kann der Zusammenhang zwischen Strom und Spannung nicht wie bei Gleichstrom durch einen Multiplikator, den ohmschen Widerstand oder Wirkwiderstand, allein beschrieben werden, da im allgemeinen Fall auch eine Phasenverschiebung auftritt. An die Stelle des Wirkwiderstandes tritt im Fall der Wechselgrößen die Impedanz Z.

$$\underline{Z} = \frac{\underline{V}}{\underline{I}} = \frac{\hat{V} \angle \varphi_V}{\hat{I} \angle \varphi_I} = \frac{\hat{V}}{\hat{I}} \angle \varphi_V - \varphi_I = \frac{V_{eff}}{I_{eff}} \angle \varphi_V - \varphi_I = Z \angle \varphi_V - \varphi_I$$
(1.43)

Die Impedanz kann, wie in der letzten Gleichung formal gezeigt wurde, entweder aus den Spitzenwerten oder den Effektivwerten berechnet werden. Ein positiver Phasenwinkel der Impedanz bedeutet, dass die Spannung dem Strom vorauseilt.

Abbildung 1.8: Impedanz Z, Admittanz Y und ihre Komponenten

Die Impedanz wird durch die symbolische Methode ebenfalls als Zeiger in der komplexen Ebene dargestellt. Man spricht oft auch einfach von einem komplexen Widerstand¹⁵. Die Komponenten der Impedanz werden mit eigenen Namen bezeichnet. Der Realteil wird als Wirkwiderstand (Resistanz) R, der Imaginärteil als Blindwiderstand (Reaktanz) X bezeichnet \triangleright Abbildung 1.8.

Der Kehrwert der Impedanz wird als Admittanz bezeichnet. Auch die Komponenten der Admittanz haben eigene Namen. Man spricht von Wirkleitwert (Konduktanz) *G* und Blindleitwert (Suszeptanz) *B*.

Praktische Realisierung frequenzabhängiger Widerstände:

Zur Realisierung frequenzabhängiger Widerstände werden in der elektronischen Schaltungstechnik Kondensatoren und Spulen eingesetzt. Die Eigenschaften dieser beiden Bauelemente sind zueinander dual und sollen im Folgenden kurz besprochen werden.

Abbildung 1.9: Schaltsymbole für Kondensatoren: v.l.n.r. Kondensator, Elektrolytkondensator, Drehkondensator, Trimmkondensator

Kondensator:

Ein Kondensator (►Abbildung 1.9) ist eine Anordnung von zwei elektrisch leitfähigen Platten, die durch einen Isolator voneinander getrennt sind. Für Gleichstrom wirkt ein Kondensator wie ein Isolator. Der Widerstand und die Spannungsfestigkeit dieses Isolators hängen vom Material zwischen den Platten, dem so genannten Dielektrikum ab.

Ein Kondensator kann Ladung speichern. Der Proportionalitätsfaktor zwischen angelegter Spannung V und gespeicherter Ladung Q wird Kapazität C genannt.

$$Q = C \cdot V \tag{1.44}$$

¹⁵ Wir wissen jedoch, dass damit nur die Beschreibung durch die symbolische Methode gemeint ist.

Sie hängt von der Plattengröße, dem Plattenabstand und dem Dielektrikum ab. Wird eine Gleichspannung an einen ungeladenen Kondensator gelegt so fließt Ladung in den Kondensator, er lädt sich auf. Wie viel Ladung pro Zeiteinheit in den Kondensator fließt, wie groß also der Ladestrom ist, hängt vom Innenwiderstand der Quelle und den anderen Widerständen im Kreis (Zuleitungswiderstand, Widerstand des Plattenmaterials) ab. Ein ungeladener idealer Kondensator kann im ersten Augenblick als Kurzschluss betrachtet werden. Sobald der Kondensator auf die anliegende Spannung geladen ist, kann kein Strom mehr fließen.

Abbildung 1.10: Blindwiderstand eines Kondensators als Funktion der Kreisfrequenz

Anders sind die Verhältnisse beim Anlegen einer Wechselspannung. Durch die fortlaufende Änderung der angelegten Spannung fließt ständig ein Strom, der den Kondensator umlädt. Von außen sieht es so aus, als ob ein Strom durch den Kondensator fließen würde. Die Größe dieses Stromes nimmt mit steigender Frequenz zu oder der Widerstand des Kondensators nimmt umgekehrt mit steigender Frequenz ab Abbildung 1.10. Strom und Spannung stehen an einem Kondensator in einer fixen Phasenbeziehung¹⁶, der Strom eilt der Spannung um 90° vor Abbildung 1.11. Die Impedanz des idealen Kondensators Z_c ist daher ein Sonderfall. Sie besitzt keinen Wirkanteil, sondern nur einen Blindanteil.

$$\underline{Z}_C = \frac{1}{j\omega C} = -jX_C \tag{1.45}$$

Man nennt X_C den kapazitiven Blindwiderstand oder die Reaktanz des Kondensators. Der Zusammenhang zwischen Strom und Spannung am Kondensator kann in einer zum Induktionsgesetz der Spule, das wir etwas später kennen lernen, dualen Form angegeben werden:

$$i_C(t) = C \cdot \frac{\mathrm{d}v_C(t)}{\mathrm{d}t} . \tag{1.46}$$

Daraus folgt für die Spannung am Kondensator folgende Integralgleichung:

$$v_C(t) = \frac{1}{C} \int i_C(t) \,\mathrm{d}t$$
 (1.47)

Mit der symbolischen Methode kann der Zusammenhang als

$$\underline{V}_C = -\frac{j}{\omega C} \cdot \underline{I}_C \tag{1.48}$$

geschrieben werden.

Spule:

Abbildung 1.12: Verschiedene Schaltsymbole für Spulen

Fließt ein Strom durch eine Leiterschleife, so ist mit diesem Strom ein magnetisches Feld verknüpft. Eine Anordnung, bei der durch Aufwickeln eines Leiters ein stärkeres Magnetfeld erzeugt werden kann, wird als Spule bezeichnet. Ein Maß für die Stärke des erzeugten Magnetfeldes ist der magnetische Fluss Φ . Der Proportionalitätsfaktor zwischen dem magnetischen Fluss und dem Strom in der Leiterschleife wird als Induktivität *L* bezeichnet.

$$\Phi = L \cdot I \tag{1.49}$$

¹⁶ Weststeirische Bauernregel: Am Kondensator eilt der Strom vor.

Die Induktivität ist abhängig von der Geometrie des Aufbaues und vom Material, in dem sich das Magnetfeld bildet. Legt man eine Gleichspannung an eine Spule an, so fließt im ersten Moment kein Strom, da über die Induktivität eine fixe Beziehung zwischen Strom und Magnetfeld besteht. Erst mit dem Aufbau des Magnetfeldes steigt der Strom an. Sobald das Magnetfeld vollständig aufgebaut ist, wird der Strom nur mehr durch den ohmschen Widerstand der Wicklung begrenzt. Eine Spule leitet, abgesehen von ihrem Wicklungswiderstand, Gleichströme ideal.

Abbildung 1.13: Blindwiderstand einer Spule als Funktion der Kreisfrequenz

Legt man eine Wechselspannung an das Bauelement, so nimmt der Strom mit steigender Frequenz ab, da das mit dem Strom verkettete Magnetfeld versucht, Stromänderungen zu verhindern ►Abbildung 1.13.

Abbildung 1.14: Zeigerdiagramm und zeitlicher Zusammenhang von Strom und Spannung an einer Spule

Zwischen Strom und Spannung besteht an einer Spule ebenso eine fixe Phasenbeziehung¹⁷, die Spannung eilt dem Strom vor \triangleright Abbildung 1.14. Die Impedanz Z_L der idealen Spule besteht wiederum nur aus einem Imaginärteil, dem so genannten induktiven Blindwiderstand X_L .

$$\underline{Z}_L = j\omega L = jX_L \tag{1.50}$$

Der Zusammenhang zwischen dem Spannungsabfall an einer Spule $v_L(t)$ und dem Strom $i_L(t)$, der durch die Spule fließt, wird Induktionsgesetz genannt:

$$v_L(t) = L \cdot \frac{\mathrm{d}i_L(t)}{\mathrm{d}t} . \tag{1.51}$$

Mit der symbolischen Methode kann der Zusammenhang als

$$\underline{V}_{L} = j\omega L \cdot \underline{I}_{L} \tag{1.52}$$

geschrieben werden.

Sowohl Spule als auch Kondensator können als Energiespeicher aufgefasst werden. Der Kondensator speichert seine Energie im elektrischen Feld, während die Energie im Fall der Spule mit dem magnetischen Feld verknüpft ist.

$$W_C = \frac{C \cdot V^2}{2}; \quad W_L = \frac{L \cdot I^2}{2}$$
 (1.53)

Des Weiteren sei angemerkt, dass sich an einer Spule der Strom niemals schlagartig ändern kann. Beim Kondensator hingegen gilt dasselbe für die Spannung.

Als Abschluss unserer kurzen Betrachtung der Wechselstromwiderstände und der symbolischen Methode sind in der Folge die Zusammenhänge für einen ohmschen Widerstand, den wir schon von den Überlegungen bei Gleichstrom kennen, angegeben.

Abbildung 1.15: Strom und Spannung an einem Wirkwiderstand

An einem Wirkwiderstand gilt das Ohm'sche Gesetz (►Abbildung 1.16), das nachfolgend in der Nomenklatur für die Wechselgrößen geschrieben ist:

$$v_R(t) = R \cdot i_R(t) . \tag{1.54}$$

¹⁷ Weststeirische Bauernregel: An der Induktivität kommt der Strom zu spät. – Im etwas schlampigen Sprachgebrauch wird die Spule als Bauelement oft auch entsprechend ihrer elektrischen Eigenschaft als Induktivität bezeichnet.

Abbildung 1.16: Zeigerdiagramm und zeitlicher Zusammenhang von Strom und Spannung an einem Wirkwiderstand

Abbildung 1.17: Wirkwiderstand als Funktion der Frequenz

Mit der symbolischen Methode kann der Zusammenhang als

$$\underline{V}_R = \underline{Z}_r \cdot \underline{I}_R = R \cdot \underline{I}_R \tag{1.55}$$

geschrieben werden. An einem Widerstand tritt, wie in ►Abbildung 1.16 gezeigt, keine Phasenverschiebung auf. Der Wirkwiderstand ist, wenn man von idealen Bauteilen ausgeht, unabhängig von der Frequenz.

Periodische Signale mit anderen Kurvenformen:

Besonders bei Schaltvorgängen ist man mit periodischen, aber nicht sinusförmigen Strom- und Spannungsverläufen konfrontiert. Es ist allerdings möglich, solche Kurvenformen auf eine Summe von Sinusschwingungen mit Vielfachen einer Grundfrequenz zurückzuführen. Diese Vorgehensweise wird nach ihrem Erfinder J. B. Fourier¹⁸ als Fourier-Reihenzerlegung oder harmonische Analyse bezeichnet. Die Darstellung erfolgt in Form folgender Reihe:

$$v(t) = a_0 + \sum_{n=1}^{n=\infty} \left[\hat{a}_n \cos\left(n \cdot 2\pi \frac{t}{T}\right) + \hat{b}_n \sin\left(n \cdot 2\pi \frac{t}{T}\right) \right] \,. \tag{1.56}$$

¹⁸ Jean Baptiste Joseph Fourier, ★ 21. März 1768 bei Auxerre, † 16. Mai 1830 in Paris, französischer Mathematiker und Physiker

Der Koeffizient a_0 gibt die Amplitude des Gleichanteiles an, der in der untersuchten Kurvenform enthalten ist. Die Koeffizienten $a_1, a_2, \dots a_n$ geben die Amplituden der Cosinusschwingungen mit der Grundfrequenz und deren Vielfachen an, während $b_1, b_2, \dots b_n$ die Koeffizienten der entsprechenden Sinusschwingungen sind. Ob Sinus- und Cosinusanteile vorhanden sind, hängt von der Lage der Periode bezüglich des gewählten Koordinatensystems ab. In der Praxis kann durch geeignete Wahl des zeitlichen Bezugspunktes sehr häufig einer der Anteile unterdrückt werden. Die Berechnung der Fourier-Koeffizienten kann für endliche und stückweise stetige Kurvenverläufe durch Berechnung der folgenden Integrale erfolgen:

$$a_0 = \frac{1}{T} \int_0^T v(t) \,\mathrm{d}t \tag{1.57}$$

$$a_n = \frac{2}{T} \int_0^T v(t) \cos(n\omega t) \,\mathrm{d}t \tag{1.58}$$

$$b_n = \frac{2}{T} \int_0^T v(t) \sin(n\omega t) \,\mathrm{d}t \;.$$
 (1.59)

Die Ergebnisse der Fourier-Zerlegung und deren Folge für die schaltungstechnische Praxis seien an zwei einfachen Kurvenformen gezeigt. Beide Kurvenformen wurden so angenommen, dass die Fläche unter der Kurve bei den positiven Halbwellen der Fläche bei den negativen Halbwellen entspricht. Dadurch ist der Gleichanteil a_0 gleich Null. Des Weiteren liegen beide Funktionen so, dass v(t) = -v(-t) gilt. Solche Funktionen werden ungerade Funktionen genannt. Ihre Fourier-Zerlegung besitzt nur Sinusanteile, die Koeffizienten der Cosinusanteile a_n sind 0.

Abbildung 1.18: Dreiecksfunktion

Die Zerlegung der in ►Abbildung 1.18 gezeigten Dreiecksfunktion liefert folgendes Ergebnis für die Koeffizienten:

$$\hat{b}_n = \frac{8\hat{v}}{\pi^2} \frac{1}{n^2} (-1)^{\frac{n+3}{s}}, \quad n = 1, 3, 5, \cdots$$
 (1.60)

Die ersten Glieder der Fourier-Reihe besitzen somit folgende Form:

$$v(t) = \frac{8\hat{v}}{\pi^2} \left[\sin\left(2\pi \frac{t}{T}\right) - \frac{1}{3^2} \sin\left(3 \cdot 2\pi \frac{t}{T}\right) + \frac{1}{5^2} \sin\left(5 \cdot 2\pi \frac{t}{T}\right) - \cdots \right].$$
 (1.61)

Der in Abbildung 1.18 schwarz gezeichnete Kurvenverlauf zeigt die Summe über die ersten Glieder der Fourier-Zerlegung bis zur siebenfachen Grundschwingung. Die Dreiecksschwingung ist damit schon recht gut nachgebildet. Die einzelnen Anteile der Zerlegung sind in ►Abbildung 1.19 dargestellt.

Abbildung 1.19: Dreiecksfunktion: Grund- und Oberschwingungen

Zum Vergleich soll die in ►Abbildung 1.20 gezeigte einfache rechtecksförmige Kurvenform untersucht werden. Sie besitzt die folgenden Fourier-Koeffizienten:

$$\hat{b}_n = \frac{4\hat{v}}{\pi} \frac{1}{n}, \quad n = 1, 3, 5, \cdots$$
 (1.62)

Die ersten Glieder der Fourier-Reihe besitzen somit folgende Form:

$$v(t) = \frac{4\hat{v}}{\pi} \left[\sin\left(2\pi \frac{t}{T}\right) + \frac{1}{3}\sin\left(3\cdot 2\pi \frac{t}{T}\right) + \frac{1}{5}\sin\left(5\cdot 2\pi \frac{t}{T}\right) + \cdots \right].$$
(1.63)

Abbildung 1.20: Rechtecksfunktion

In Abbildung 1.20 ist genauso wie in 1.18 die Summe der durch die Zerlegung ermittelten Sinusanteile bis zur siebenfachen Grundfrequenz im Vergleich mit dem Originalsignal dargestellt. Man erkennt deutlich, dass die Näherung der Rechtecksschwingung durch die ersten vier Reihenglieder wesentlich mehr vom Original abweicht als bei der Dreiecksfunktion.

Die Darstellung der einzelnen Reihenglieder in ►Abbildung 1.21 zeigt wesentlich größere Amplituden als im Fall des dreiecksförmigen Verlaufes.

Abbildung 1.21: Rechtecksfunktion: Grund- und Oberschwingungen

Vergleicht man die Entwicklung der Koeffizienten, so erkennt man, dass bei einer Dreiecksfunktion die Amplitude mit der Frequenz quadratisch abfällt, während die Abnahme bei einem Rechteckssignal nur linear mit der Frequenz erfolgt. Allgemein kann gesagt werden:

Je schneller die Änderungen in einem Signal erfolgen, umso höher sind auch die Amplituden der Signalanteile bei höheren Frequenzen.

Diese Tatsache wird uns noch bei den Überlegungen zur elektromagnetischen Verträglichkeit in Abschnitt 19.1.3 beschäftigen.

Die Reihenentwicklungen schaltungstechnisch relevanter Signalformen können mathematischen Tabellenbüchern [6] entnommen werden. Eine umfassende Erklärung ist auch im schon öfter zitierten Werk zu den Grundlagen der Elektrotechnik [2] nachzulesen.

1.1.6 Betrachtung von Vierpolen

Netzwerke, die vier Anschlussklemmen (Pole) besitzen, werden Vierpole genannt. Ein in der Schaltungstechnik häufig vorkommender Sonderfall des Vierpols ist das so genannte Zweitor. Beim Zweitor werden zwei Anschlussklemmen als Eingang und die beiden anderen als Ausgang verwendet. Das Verhalten eines solchen Netzwerkes kann entweder im Zeitbereich oder im Frequenzbereich beschrieben werden.

Will man das Netzwerk im Zeitbereich untersuchen, so legt man eine periodische Wechselgröße an den Eingang und misst den Verlauf der Ausgangsgröße an den beiden Ausgangsklemmen. Man erhält die Antwort des Zweitores als zeitlichen Verlauf des Ausgangssignals bei gegebenem Eingangssignal.

Eine andere Möglichkeit ist es, die Kurvenform der Eingangsgröße in eine Fourier-Reihe zu entwickeln. Das Ergebnis der Reihenentwicklung kann auch in der so genannten Spektralform angegeben werden:

$$v(t) = a_0 + \sum_{n=1}^{\infty} \hat{c}_n \cos\left(n \cdot 2\pi \frac{t}{T} - \varphi_n\right) .$$
(1.64)

Der Koeffizient a_0 entspricht dem schon berechneten Wert, die Amplituden der Oberschwingungen \hat{c}_n und die dazugehörenden Phasenlagen φ_n können entsprechend der folgenden Gleichungen berechnet werden:

$$\hat{c}_n = \sqrt{\hat{a}_n^2 + \hat{b}_n^2}$$
(1.65)

$$\varphi_n = \arctan \frac{b_n}{\hat{a}_n} \,. \tag{1.66}$$

Diese Reihenentwicklung kann als Übergang in den Frequenzbereich betrachtet werden, da eine beliebige Kurvenform durch eine Summe aus einem Gleichanteil, einer Grundschwingung und Schwingungen mit Vielfachen, so genannten Harmonischen, der Grundfrequenz, dargestellt wird. Die Darstellung im Frequenzbereich erfolgt durch ein Amplitudenspektrum, das die Amplituden der einzelnen Schwingungen als Linien über einer Frequenzachse zeigt, und durch ein Phasenspektrum, das die Phasenverschiebungen der Harmonischen als Funktion der Frequenz zeigt.

Abbildung 1.22: Amplitudenspektrum

Auch in \triangleright Abbildung 1.22 ist der wesentlich schnellere Abfall der Amplituden der Fourier-Koeffizienten der Dreiecksschwingung im Vergleich zur Rechtecksschwingung erkennbar. Auf die Darstellung eines Phasenspektrums wurde verzichtet, da die Anteile der Rechtecksfunktion eine konstante Phase und die der Dreiecksfunktion nur ein wechselndes Vorzeichen, also eine Phasenverschiebung von $\pm \pi$, aufweisen.

Das Zweitor kann im Frequenzbereich durch einen Frequenzgang, der ebenfalls aus einem Amplitudengang und einem Phasengang besteht, beschrieben werden. Der Amplitudengang zeigt das Verhältnis von Ausgangsamplitude zur Eingangsamplitude als Funktion der Frequenz. Der Phasengang gibt die Phasenlage des Ausgangssignals bezogen auf das Eingangssignal als Funktion der Frequenz an.

Aus dem Spektrum des Eingangssignals und dem Frequenzgang kann im Fall eines linearen, zeitinvarianten Netzwerkes das Spektrum des Ausgangssignals berechnet werden. Ein lineares Netzwerk liefert am Ausgang wieder ein Signal mit der Frequenz des Eingangssignals, dessen Amplitude und Phasenlage beeinflusst wurde. Ein nicht lineares Netzwerk würde zusätzliche Frequenzen liefern.

Messtechnisch kann der Frequenzgang eines Zweitores mithilfe von Sinussignalen bestimmt werden. Man verwendet Signale mit einer bestimmten Amplitude. Die Frequenz wird von 0 beginnend schrittweise erhöht und die Amplitude und Phasenlage des Ausgangssignals gemessen. Zeichnet man diese beiden Werte als Funktion der Frequenz, so erhält man Amplituden- und Phasengang. Der Frequenzgang ist das Verhältnis von Ausgangssignal zu Eingangssignal als Funktion der Frequenz. Eine mathematische Formulierung sieht folgendermaßen aus:

$$\underline{A}(j\omega) = \frac{\underline{V}_a}{\underline{V}_e} = \frac{\underline{V}_a \angle \varphi_a}{\underline{V}_e \angle \varphi_a} = \underbrace{\frac{V_a}{\underline{V}_e}}_{Amplitudengang} \underbrace{\frac{V_a}{\underline{V}_e}}_{Amplitudengang} \underbrace{\frac{V_a}{\underline{V}_e - \varphi_e}}_{Amplitudengang} .$$
(1.67)

Statt der Effektivwerte kann der Frequenzgang auch mit Scheitelwerten geschrieben werden, da sich der Faktor zwischen Effektiv- und Scheitelwert herauskürzt. Das Amplitudenverhältnis kann sich über viele Zehnerpotenzen ändern. Ein typisches Beispiel ist ein Eingangsverstärker für Rundfunkempfang. Dieser muss Signale, die im Verhältnis von 1 : 1000 stehen, einwandfrei verarbeiten können. Um große Variationen darstellen zu können, ist es üblich, in solchen Fällen einen logarithmischen Maßstab zu wählen. Man bildet den Logarithmus zur Basis 10, multipliziert diesen Wert im Fall von Leistungen mit 10, im Fall von Spannungen mit 20 und bezeichnet das Ergebnis als Dezibel (dB).

$$A_{dB} = 20 \cdot \log_{10}(A) = 20 \cdot \log_{10}\left(\frac{V_a}{V_e}\right)$$
 (1.68)

Eine Gegenüberstellung des Amplitudenverhältnisses zwischen Ausgangs- und Eingangsspannung und der zugehörigen Angabe in Dezibel ist in der ▶Tabelle 1.3 angegeben.

								Tabelle 1.3			
Spannungsverhältnisse und zugehörige Angaben in dB											
-											
$\frac{V_a}{V_e}$	<u>1</u> 1000	<u>1</u> 100	<u>1</u> 10	$\frac{1}{\sqrt{2}}$	<u>1</u> 1000	1	$\sqrt{2}$	2	10	100	1000
A _{dB}	-60	-40	-20	-6	-3	0	3	6	20	40	60

Abschließend haben wir noch eine Bemerkung zu den Begriffen: Allgemein wird das Verhältnis von Ausgangssignal zu Eingangssignal als Übertragungsfunktion bezeichnet. Beschränkt man sich auf sinusförmige Größen, spricht man oft vom Frequenzgang. Dieser besteht aus einem Amplituden- und einem Phasengang. Ist das Ausgangssignal eines Netzwerkes größer als das Eingangssignal, bezeichnet man das Amplitudenverhältnis A dieser beiden Größen als Verstärkung. Ist das Ausgangssignal jedoch kleiner als das Signal am Eingang, spricht man von einer Dämpfung.

Nach diesem Überblick über die für das Verständnis der folgenden Kapitel hilfreichen Grundlagen wenden wir uns im nächsten Abschnitt der Betrachtung von einfachen passiven Netzwerken zu.

1.2 Passive Netzwerke

Mit den bis jetzt bekannten passiven Bauelementen können einige in der elektronischen Schaltungstechnik wichtige Netzwerke aufgebaut werden. Die Analyse dieser Netzwerke soll das Verständnis für die zu Beginn dieses Kapitels gelernten Grundlagen vertiefen, und mit praktischen Erfahrungen verknüpfen.

1.2.1 Tiefpass

Der Tiefpass ist im einfachsten Fall ein Spannungsteiler, bestehend aus einem ohmschen und einem frequenzabhängigen Widerstand, der mit einem Kondensator oder einer Spule realisiert werden kann. Seine Aufgabe ist es, tiefe Frequenzen ungehindert passieren zu lassen und hohe Frequenzen zu dämpfen. In dieser Eigenschaft wird er als Filter zum Beispiel beim Unterdrücken von höherfrequenten Störungen verwendet. Solche Störungen entstehen, wie wir schon durch die Fourier-Zerlegung gesehen haben, beim schnellen Ein- oder Ausschalten eines Stromes.

Filteranwendungen werden meist im Frequenzbereich beschrieben. Denkt man an Anwendungen, die eher im Zeitbereich dargestellt werden, so ist eine typische Anwendung die Mittelwertbildung eines pulsweitenmodulierten Signals. Im Frequenzbereich entspricht eine solche Mittelwertbildung dem Entfernen aller Oberschwingungen. Werden die Oberschwingungen nur teilweise entfernt, so kann eine Kurvenformung vorgenommen werden.

In ►Abbildung 1.23 sind beide Varianten eines Tiefpasses erster Ordnung gezeigt. Wobei für tiefe Frequenzen die links gezeigte RC-Variante üblicher ist, hingegen bei der Filterung von Störungen in der EMV auch RL-Varianten eingesetzt werden. Die Ordnung eines Netzwerkes hängt von der Anzahl der Energiespeicher ab. Sie hängt mit der Ordnung der zur Beschreibung notwendigen Differentialgleichung zusammen, des Weiteren gibt sie an, wie stark sich die Dämpfung mit der Frequenz ändert.

Um die Ausgangsspannung der in Abbildung 1.23 gezeigten Netzwerke zu berechnen, wird die Spannungsteilerregel verwendet. Die frequenzabhängigen Widerstände werden entsprechend der symbolischen Methode eingesetzt und die Dämpfung *A* als Verhältnis der Ausgangsspannung zur Eingangsspannung für beide Netzwerke wird berechnet:

1

$$\underline{A}_{RC}(j\omega) = \frac{\underline{V}_a}{\underline{V}_e} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega RC}; \quad \underline{A}_{RL}(j\omega) = \frac{\underline{V}_a}{\underline{V}_e} = \frac{R}{R + j\omega L} = \frac{1}{1 + j\omega \frac{L}{R}}$$
(1.69)

Setzt man in der linken Gleichung für $RC = 1/\omega_g$ und in der rechten Gleichung $L/R = 1/\omega_g$, so erhält man die allgemeine Form für einen Tiefpass erster Ordnung:

$$\underline{A}_{TP}(j\omega) = \frac{V_a}{V_e} = \frac{1}{1+j\frac{\omega}{\omega_e}} .$$
(1.70)

Abbildung 1.23: RC- und RL-Tiefpass 1. Ordnung

Vor der Berechnung soll eine qualitative Überlegung zum Verhalten der Netzwerke durchgeführt werden:

RC-Tiefpass:

Legt man eine Gleichspannung an, so wird der Kondensator auf die Eingangsspannung aufgeladen. Danach fließt kein Strom mehr, daher tritt am Widerstand kein Spannungsabfall auf und die Ausgangsspannung entspricht der Eingangsspannung. Für tiefe Frequenzen wirkt der Tiefpass nicht. Steigert man die Frequenz, so beginnen Ströme zur Umladung des Kondensators zu fließen. Der Spannungsabfall am Widerstand steigt, der Spannungsabfall am Kondensator sinkt. Es gibt eine Frequenz, bei der die Spannungsabfälle am Widerstand und am Kondensator gleich sind, man nennt sie die **Grenzfrequenz** des Tiefpasses. Wird die Frequenz des Eingangssignals weiter erhöht, so überwiegt der Spannungsabfall am Widerstand. Ist die Frequenz sehr groß gegenüber der Grenzfrequenz, so bildet der Kondensator einen Kurzschluss, die Spannung fällt zur Gänze am Widerstand ab. Die Summe der Spannungsabfälle entspricht immer der Eingangsspannung (Maschenregel).

RL-Tiefpass:

Die Spule leitet bei der Frequenz Null abgesehen von ihrem ohmschen Widerstand ideal. Es fließt ein Strom, der am Widerstand einen Spannungsabfall mit der Größe der Eingangsspannung erzeugt. Mit steigender Frequenz steigt auch der Spannungsabfall am induktiven Blindwiderstand der Spule, wodurch die Ausgangsspannung sinkt. Es liegt wiederum Tiefpassverhalten vor. Bei der Grenzfrequenz ist der Spannungsabfall an beiden Elementen gleich groß. Für Frequenzen die wesentlich größer als die Grenzfrequenz sind, fällt die ganze Spannung an der Spule ab, die Ausgangsspannung wird 0.

In ►Abbildung 1.24 ist links das Zeigerdiagramm bei der Grenzfrequenz für den RCund rechts für den RL-Tiefpass gezeigt.

Abbildung 1.24: Spannungsverhältnisse bei der Grenzfrequenz

Aus den Zeigerdiagrammen kann das Verhältnis zwischen Ausgangs- und Eingangsspannung und die Phasenlage abgelesen werden. Für den RC-Tiefpass entspricht die Ausgangsspannung der Spannung am Kondensator. Es gilt:

$$V_e^2 = V_C^2 + V_R^2 \quad \text{mit} \quad V_C = V_R = V_a \quad \text{erhält man:}$$
$$\frac{V_a}{V_e} \bigg|_{\omega = \omega_g} = \frac{1}{\sqrt{2}} ; \quad \varphi = \varphi_a - \varphi_e = -45^\circ . \tag{1.71}$$

Dieselben Zusammenhänge können aus dem Zeigerdiagramm des RL-Tiefpasses abgelesen werden. Hier entspricht die Ausgangsspannung jedoch der Spannung am Widerstand.

Im nächsten Schritt sollen Betrag und Phase der Übertragungsfunktion berechnet werden. Dazu multipliziert man Zähler und Nenner mit dem konjugiert komplexen

Nenner $1 - j\frac{\omega}{\omega_g}$. Man erhält folgenden Ausdruck und kann Real- und Imaginärteil trennen. (Zur Erinnerung an die komplexe Rechnung: Das *j* kennzeichnet den Imaginärteil, es gehört formal nicht zum Imaginärteil, das Vorzeichen vor dem *j* aber sehr wohl. $j = \sqrt{-1}$)

$$\underline{A}(j\omega) = \frac{1 - j\frac{\omega}{\omega_g}}{1 + \left(\frac{\omega}{\omega_g}\right)^2} = \underbrace{\frac{1}{1 + \left(\frac{\omega}{\omega_g}\right)^2} - j\frac{\frac{\omega}{\omega_g}}{1 + \left(\frac{\omega}{\omega_g}\right)^2}}_{Re\{\underline{A}\}} \underbrace{-j\frac{\frac{\omega}{\omega_g}}{1 + \left(\frac{\omega}{\omega_g}\right)^2}}_{Im\{\underline{A}\}}$$
(1.72)

Jetzt können Betrag und Phase nach den schon bekannten Regeln berechnet werden:

$$|\underline{A}| = \sqrt{\left(Re\{\underline{A}\}\right)^2 + \left(Im\{\underline{A}\}\right)^2} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_g}\right)^2}}$$
(1.73)

$$\varphi = \arctan\left(\frac{Im\{\underline{A}\}}{Re\{\underline{A}\}}\right) = \arctan\left(-\frac{\omega}{\omega_g}\right) = -\arctan\left(\frac{\omega}{\omega_g}\right)^{19}$$
(1.74)

¹⁹ Der Arkustangens ist eine ungerade Funktion, es gilt: $\arctan(-x) = -\arctan(x)$.

Eine grafische Darstellung des Frequenzganges ist in ►Abbildung 1.25 gezeigt. Sie besteht aus einer Darstellung des Amplitudenverhältnisses und der Phasenverschiebung zwischen Ausgangs- und Eingangssignal als Funktion der Frequenz. Man spricht auch von einem Amplituden- und Phasengang. Die verwendete, doppelt logarithmische Darstellung wird auch als Bode²⁰-Diagramm bezeichnet.

Abbildung 1.25: Bode-Diagramm eines Tiefpasses 1. Ordnung

Betrachtung im Zeitbereich:

Kennt man den Frequenzgang, so kann für jede sinusförmige Eingangsgröße die Amplitude und die Phasenverschiebung der durch das Netzwerk erzeugten Ausgangsgröße bestimmt werden. Für eine nicht sinusförmige Eingangsgröße könnte

²⁰ Hendrik Wade Bode, * 24. Dezember 1905 in Madison, Wisconsin; † 21. Juni 1982 in Cambridge, Massachusetts, amerikanischer Elektrotechniker

man eine Fourier-Zerlegung durchführen und für jede Teilschwingung die Ausgangsgröße bestimmen. Das Zusammensetzen der einzelnen Ausgangssignale ergibt die Kurvenform des zu berechnenden Ausgangssignals.

Eine solche Vorgehensweise wird im Allgemeinen als Lösung im Frequenzbereich bezeichnet. Zuerst erfolgt die Transformation in den Frequenzbereich, sie liefert ein Spektrum des Eingangssignals. Danach wird im Frequenzbereich das Eingangsspektrum mit der Übertragungsfunktion multipliziert. Man erhält das Spektrum des Ausgangssignals. Abschließend erfolgt eine Rücktransformation in den Zeitbereich durch Zusammensetzen der spektralen Anteile zu einer Zeitfunktion.

Einfache Netzwerke können auch durch direkte Lösung der zugehörigen Differentialgleichungen im Zeitbereich analysiert werden. Als Beispiel soll ein Einschaltvorgang an einem Tiefpass (▶Abbildung 1.26) berechnet werden.

Abbildung 1.26: RC-Tiefpass 1. Ordnung

Wenn am Ausgang des Tiefpasses keine Last angeschlossen wird, ist der Strom durch den Widerstand identisch mit dem Strom durch den Kondensator. Die Ausgangsspannung entspricht der Spannung am Kondensator. Wir beschreiben das Netzwerk durch eine Knotengleichung, eine Maschengleichung und den Zusammenhang zwischen Strom und Spannung am Kondensator.

$$i_R(t) = i_C(t) ; \quad v_e(t) = v_R(t) + v_C(t) = v_R(t) + v_a(t) ; \quad i_C(t) = C \frac{\mathrm{d}v_C(t)}{\mathrm{d}t} = C \frac{\mathrm{d}v_a(t)}{\mathrm{d}t}$$

Durch Einsetzen gewinnen wir eine Gleichung, in der nur die Eingangs- und die Ausgangsspannung vorkommen.

$$\frac{v_e(t) - v_a(t)}{R} = C \frac{\mathrm{d}v_a(t)}{\mathrm{d}t}$$

Eine kritische Betrachtung zeigt, dass diese Gleichung der Knotengleichung entspricht. Links steht der Quotient aus der Spannung am Widerstand und dem Widerstand, also der Strom i_R , rechts steht der Kondensatorstrom. Es handelt sich um eine Differentialgleichung erster Ordnung, die durch Trennung der Variablen gelöst werden kann. Man bringt dazu alle Spannungen auf eine Seite und integriert danach beide Seiten der Gleichung.

$$\int \frac{1}{RC} dt = \int \frac{1}{v_e(t) - v_a(t)} dv_a$$

Nach den Regeln der Integralrechnung²¹ erhält man folgendes Ergebnis. Die Integrationskonstante wurde als $\tilde{k} = \ln(k)$ angenommen, um die weitere Rechnung zu vereinfachen.

$$\frac{t}{RC} = -\ln\left(v_e(t) - v_a(t)\right) + \ln(k)$$

Fasst man die beiden Logarithmen zusammen, erhält man folgende Form

$$\frac{t}{RC} = \ln \frac{k}{v_e(t) - v_a(t)}$$

aus der die folgende Lösung der homogenen Gleichung berechnet werden kann

$$v_a(t) = v_e(t) - k \cdot e^{-\frac{t}{RC}}$$

Zur Bestimmung der Konstanten muss eine zusätzliche Bedingung aus dem Verhalten der Schaltung bekannt sein. Wir verwenden unser Wissen über Kondensatoren und über die Kurvenform der Eingangsspannung.

Bei einem Einschaltvorgang gilt für die Eingangsspannung $v_e(t) = 0$ für alle Zeitpunkte kleiner $0 \triangleright$ Abbildung 1.27. Zum Zeitpunkt $t_0 = 0$ springt die Eingangsspannung auf den Wert v_1 . Es gilt $v_e(t) = v_1$ für t > 0. Die Spannung am Kondensator kann sich nicht sprunghaft ändern, damit ist auch die Ausgangsspannung zum Zeitpunkt t_0 gleich 0. Sie steigt erst danach durch den Ladevorgang an. Durch Einsetzen dieser Anfangsbedingung in die homogene Lösung kann die Konstante k bestimmt werden.

$$t = 0 \to v_a(0) = 0; \quad 0 = v_1 - k \cdot e^{-\frac{0}{RC}} \to k = v_1$$

$$v_a(t) = v_1(1 - e^{-\frac{t}{RC}})$$
(1.75)

Andere Verhältnisse bestehen bei einem Ausschaltvorgang \triangleright Abbildung 1.28. Hier liegt für sehr lange Zeit eine Eingangsspannung v_1 an, sie lädt den Kondensator auf diesen Wert auf. Zum Zeitpunkt t_0 gleich 0 wird die Eingangsspannung abgeschaltet. Es gilt daher $v_e(t) = 0$ für alle Zeitpunkte t > 0. Die Ausgangsspannung entspricht der Spannung am Kondensator und kann sich nicht sprunghaft ändern. Es gilt die Anfangsbedingung $v_a(0) = v_1$. Durch Einsetzen in die homogene Lösung erhält man die Integrationskonstante.

$$v_1 = 0 - k \cdot e^{-\frac{\theta}{RC}} \rightarrow v_1 = -k$$
$$v_a(t) = v_1 \cdot e^{-\frac{t}{RC}}$$
(1.76)

21 Grundintegrale:

$$\int dx = x + k; \quad \int \frac{1}{x} dx = \ln(x) + k; \quad \int \frac{1}{a - x} dx = -\ln(a - x) + k$$

Abbildung 1.27: Einschaltvorgang bei einem Tiefpass 1. Ordnung

Abbildung 1.28: Ausschaltvorgang bei einem Tiefpass 1. Ordnung

Das Produkt aus *R* und *C* wird als Zeitkonstante τ bezeichnet. Die Tabelle 1.4 zeigt die Abweichung vom Endwert bei verschiedenen Zeitpunkten. Stört in einer gegebenen Anwendung eine Abweichung vom Endwert von 1 % nicht mehr, so kann der Auf- oder Entladeprozess, man spricht auch von einem Einstellvorgang oder einem Angleich an einen Endwert, nach 5τ als abgeschlossen betrachtet werden.

$$\tau = RC \tag{1.77}$$

Ein Rechteckssignal kann im Zeitbereich modelliert werden, indem man die soeben berechneten Ein- und Ausschaltvorgänge zeitlich aneinanderreiht. Abhängig von der Zeitkonstante des Tiefpasses kommt es zu einer unterschiedlich starken Beeinflussung der Kurvenform. Ist die Periodendauer groß gegenüber der Zeitkonstante des Tiefpasses, so wird das Signal nur wenig verformt. Sind beide Parameter in derselben Größenordnung, kann man die Lade- und Entladevorgänge deutlich erkennen.

			Tabelle 1.4		
Abweichung	vom Enc	lwert			
Abweichung	37 %	10 %	1 %	0,1 %	0,0001 %
Einstellzeit	τ	2,3 τ	4,6 τ	6,9 τ	13,8 τ

Wird die Zeitkonstante groß gegenüber der Periodendauer gewählt, bildet der Tiefpass den Mittelwert des Eingangssignals. Die >Abbildung 1.29 zeigt ein rechteckförmiges Eingangssignal und drei typische Fälle für das Ausgangssignal bei unterschiedlich gewählten Zeitkonstanten beziehungsweise Grenzfrequenzen. Zwischen Zeitkonstante τ und der Grenzfrequenz besteht folgender Zusammenhang.

Abbildung 1.29: Ausgangssignal verschiedener Tiefpässe bei einem Eingangssignal $f_e = 1 \text{ kHz}$

Viele Systeme in der Elektrotechnik haben Tiefpass-Charakter. Ein typisches Beispiel sind Leitungen, die, abhängig von der Geschwindigkeit des Signals und den Eigenschaften der Leitungen, Veränderungen der Kurvenform wie in Abbildung 1.29 gezeigt hervorrufen. Zur Abschätzung der Grenzfrequenz eines elektronischen Systems kann eine Messung der Anstiegszeit verwendet werden.

Anstiegszeit und Grenzfrequenz beim Tiefpass 1. Ordnung

Zur Messung der Anstiegszeit (t_r ... *Rise Time*) verwenden wir folgende Definition: Wir bestimmen den Zeitpunkt, bei dem das Signal 10 % des Endwertes erreicht hat und messen die Zeit bis zum Erreichen der 90 %-Marke. Diese Zeit bezeichnen wir als Anstiegszeit (Achtung: Es gibt auch andere Definitionen!). Aus der Gleichung der Sprungantwort kann die Zeit bis zu einem bestimmten Spannungswert berechnet werden:

$$v_a(t) = v_1(1 - e^{-\frac{t}{RC}}) \to t = -\tau \cdot \ln\left(1 - \frac{v_a}{v_e}\right)$$

Setzt man nun für die Spannungsverhältnisse bei 90 % und bei 10 % ein, so kann die Anstiegszeit t_r berechnet werden.

$$t_r = t_{90\%} - t_{10\%} = \tau (\ln(0,9) - \ln(0,1)) \approx 2.2 \tau$$

Mit $f_g = \frac{1}{2\pi\tau}$ folgt für die Anstiegszeit $t_r \approx \frac{1}{3f_g}$. (1.79)

Dieser Zusammenhang kann näherungsweise auch für Tiefpässe höherer Ordnung verwendet werden. Bei der Kaskadierung mehrerer Tiefpässe ist die Gesamtanstiegszeit näherungsweise die Wurzel aus der Summe der Quadrate der Einzelanstiegszeiten t_{ri} .

$$t_{\rm r} \approx \sqrt{\sum_i {t_{\rm ri}}^2} \tag{1.80}$$

Damit sind unsere grundlegenden Überlegungen zum Tiefpass erster Ordnung abgeschlossen. Anwendungen von Tiefpässen im Zusammenhang mit Analog/Digitalund Digital/Analog-Umsetzung sowie Tiefpässe höherer Ordnung werden wir in Abschnitt 17.2 besprechen.

Verwenden Sie einen RL-Tiefpass, um Ihr Wissen zu überprüfen:

- Geben Sie die Dämpfung <u>A</u> für einen RL-Tiefpass an.
- Berechnen Sie $|\underline{A}|$ und φ , zeichnen Sie Amplituden- und Phasengang.
- Berechnen Sie die Sprungantwort eines RL-Tiefpasses durch Lösen der Differentialgleichung.
- Zeichnen Sie den Verlauf der Ausgangsspannung beim Ausschalten der Eingangsspannung.

1.2.2 Hochpass

Vertauscht man ausgehend von einem Tiefpass den ohmschen Widerstand mit dem frequenzabhängigen Widerstand, so erhält man einen Hochpass. Diese Schaltung lässt Frequenzen über ihrer Grenzfrequenz ungehindert passieren, während sie unter ihrer Grenzfrequenz dämpft. In ►Abbildung 1.30 ist links ein RC- und rechts ein RL-Hochpass gezeichnet. Mögliche Anwendungen sind die Filterung von Störsignalen mit Frequenzen kleiner als das Nutzsignal. Ein typisches Beispiel sind Störungen durch Einkopplung der Netzwechselspannung. Des Weiteren kann der Hochpass zur Pulsformung eingesetzt werden, da er schnelle Signaländerungen ungehindert durchlässt, den Gleichanteil jedoch entfernt.

Abbildung 1.30: RC- und RL-Hochpass 1. Ordnung

Vor der Berechnung erfolgt wieder eine kurze Überlegung zum Verhalten der beiden Schaltungen. Beginnen wir mit dem RC-Hochpass.