ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Julia Mazak

Method for Optimizing the Tool and Process Design for Bevel Gear Plunging Processes

Method for Optimizing the Tool and Process Design for Bevel Gear Plunging Processes

Methode zur Optimierung der Werkzeug- und Prozessauslegung für Kegelradtauchprozesse

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Julia Mazak

Berichter:

Univ.-Prof. Dr.-Ing- Thomas Bergs Univ.-Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. H. c. Dr. h. c. Fritz Klocke

Tag der mündlichen Prüfung: 22. Januar 2021

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Julia Mazak

Method for Optimizing the Tool and Process Design for Bevel Gear Plunging Processes

Herausgeber: Prof. Dr.-Ing. T. Bergs Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 15/2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Julia Mazak:

Method for Optimizing the Tool and Process Design for Bevel Gear Plunging Processes

1. Auflage, 2021

Apprimus Verlag, Aachen, 2021 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-980-5

D 82 (Diss. RWTH Aachen University, 2021)

Wer immer strebend sich bemüht, den können wir erlösen.

He who strives on and lives to strive Can earn redemption still.

(Goethe, Faust II)

In memorian Ingrid Gerlofsma

Acknowledgements

The findings of this dissertation are the result of my work as a researcher at the gear department of the Laboratory for Machine Tools and Production Engineering (WZL) of the RWTH Aachen University. I gratefully acknowledge the contribution of all persons who supported me in completing this dissertation.

I would like to thank Prof. Dr.-Ing. Thomas Bergs and Univ.-Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Dr. h.c. Fritz Klocke for both their mentoring, support and supervision during my time at the chair for manufacturing technology and as examiners on my dissertation committee. I would like to express my gratitude to Prof. Dr. rer. nat. Werner Schomburg for serving on my dissertation committee. Furthermore, I am grateful to Prof. Dr.-Ing. Katharina Schmitz for presiding the dissertation committee.

During my time at the chair for machine tools, I received the mentoring, support and supervision as well by Prof. Dr.-Ing. Christian Brecher for which I am thankful. I would especially like to express my gratitude to Prof. Dr. Marion A. Weissenberger-Eibl and Prof. Dr. phil. Eva-Maria Jakobs for their altruistic encouragement, inspiration and support.

The majority of the work presented in this dissertation is based on research projects funded by the VDW as member of the German Federation of Industrial Research Associations (AiF), by the German Research Foundation (DFG) and by the WZL Gear Research Circle. As part of these projects, I am thankful for the intensive knowledge exchange and support from industrial partners. Besides the members of the working groups, I would like to emphasize the help of Dipl.-Ing. Karl-Martin Ribbeck of Klingelnberg AG and Daniel Brintrup as well as Uwe Pollmann of Kordel Antriebstechnik GmbH. Their sharing of knowledge, experience as well as willingness to provide equipment made most of the work presented in this dissertation possible.

Special thanks go to current and former members of the WZL gear department. During my time there, not only ideas but also friendships were created. I would like to thank Dr.-Ing. Martin Hellmann, Dr.-Ing. Ario Hardjosuwito and Dr.-Ing. Florian Scheffler (né Hübner) as well as Dr.-Ing. Peter Geradts (né Knecht) who encouraged me during my time as student assistant and shaped my critical thinking. I would like to express my gratitude to Prof. Dr.-Ing. Ronnie Rego, Dr.-Ing. Stefan Herzhoff and Dr.-Ing. Eva Sudowe (née Gräser) for the valuable discussions, insights and thought-provoking impulses. I am grateful for having worked for Dr.-Ing. Jens Brimmers as head engineer and his helpful remarks when reviewing this dissertation. I would like to thank Patrícia de Oliveira Teixeira M.Sc., Christopher Janßen M.Sc. and Mubarik Ahmad M.Sc. for our constructive exchange, mutual support and shared memories. Sharing the office with my coworkers Dr.-Ing. Tim Frech, Dr.-Ing. Felix Kühn und Lukas Klee M.Eng. added to this positive environment.

I am especially grateful to Dipl.-Ing. Rainer Stephan and Ingrid Gerlofsma (†) for teaching me most I know about programming, for their support and our fruitful discussions that oftentimes exceeded mathematic or algorithmic problems. I would like to thank Ingmar Emonts for sharing his valuable, practical experience with me and for his genuine interest in my work.

Furthermore, I would like to thank the student workers and student assistants who contributed to this work. Of all students I had the pleasure to work with and watch their development, my special thanks go to Max-Ferdinand Stroh M.Sc., Katrin Peitsch M.Sc. and Melina Kamratowski B.Sc.

Finally, I would like to extend my thanks for their continuous encouragement to my friends and family. Livia Flämig, Andrej Schwab B.Sc. and Rebecca Achenbach M.Sc as well as Günter and Ursula Naumann and Silke, Philippe, Luis and Yannick Mauel have supported me in all my endeavors, especially this one. I would like to thank my whole family and my husband Amar Elbaz.

Julia Mazak Eynatten, February 2021

Abstract

For manufacturing bevel gears, a special tool system consisting of cutterhead and removable stick blades is used. This tool system produces multi-flank chips which are of complex, three-dimensional geometry. Therefore, the process and machine kinematics are subject to a sophisticated predefinition.

Existing, empirical wear models for bevel gear cutting are limited to discontinuous plunging. Furthermore, no validated, simulative process analysis for bevel gears exists so far. The objective of this thesis was to optimize the process for continuous and discontinuous plunging for bevel gear cutting regarding tool life based on tool angles and process parameters. For this purpose, a wear model was developed that is based on the elastic deformation of the workpiece and regards the thrust force. The influence of the rake angle on the thrust force was modelled by means of the shear angle.

First, it was investigated whether the planar-based penetration algorithm is suitable for determining the geometric-kinematic characteristics of plunging. The results of the planar-based penetration algorithms were plausible. The qualitative comparison of the simulated, undeformed chip geometry to actual chips of cutting trials was successful. The simulated chips matched the actual chips in both shape and proportions. For all processes, the deviation between the simulated flank and the target flank was below 1 $\mu m.$

In cutting trials, the influence of the varied process parameters and tool angles as well as the influence of the combination of these factors on tool wear was quantified. No clear basic mathematical relationship could be established for the results.

The developed model was applied to the results of the cutting trials combining feed ramp and tool angle variation. These results had not been used for determining the model parameters. The equivalence tests for the model results were successful, thus validating the model.

In order to find out which constraints there are for an application of the optimization method to continuous plunging, the model was transferred to a continuous plunging sample gear. Measured and simulated tool wear match and optimization potential for the investigated gear was presented.

Kurzzusammenfassung

Zur Herstellung von Kegelrädern kommen spezielle Werkzeugsysteme zum Einsatz, die aus einem Messerkopf und entnehmbaren Stabmessern bestehen. Aufgrund der komplexen, dreidimensionalen Geometrie der Zahnflanke folgt die zum Einsatz kommende Prozess- und Maschinenkinematik einer wohldurchdachten Festlegung.

Bestehende empirische Verschleißmodelle für das Kegelradfräsen beschränken sich auf das diskontinuierliche Tauchen. Weiterhin existiert bislang noch keine validierte, simulative Prozessanalyse für das Kegelradfräsen. Das Ziel dieser Arbeit ist die Prozessoptimierung für kontinuierliche und diskontinuierliche Tauchprozesse beim Kegelradfräsen hinsichtlich der Standmenge auf Basis der Werkzeugwinkel und Prozessparameter. Dazu wurde ein Verschleißmodell entwickelt, das auf der elastischen Verformung des Werkstücks basiert und die Drangkraft berücksichtigt. Der Einfluss des Spanwinkels auf die Drangkraft wurde anhand des Scherwinkels modelliert.

Zuerst wurde untersucht, ob die ebenen-basierte Durchdringungsrechnung für die Bestimmung der geometrisch-kinematischen Kennwerte für Tauchprozesse geeignet ist. Die Ergebnisse der ebenen-basierte Durchdringungsrechnung waren plausibel. Der qualitative Vergleich der simulierten unverformten Spanungsgeometrie mit reellen Spänen aus Zerspanungsversuchen war erfolgreich. Die simulierte Spanungsgeometrie entsprach sowohl in der Form als auch hinsichtlich der Proportionen den tatsächlichen Spänen. Für alle Verfahren lag die Abweichung zwischen der simulierten Flanke und der Zielflanke unter 1 µm.

In Zerspanversuchen wurden der Einfluss der variierten Prozessparameter und Werkzeugwinkel sowie der Einfluss der Kombination dieser Faktoren auf den Werkzeugverschleiß quantifiziert. Die Ergebnisse folgen keinen mathematischen Grundfunktionen.

Das entwickelte Modell wurde auf die Ergebnisse der Zerspanungsversuche mit kombinierter Vorschubrampe und Werkzeuggeometrie angewendet. Diese Versuchsergebnisse waren nicht zur Ermittlung der Modellparameter verwendet worden. Der Äquivalenztest für die Modellergebnisse war erfolgreich, wodurch das Modell validiert wurde.

Um Beschränkungen zu ermitteln, die bei der Anwendung der Optimierungsmethode für kontinuierliche Prozesse bestehen, wurde das Verschleißmodell anhand einer Beispielverzahnung auf einen kontinuierlichen Tauchprozess umgesetzt. Gemessener und simulierter Verschleiß stimmen gut überein und es wurde Optimierungspotential für den untersuchten Verzahnungsfall aufgezeigt.

Table of Contents

Inhaltsverzeichnis					
Та	ble of	f Contents	i		
Sy	mbol	s and Abbreviations	.iii		
1	Introduction1				
	Gerr	nan Introduction	3		
2	Stat	e of the Art	5		
-	0.4				
	2.1	2.1.1 Interaction of Geometry and Process Design	5 5		
		2.1.1 The Tool System for Soft Machining	۵ 8		
		2.1.2 The Process Chain for Conventional Manufacturing	0		
	2.2	Tool Failure for Machining with a Defined Cutting Edge	12		
		2.2.1 The Thermo-Mechanical and Tribological System Underlying			
		Metal Cutting	12		
		2.2.2 Mechanisms of Tool Failure	14		
		2.2.3 Quantification of Tool Wear and Tool Life	16		
	2.3	Prediction of Tool Wear and Tool Life	17		
		2.3.1 Predictive Models	18		
		2.3.2 Investigations on Influencing Factors	26		
	2.4	Simulation Models for Analyzing Cutting Processes	27		
		2.4.1 Finite Element Method	27		
		2.4.2 Analytical and Hybrid Approaches	29		
	o -	2.4.3 Geometric Penetration Calculation	30		
	2.5	Fundamentals of Statistics in Modeling	32		
	2.6 Conclusion				
3	Obje	bjective and Research Hypothesis4			
4	Scientific Methodology				
	4.1	Trial Setup and Evaluation	45		
	4.2	Design of Experiments	51		
	4.3	System Boundaries	56		
	4.4	Model Setup	58		
5	Dev	elopment of Geometric-Kinematic Characteristics	61		
	5.1	Development of a Penetration Calculation Based on Intersecting Planes	61		
	5.2	Validating the Simulation Results	69		
	5.3	Conclusion	79		
6	Ana	lysis of the Wear Behavior	81		
	6.1	Variation of Process Parameters at Reference Geometry	81		
	6.2	Variation of Tool Angles at Reference Process Parameters	84		

	6.3	Variation of Feed Ramps at Reference Geometry	88	
	6.4	Combination of Feed Ramps and Tool Angles	90	
	6.5	Conclusion	93	
7	7 Verification of the Model's Parameters			
	7.1	Equivalence Tests for the Determined Parameters	95	
	7.2	Statistical Analysis of Feed Ramps	98	
	7.3	Conclusion	103	
8	Арр	lication of the Tool Wear Model	105	
9	Tran	sfer of the Method to Continuous Plunging	111	
10	Summary and Outlook11			
	Gerr	nan Summary and Outlook	118	
Α	Appendixx			
	A.1	Derivation of the Helix Equation for Feed Ramps	xvii	
	A.2	Results of the Simulative Process Analysis with BEVELCUT	xviii	
	A.3	Tool Wear for the Variation of Process Parameters at Reference		
		Geometry	xxv	
	A.4	Tool Wear for the Variation of Tool Angles at Reference Process		
		Parameters	xxxiv	
	A.5	Tool Wear for the Variation of Feed Ramps at Reference Geometry	xlix	
	A.6	Tool Wear for the Combination of Feed Ramps and Tool Angles	lv	
в	Refe	erences	lix	

Symbols and Abbreviations

Formelzeichen und Abkürzungen

Latin

Latein

Symbol	Unit	Name
а	[µm]	Wear coefficient for break-in wear
а	[m⁻°]	Experimental parameter of KÜHN model
a 1	[-]	Experimental parameter of CERETTI and KÜHN model
a _{ij}	[div.]	Parameters of GUTMANN model
ae	[mm]	Cutting width for turning
ap	[mm]	Cutting depth for turning
b	[mm]	Chip width of MERCHANT/ERNST model
b	[mm]	Tooth width
b	[mm]	Width of cut of GUTMANN model
b	[mm]	Width of flank wear in cross-section
b	[-]	Wear coefficient for steady-state wear
b1	[-]	Experimental parameter of CERETTI model
bi	[-]	Bin width
b*	[mm]	Specific chip width
С	[-]	Experimental parameter of KAMM and KÜHN model
С	[ln(µm)]	Wear coefficient for failure region
C 1	[-]	Experimental parameter of CERETTI model
C 117	[-]	Experimental parameters of SCHALASTER model
d	[mm]	Tool diameter of DAMARITÜRK Model
d	[-]	Wear coefficient for geometry shape
d	[-]	Arithmetic average of set difference
d _{a,0}	[mm]	Outside diameter of gear hob
d_{i}	[-]	Difference of set
е	[µm]	Rake face offset
$\mathbf{f}_{\mathbf{z}}$	[mm]	Feed per blade group
fz	[-]	Number of teeth of DAMMER model

Symbol	Unit	Name
\tilde{f}	[-]	Value of density function
h	[mm]	Chip thickness for MERCHANT/Q model
h	[mm]	Depth of groove of RABINOWICZ model
h	[mm]	Profile height
h ₀	[mm]	Undeformed chip thickness
h_1	[mm]	Deformed chip thickness
\mathbf{h}_{i}	[-]	Relative frequency
h _{cu}	[mm]	Chip thickness
h _{cu} *	[mm]	Specific chip thickness
$\overline{h_{cu}}$	[mm]	Approximated chip thickness
$\overline{h_{cu0}}$	[mm]	Approximated chip thickness of reference process
h _{cu,max}	[mm]	Maximum chip thickness
hcu,m	[mm]	Mean chip thickness
h _{cu,min}	[mm]	Minimum chip thickness
hd	[mm]	Dedendum height
h _R	[mm]	Height of tip relief
hT	[mm]	Height of root relief
i	[-]	Transmission ratio
ів	[-]	Current blade
ig	[-]	Current blade group
ir	[-]	Current cutterhead revolution
isz	[-]	Number of cuts of KAMM model
iω	[-]	Current simulation increment
k	[mm³]	Kernel density acc. to LEBESGUE
k	[-]	Linear slope of TAYLOR and USUI model
k110	[-]	Experimental coefficients
k _{Arc}	[-]	Proportionality factor of ARCHARD model
k _{dyn}	[N/mm²]	Specific cutting force
ki	[-]	Bin interval
kv	[-]	Linear slope of KAMM model

Symbol	Unit	Name
1	[mm]	Length of groove of RABINOWICZ
1	[m]	Tooth thickness of KÜHN model
lcu	[mm]	Length of cutting arc
lcu,cum,0	[m]	Cumulated length of cutting arc
l _{cu,max}	[mm]	Maximum length of cutting arc
l _{cu,m}	[mm]	Mean length of cutting arc
l _{cu,min}	[mm]	Minimum length of cutting arc
le	[mm]	Effective cutting length
le,cum	[mm]	Cumulated effective tool length
l_k	[m]	Contact length between flank face and workpiece
lnorm	[-]	Normalized tool life
ls	[mm]	Unrolled profile edge
m	[-]	Experimental parameter of KAMM model
m	[-]	Slope of feed ramp
m	[-]	Thermal softening factor
тсср	[mm]	Machine center to crossing point
m _{nm}	[mm]	Normal mean module
n	[-]	Number of measurements
n	[-]	Number of teeth
n	[-]	Experimental parameter of KAMM model
nrmp	[min ⁻¹]	Rotational speed
ñ	[mm]	Normal vector
n _{cu}	[-]	Number of cuts
nrp	[-]	Number of rolling positions
р	[N/mm²]	Local pressure
r1	[mm]	Coordinate of tool point in workpiece system
r 12	[mm]	Coordinate of tool point in cutterhead system
ri	[mm]	Radius of tool point in cutterhead system
rε	[mm]	Corner radius
S	[mm]	Sliding distance of ARCHARD model

Symbol	Unit	Name
S	[-]	Standard deviation
S	[mm]	Unrolled profile edge
s ²	[-]	Variance
Smn	[mm]	Chordal tooth thickness
SRF	[mm]	Distance along rake face
t	[s]	Process time
t	[-]	Sample value
t	[-]	Value of t-test
tc	[s]	Cutting time
tg	[s]	Generating time
v	[m/s]	Cutting velocity of KAMM model
Vc	[m/min]	Cutting velocity
v_c^*	[-]	Specific cutting velocity
Veff	[m/min]	Effective velocity
Vf	[m/min]	Feed velocity
Vrel	[mm/s]	Relative velocity of BINDER model
Vs	[m/min]	Sliding velocity
Vw	[°/s]	Rolling velocity
Wi	[%]	Mass fraction
х	[mm]	Sliding distance of RABINOWICZ model
Xi	[-]	Measurement i
ĩ	[-]	Median
x	[-]	Arithmetic mean
Xi,12	[mm]	x-coordinate of tool point i in cutterhead system
y i,12	[mm]	y-coordinate of tool point i in cutterhead system
yk	[-]	Observed value
ÿ	[-]	Arithmetic mean of observed data
${\tilde{y}}_k$	[-]	Modeled value
Z0	[-]	Number of blade groups
Z 2	[-]	Number of workpiece teeth

Symbol	Unit	Name
Z i,12	[mm]	z-coordinate of tool point i in cutterhead system
ź	[mm]	Final cutterhead position
А	[[-]	Experimental parameter of MUNDT model
Acu	[mm²]	Machined area
Aα	[mm²]	Flank face
A _{Cr}	[µm²]	Area of tool cross section
$A_{\rm FF}$	[µm²]	Area of flank wear
Ai	[div.]	Coefficients of GUTMANN model
A_{γ}	[mm²]	Rake face
В	[-]	Experimental parameter of MUNDT model
В	[-]	Tool life factor of HARDJOWSUWITO model
С	[-]	Experimental parameter of MUNDT model
C117	[-]	Experimental parameters
C_{v}	[-]	Tool life at $v_{\rm c}$ = 1.0 m/min of TAYLOR model
CI	[-]	Confidence interval
Е	[N/m²]	Young's modulus
F15	[-]	Experimental parameters of DAMMER model
Fc	[N]	Cutting force
FD	[N]	Thrust force
F _D '	[N/mm]	Relative thrust force
Fn	[N]	Normal force
F _{tu}	[MPa]	Ultimate tensile stress
Н	[HV]	Surface hardness of RABINOWICZ model
Ho	[HV]	Tool hardness at reference temperature
Ha	[kg/mm²]	Hardness of abrasive body
Нь	[kg/mm²]	Hardness of basic body
Hd	[HR]	Tool hardness
H_{h}	[HV]	Hardness of hard body
Hi	[-]	Absolute frequency
H _{max}	[HB]	Maximum blank hardness

Symbol	Unit	Name
H _{min}	[HB]	Minimum blank hardness
Hs	[HV]	Hardness of soft body
H _{St}	[-]	Multi-flank factor
IQR	[-]	Inter quartile range
К	[-]	Tool geometry factor
K1	[-]	Experimental parameter of CERETTI model
K _G	[-]	Wear characteristic of HARDJOSUWITO model
Kv	[J]	Wear characteristic of KÜHN model
KB	[mm]	Crater width
KF	[mm]	Crater front distance
KM	[mm]	Crater center distance
KT	[mm]	Crater depth
L	[m]	Tool life
L ₀	[m]	Tool life of reference process
LS,flank	[m]	Tool life for flank wear
L _{S,crater}	[m]	Tool life for crater wear
Lv	[-]	Dominating wear mechanism
Ν	[-]	Number of cut parts
Nef	[-]	Tool life for single-flank cut
Nmf	[-]	Tool life for multi-flank cut
Pne	[mm²]	Cutting edge normal plane
Pre	[mm²]	Working reference plane
Pse	[mm²]	Working cutting edge plane
Q	[kJ/mol]	Activation energy
Q1	[-]	First quartile
Q3	[-]	Third quartile
$Q_{p=\alpha\%}$	[-]	α-quantile
R	[J/K·mol]	Universal gas constant
R ²	[-]	Coefficient of determination
R _b	[-]	Ratio of chip width

Symbol	Unit	Name
R _{fl}	[mm]	Reference cutter radius
R_h	[-]	Ratio of chip thickness
$R_{\rm hb}$	[mm]	Radius of curvature
Rw	[mm]	Nominal cutter radius
Ra	[µm]	Arithmetic mean roughness
Rz	[µm]	Average surface depth
SE	[-]	Standard error
ST	[mm]	Feed per blade group for feed ramps
ST14	[mm]	Data point for feed of feed ramp
Sα	[mm]	Distance on flank face
Sγ	[mm]	Distance on rake face
Т	[K]	Temperature
T ₀	[K]	Reference temperature
Tc	[min]	Tool life
Tm	[K]	Melting temperature
ТА	[mm]	Plunging depth
TA ₁₄	[mm]	Data point for plunging depth of feed ramp
TAe	[mm]	Total plunging depth
U	[-]	Engagement ratio
V	[-]	Variation coefficient
V	[mm³]	Wear volume
Vcu	[mm³]	Chip volume
$V_{\rm h}$	[mm³]	Wear volume of hard body of RABINOWICZ model
Va	[µm³]	Approximated wear volume
Vs	[mm³]	Wear volume of soft body of RABINOWICZ model
VB	[mm]	Width of flank wear
VBc	[µm]	Width of flank wear on profile radius
VBnorm,0	[µm]	Normalized obtained flank wear
VBi	[µm]	Individual width of flank wear
VB _{max}	[µm]	Maximum width of flank wear

Symbol	Unit	Name	
VBm	[µm]	Mean width of flank wear	
W	[mm³]	Tool wear	
W_{abr}	[mm³]	Abrasive tool wear	
W _{p/c}	[mm³]	Physical / chemical tool wear	
$\overline{\mathbf{X}}$	[-]	Arithmetic average of test	
\overline{Y}	[-]	Arithmetic average of reference	
ZAB	[mm]	Abrasive wear depth	

Greek

Griechisch

Symbol	Unit	Name
α	[°]	Cradle angle
α	[-]	Level of significance
α	[°]	Relief angle
α1	[°]	Beginning of cradle interval
α2	[°]	End of cradle interval
α_{d}	[°]	Designed relief angle
αm	[°]	Mean cradle angle
αne	[°]	Effective relief angle
αp	[°]	Profile angle
αr	[°]	Root relief angle
$\alpha_{\rm T}$	[°]	Tip relief angle
$\alpha_{\rm w}$	[°]	Effective relief angle of KÜHN model
β	[°]	Wedge angle
β	[°]	Workpiece rotational angle
γ	[°]	Machine root angle
γ	[°]	Rake angle
γ_d	[°]	Designed rake angle
γne	[°]	Effective rake angle
γs	[°]	Rake angle in tool plane
δ1/2	[-]	Limits of equivalence interval