ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Julia Dukwen

Verschleiß der Umformwerkzeuge beim Präzisionsblankpressen von Quarzglas

Verschleiß der Umformwerkzeuge beim Präzisionsblankpressen von Quarzglas

Wear of Molding Tools while Precision Molding of Quartz Glass

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Julia Dukwen, geb. Keller

Berichter:

Univ.-Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke

Univ.-Prof. Dr.-Ing. Thomas Bergs

Tag der mündlichen Prüfung: 08. November 2019

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Julia Dukwen

Verschleiß der Umformwerkzeuge beim Präzisionsblankpressen von Quarzglas

Herausgeber:

Prof. Dr.-Ing. T. Bergs

Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh

Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 1/2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Julia Dukwen:

Verschleiß der Umformwerkzeuge beim Präzisionsblankpressen von Quarzglas

1. Auflage, 2020

Apprimus Verlag, Aachen, 2020 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-837-2

Vorwort

Preamble

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Fraunhofer Institut für Produktionstechnologie IPT in Aachen. In dieser Zeit habe ich große Unterstützung von vielen Menschen erfahren, bei denen ich mich ganz herzlich bedanke.

Zuerst danke ich Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke für die Ermöglichung und die Betreuung dieser Arbeit sowie seine stete Hilfsbereitschaft. Prof. Dr.-Ing. Thomas Bergs MBA danke ich für die Übernahme des Korreferats. Beim Prof. Dr. rer. nat. Ronald Gebhardt bedanke ich mich für den Vorsitz und beim Prof. Dr. rer. nat. Reinhart Poprawe für den Beisitz meiner mündlichen Prüfung.

Meinem Oberingenieur Dr.-Ing. Olaf Dambon und Tim Grunwald danke ich für die fachliche Durchsicht der Arbeit sowie die wertvollen Anregungen.

Dr.-Ing. Gang Liu und Minjie Tang danke ich für die Unterstützung bei der Simulation. Dr.-Ing. Gang Liu danke ich außerdem für die wertvollen Diskussionen und Hilfestellungen bei der Entwicklung des Modells zur Beschreibung der Verschleißmechanismen.

Bei meinen studentischen Mitarbeitern Conny Rojacher, Lukas Eilers, Ludger Bußwinkel, Teja Wrobel, Igor Poluschkin und Stefan Gruber bedanke ich mich ganz herzlich für die tatkräftige Unterstützung.

Meiner Arbeitskollegin Frau Dr. rer. nat. Ulrike Krüger danke ich für das Lektorat des Manuskripts. Ich danke Dr.-Ing. Thomas Bletek für die Durchsicht des Dissertationsvortrages.

Nicht zuletzt danke ich allen Assistenten und Technikern der Abteilung Feinbearbeitung und Optik für die gute Zusammenarbeit, freundschaftliche Atmosphäre und die lustigen Momente. Ebenfalls bedanke ich mich bei allen Mitarbeitern des Fraunhofer IPT für die angenehme Zusammenarbeit und schöne Zeit.

Ein großer Dank gebührt ebenso meiner Familie. Alle meine Erfolge verdanke ich meinen Eltern. Meinem Mann Viktor danke ich für die Aufmunterung und die Ablenkung während der Erstellung dieses Manuskripts. Ich danke ihm, dass er nicht wenige einsame Wochenenden überstanden hat. Und zu guter Letzt danke ich ganz besonders meinem Sohn Michael, dass er mir den Freiraum für diese Arbeit eingeräumt hat.

Julia Dukwen

Inhaltsverzeichnis

Table of content

l	FILIE	eitung und Motivation				
2	Proz	esstech	nnologische Grundlagen und aktueller Stand	9		
	2.1	Präzis	ionsblankpressen	9		
		2.1.1	Prozesstechnologische Grundlagen	9		
		2.1.2	Präzisionsblankpressen von Quarzglas	13		
	2.2	Versc	nleiß der Umformwerkzeuge beim Präzisionsblankpressen	15		
		2.2.1	Verschleißmechanismen	16		
		2.2.2	Verschleißuntersuchungen beim Präzisionsblankpressen	23		
3	Ziels	setzung	und Aufgabenstellung	31		
4	Syste	emkom	ponenten	33		
	4.1	Quarz	rglas	33		
		4.1.1	Eigenschaften des Quarzglases	33		
		4.1.2	Ausgasungsverhalten des Quarzglases	41		
	4.2		stoffe für die Umformwerkzeuge zum Präzisionsblankpressen von			
		Quarz	glas	45		
		4.2.1	Glaskohlenstoff	45		
		4.2.2	Siliziumkarbid	47		
		4.2.3	Wolframkarbid	49		
5	Ana	lyse der	prinzipiellen Eignung ausgewählter Werkstoffe	51		
	5.1	1 Heiztests bei verschiedenen Atmosphären				
	5.2	Oberf	lächenenergie der Werkstoffe	53		
5.3		Heiztests mit Glaskontakt im Vakuum				
6	Simu	imulation des Prozesses Präzisionsblankpressen				
	6.1	Finite-	Elemente-Methode	61		
	6.2	Mathe	ematische Beschreibung	62		
	6.3	Vier-F	Punkt-Biegeversuch zur Bestimmung der Spannungsrelaxation des			
		Quarz	rglases	66		

	6.4	Ring-S	Stauch-Versuch zur Bestimmung des Reibungskoeffizienten	68
	6.5	Analy	se der thermomechanischen Belastungen im Werkzeug	70
7	Vers	chleiß v	on Glaskohlenstoff beim Pressen von Quarzglas	75
	7.1	Zeitlic	he Entwicklung des Verschleißes	75
	7.2	Zeitlic	he Entwicklung der Glasanhaftungen	78
	7.3	Unter	suchung der Diffusion	80
	7.4	Topog	grafie der Werkzeugoberfläche nach Presstests	81
	7.5	Einflus	ss der Prozessparameter	86
		7.5.1	EDX-Analyse	86
		7.5.2	ESMA-Analyse	88
8	Qua	litatives	Modell zur Beschreibung der Verschleißmechanismen	95
9	Zusammenfassung und Ausblick			
Lite	ratur	/erzeich	nnis	107
Anl	nang .			А

Abbildungsverzeichnis *Table of figures*

Abbildung 1-1:	Beschäftigten der Photonik-Branche [VDMA17]				
Abbildung 2-1:	Übersicht über die Herstellungstechnologien für optische Komponenten, in Anlehnung an [HERI06]10				
Abbildung 2-2:	Schematische Darstellung des Präzisionsblankpressprozesses11				
Abbildung 2-3:	Zeitlicher Verlauf der Temperatur, Werkzeugposition und der Presskrabeim Pressen von Quarzglas				
Abbildung 2-4:	(a) REM Bilder von Quarzglasoberflächen geprägt bei (a, b) T = 1330 °C, P = 0.22 MPa, t = 300 s, (c) T = 1315 °C, P = 0.22 MPa, t = 100 s, (d) T = 1305 °C, P = 0.22 MPa, t = 400 s, aus [YOUN06]14				
Abbildung 2-5:	REM-Bilder von binären Quarzglasoberflächen gepresst mit lithografisch strukturiertem Presswerkzeug aus Glaskohlenstoff bei T = 1395 °C, P = 3 kN, t = 120 s				
Abbildung 2-6:	Verschleißmechanismen: Übersicht über Stoff- und Formänderungsprozesse unter tribologischer Beanspruchung [CZIC10] 17				
Abbildung 2-7:	Arten der Abrasion [ZUMG87]18				
Abbildung 2-8:	Grübchenbildung an Zahnflanke durch Oberflächenzerrüttung [SOMM14]				
Abbildung 2-9:	Mögliche Wechselwirkungsmechanismen beim Präzisionsblankpressen, aus [GEOR15]				
Abbildung 2-10:	Verschleißmodell für eine Platin-Iridium-Beschichtung in Kontakt mit B270- Glas, aus [BERN16]				
Abbildung 2-11:	REM-Bilder von Glasstrukturen, die mit Formen geprägt wurden, die unterschiedliche Rauheit von Strukturseitenwänden aufweisen. Die Oberflächenrauheit (Ra) der Strukturseitenwände betrug 70 nm für die Probe (a) bzw. 150 nm für die Probe (b), aus [YOUN06]				

Abbildung 4-1:	sp³-Hybridorbitale des Siliziumatoms und SiO $_4$ -Tetraedermodell, in Anlehnung an [VOGE92]34
Abbildung 4-2:	Struktur von kristallinem Quarz (a), Quarzglas (b) und Na-Silikatglas (c) [ILSC10]
Abbildung 4-3:	Viskosität von Lithosil Q1, B270 und L-BAL42 in Abhängigkeit von der Temperatur [SCHO04, SCHO06, OHAR17]36
Abbildung 4-4:	Volumenänderung beim Erstarren bzw. bei Kristallisation einer Glasschmelze [HUNK09]37
Abbildung 4-5:	Fixpunkte im Viskositätsverlauf des Glases [TESC13]38
Abbildung 4-6:	Ausgasung von H_2 , H_2O und CO aus $SQ1$, $SQ2$ und $Suprasil 30044$
Abbildung 4-7:	TEM-Aufnahme von Glaskohlenstoff (links) und Modell für die Struktur von Glaskohlenstoff (rechts) [HARR04]47
Abbildung 5-1:	REM-Bilder von Werkstoffen nach Heiztest in Sauerstoffatmosphäre53
Abbildung 5-2:	Messung des Kontaktwinkels54
Abbildung 5-3:	Oberflächenenergien von SiC, WC und GC poliert und nach Heiztests in Sauerstoffatmosphäre bei verschiedenen Temperaturen und nach verschiedenen Haltezeiten
Abbildung 5-4:	Oberflächenenergien von SiC, WC und GC poliert und nach Heiztests in Stickstoffatmosphäre bei verschiedenen Temperaturen und nach verschiedenen Haltezeiten
Abbildung 5-5:	Oberflächenenergien von SiC, WC und GC poliert und nach Heiztests in Argonatmosphäre bei verschiedenen Temperaturen und nach verschiedenen Haltezeiten
Abbildung 5-6:	Polarer Anteil der Oberflächenenergien von SiC, WC und GC poliert und nach Heiztests in Sauerstoffatmosphäre bei verschiedenen Temperaturen und nach verschiedenen Haltezeiten

Abbildung 5-7:	Polarer Anteil der Oberflächenenergien von SiC, WC und GC poliert und nach Heiztests in Stickstoffatmosphäre bei verschiedenen Temperaturen und nach verschiedenen Haltezeiten
Abbildung 5-8:	Polarer Anteil von Oberflächenenergien von SiC, WC und GC poliert und nach Heiztests in Argonatmosphäre bei verschiedenen Temperaturen und nach verschiedenen Haltezeiten58
Abbildung 5-9:	Werkstoffproben nach Heiztests (SiC und WC nach 5 Heiztests, GC nach 10 Heiztests)
Abbildung 5-10:	REM-Bilder von WC nach Heiztest60
Abbildung 6-1:	Zeitlicher Verlauf der Spannungsrelaxationsfunktion und der Einfluss der Temperatur auf die Geschwindigkeit der Relaxation, in Anlehnung an [ANAN08]
Abbildung 6-2:	Einfluss der Reibung am Beispiel der Stauchung eines Zylinders, aus [HUEN14]
Abbildung 6-3:	Vier-Punkt-Biegemessvorrichtung zur Bestimmung von Relaxationskraft (links) und das Messprinzip
Abbildung 6-4:	Messung und Kurvenanpassung von Spannungsrelaxation bei verschiedenen Temperaturen
Abbildung 6-5:	Prinzip des Ring-Stauch-Versuchs zur Bestimmung des Reibungskoeffizienten sowie die gemessenen und simulierten Daten69
Abbildung 6-6:	Simulierte Geometrien70
Abbildung 6-7:	Simulation der Spannungen in sechs Punkten auf der Werkzeugoberfläche im Laufe des Pressprozesses bei 1360 °C und 5 kN (links) und das dazugehörige Simulationsbild; das Werkzeug hat eine plane Oberfläche, der Glasrohling ist kugelförmig
Abbildung 6-8:	Verlauf der Spannungen im Werkzeug für zwei Temperaturen (1 kN Presskraft)72

Abbildung 6-9:	Verlauf der Spannungen im Werkzeug für zwei Presskräfte (1360 °C Presstemperatur)
Abbildung 6-10:	Verlauf der Spannungen im Werkzeug für zwei Geometrien (1360 °C, 3 kN)
Abbildung 7-1:	Entwicklung einer Stelle auf dem Presswerkzeug: poliert, nach 10 und 20 Pressungen (von links nach rechts) und diese Stelle in verschiedenen Vergrößerungen (von oben nach unten)
Abbildung 7-2:	Simulation der Spannungen in einer Vertiefung: hohe Zugspannungen an den Flanken, hohe Druckspannungen am Rand der Vertiefung77
Abbildung 7-3:	Glasanhaftung in einer Vertiefung im Presswerkzeug (links) und die gleiche Vertiefung nach 22 Pressungen ohne Glasanhaftung (rechts)78
Abbildung 7-4:	Menge an Glasanhaftungen mit der Anzahl der Pressungen79
Abbildung 7-5:	ESMA-Scan entlang der Kalotte im Presswerkzeug80
Abbildung 7-6:	Die drei untersuchten Bereiche auf der Glaskohlenstoffprobe: das Zentrum mit Glaskontakt (Zentrum), der Rand des Glaskontakts (Mitte) und der Bereich ohne Glaskontakt (Rand)
Abbildung 7-7:	AFM-Scans in der Mitte, am Rand der Glaskontaktzone und im Bereich ohne Glaskontakt sowie die Position der gemessenen Linienprofile82
Abbildung 7-8:	Profilmessungen in der Mitte, am Rand der Glaskontaktzone und im Bereich ohne Glaskontakt
Abbildung 7-9:	Modell der Glasumformung84
Abbildung 7-10:	ESMA von oberen Presswerkzeugen nach Presstests bei verschiedenen Prozessparametern
Abbildung 7-11:	ESMA von oberen Presswerkzeugen nach Presstests bei verschiedenen Prozessparametern

Abbildung 7-12:	Differenz der ESMA-Daten des oberen und unteren Presswerkzeugs (links) und die simulierte Spannung im Glas an der Kontaktzone zum Presswerkzeug für die vier Versuchsreihen (rechts)92
Abbildung 8-1:	Modell für Verschleißmechanismen des Glaskohlenstoffs beim Pressen von Quarzglas
Abbildung A-1:	Simulierte Spannungen im planen Presswerkzeug beim Pressen eines Zylinderrohlings bei 1360 °CB
Abbildung A-2:	Simulierte Spannungen im planen Presswerkzeug beim Pressen eines Zylinderrohlings bei 1400 °C
Abbildung A-3:	Simulierte Spannungen im planen Presswerkzeug beim Pressen eines Kugelrohlings bei 1360 °C
Abbildung A-4:	Simulierte Spannungen im planen Presswerkzeug beim Pressen eines Kugelrohlings bei 1400 °CE
Abbildung A-5:	Simulierte Spannungen im konkaven Presswerkzeug beim Pressen eines Kugelrohlings bei 1360 °CF
Abbildung A-6	Simulierte Spannungen im konkaven Presswerkzeug beim Pressen eines Kugelrohlings bei 1400 °C
Abbildung A-7:	ESMA-Analysen der oberen PresswerkzeugeH
Abbildung A-8:	ESMA-Analysen der unteren Presswerkzeuge

Tabellenverzeichnis

Table of tables

Delle 4-1: Verunreinigungen für die Quarzglassorten SQ1, SQ2 und Suprasil 30 [HERA11, SICO18]	
Delle 4-2: Temperatur der Gläser SQ und Suprasil 300 für drei Viskositäten [HERA' SICO18]	
pelle 4-3: Einige Kennwerte von ausgewählten Werkstoffen [CERA10, CERA1 COOR16, HTW18a, ZUNK11]	
Delle 5-1: EDX-Ergebnisse von Werkstoffen nach den Heiztests in verschiedene Atmosphären	
pelle 6-1: In der Simulation verwendete Materialkennwerte6	66
pelle 6-2: Für die Simulation ermittelten Parameter Gi und 7i	68
pelle 7-1 Rauheitswerte in drei untersuchten Bereichen und von der polierten Prob zum Vergleich	
Punkten Pi und Punkt P1	
pelle 7-3: EDX-Ergebnisse von oberen Presswerkzeugen aus Glaskohlenstoff nac Presstests mit Quarzglas SQ1 bei 1360 °C und 1 kN, 2 kN und 3 kN Presskra	aft
pelle 7-4: EDX-Ergebnisse von unteren Presswerkzeugen aus Glaskohlenstoff nac Presstests mit Quarzglas SQ1 bei 1360 °C und 1 kN, 2 kN und 3 kN Presskra	aft
pelle 7-5: EDX-Ergebnisse von oberen Presswerkzeugen aus Glaskohlenstoff nac Presstests mit Suprasil 300 und SQ1 bei 1360 °C und 2 kN Presskraft	
Delle 7-6: EDX-Ergebnisse von unteren Presswerkzeugen aus Glaskohlenstoff nach Presstests mit Suprasil 300 und SQ1 bei 1360 °C und 2 kN Presskraft	
palla 7-7: Prozessparameter der vier Versuchsreihen	20