ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Michel Klatte

Korrekturmodelle thermisch bedingter TCP-Verlagerungen mit Hilfe maschinenintegrierter Verformungssensoren

Korrekturmodelle thermisch bedingter TCP-Verlagerungen mit Hilfe maschinenintegrierter Verformungssensoren

Correction Models for Thermally Induced TCP-Dislocation Utilizing Machine Integrated Deformation Sensors

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Michel Klatte

Berichter:

Univ.-Prof. Dr.-Ing. Christian Brecher Univ.-Prof. Dr.-Ing. Steffen Ihlenfeldt

Tag der mündlichen Prüfung: 17. Juni 2019

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Michel Klatte

Korrekturmodelle thermisch bedingter TCP-Verlagerungen mit Hilfe maschinenintegrierter Verformungssensoren

Herausgeber: Prof. Dr.-Ing. T. Bergs Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 37/2019

Fraunhofer

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Michel Klatte:

Korrekturmodelle thermisch bedingter TCP-Verlagerungen mit Hilfe maschinenintegrierter Verformungssensoren

1. Auflage, 2019

Gedruckt auf holz- und säurefreiem Papier, 100% chlorfrei gebleicht.

Apprimus Verlag, Aachen, 2019 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-773-3

D 82 (Diss. RWTH Aachen University, 2019)

Danksagung

Diese Arbeit entstand neben meiner Tätigkeit als Wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Produktionstechnologie IPT in Aachen.

Ich möchte mich herzlich bei meinem Doktorvater Herrn Univ.-Prof. Dr.-Ing. Christian Brecher für die wissenschaftliche Betreuung und das mir entgegengebrachte Vertrauen bedanken. Herrn Univ.-Prof. Dr.-Ing. Steffen Ihlenfeldt danke ich für die Übernahme des Korreferats. Weiterhin bedanke ich mich bei Univ.-Prof. Dr.-Ing. Christian Hopmann für die Übernahme des Prüfungsvorsitzes.

Die Grundlage der Arbeit wurde durch den Sonderforschungsbereich Transregio 96 gelegt. Ich möchte mich herzlich bei allen Mitarbeitern des Projekts für ihr Engagement bei der Antragstellung und der Deutschen Forschungsgesellschaft für die großzügige und langfristige Förderung bedanken.

Die Entstehung dieser Arbeit wäre weiterhin ohne das produktive und kollegiale Umfeld des Fraunhofer IPT nicht möglich gewesen. Ich möchte mich persönlich bei allen Kollegen bedanken, die zum Gelingen der Arbeit beigetragen haben. Besonderer Dank gebührt dabei meinem Kollegen Dr.-Ing. Jakob Flore, für seine Pionierleistung auf dem Gebiet der Maschinenoptimierung und die fachliche Anregung für das Thema dieser Arbeit. Für zahlreiche und hilfreiche fachliche Diskussionen während der heißen Phase der Arbeit danke ich Herrn Jan Behrens, Herrn Tae-Hun Lee und Herrn Matthias Brozio. Die Versuchsvorbereitung und Durchführung gelang dank der kompetenten Unterstützung von Herrn Simon Charlier völlig reibungslos. Außerdem möchte ich meinen studentischen Mitarbeitern herzlich für ihr besonderes Engagement danken: Frau Aya Khattab, Herrn Stefan Woywode, Herrn Steffen Kaminski, Herrn Nikita Mogilevski und Herrn Felix Promesberger.

Für die kontinuierliche Unterstützung und Förderung sowie die stets vertrauensvolle Zusammenarbeit während meiner Institutszeit danke ich herzlich Herrn Dr.-Ing. Christian Wenzel und Herrn Dr.-Ing. Christoph Baum.

Ganz besonderer und persönlicher Dank gilt meiner Familie. Meine Eltern Claudia und Tim Klatte haben mich persönlich und in meiner Ausbildung stets mit voller Kraft unterstützt. Meine liebe Frau Xiaoying und Tochter Miya ließen die vielen bei der Entstehung der Arbeit zu bewältigenden Probleme zu Hause verfliegen.

Aachen, Juli 2019

Michel Klatte

Zusammenfassung

Thermische Fehler von Werkzeugmaschinen stellen einen signifikanten Einfluss auf die Qualität der gefertigten Bauteile dar. Die vorliegende Arbeit soll einen Beitrag zur Weiterentwicklung indirekter Verfahren zur Korrektur thermisch bedingter Positionierfehler leisten, indem die Eignung von Verformungsmessungen für die indirekte Korrektur systematisch untersucht wird.

Zu Beginn der Arbeit wurde zunächst eine physikalische Modellierungsmethode zur Nutzung von integralen Verformungssensoren konzipiert. Der Messmethode liegt die Annahme zu Grunde, dass thermisch bedingte Verlagerungen in der Hauptsache durch Biegung von Maschinenkomponenten in Kombination mit Hebelarmen der Struktur verursacht werden. Zur Erfassung von Biegezuständen wird durch integrale Dehnungsmessungen an unterschiedlichen Stellen der Struktur der Gradient der Verformung erfasst. Die Validierung der Messmethode wurde experimentell mit Hilfe von Prüfständen und Komponenten unterschiedlicher Komplexität, vom quaderförmigen Bauteil bis zur gesamten Werkzeugmaschine mit Achskinematik, durchgeführt. Für alle Komplexitätsstufen wurden sowohl der phänomenologische als auch der physikalische Modellierungsansatz umgesetzt und diese untereinander verglichen, sodass eine Bewertung des Korrekturpotenzials erfolgen kann.

Die Validierungsergebnisse bestätigen bei Untersuchungen am Prüfstand sowie bei einzelnen Maschinenkomponenten die Möglichkeit des Einsatzes einfacher Modellierungstechniken für eine effektive Korrektur. Am Prüfstand zeigen sich im Vergleich mit dem phänomenologischen Ansatz hohe Effektivitäten von bis zu über 95 Prozent, die laterale Verformung des Spindelstocks eines Bearbeitungszentrums kann mit über 70 Prozent Effektivität ebenfalls gut korrigiert werden. Eine weitere Steigerung der Komplexität von Struktur und Modell führt jedoch zum deutlichen Rückgang der Korrekturgüte. Die Effektivität ist sowohl von der Verlagerungsrichtung als auch vom Belastungsfall abhängig. Hingegen lassen sich mit dem phänomenologischen Ansatz über alle Komplexitätsstufen durchweg gute Korrekturergebnisse erzielen. Damit kann die letzte in dieser Arbeit formulierte These mit dem eingesetzten Modell nicht uneingeschränkt bestätigt werden. Der Vergleich phänomenologischer Modelle auf Basis von Temperatur- und Dehnungsmessungen lässt auf einen höheren Informationsgehalt der Dehnungsmessungen im Vergleich zu reiner Temperaturmessung schließen. Dieser Mehrwert fällt jedoch vergleichsweise gering aus.

Summary

Thermal errors of machine tools are a significant influence on the quality of the produced workpieces. In order to insure a high thermal stability, correction methods which optimize the thermal machine behavior are utilized. The thesis at hand shall contribute to the further development of indirect correction methods for thermally induced positioning errors by systematically examining the eligibility of deformation measurements for said methods.

In the beginning of the thesis a physical modelling method for the utilization of integral deformation sensors has been introduced. The measurement method is based on the assumption that thermally induced dislocations are mainly caused by bending of machine components in combination with long cantilevers of the structure. For capturing the bending state of a component, differential measurements are applied with deformation sensors at different positions on the component. The validation of the measuring method has been conducted experimentally with the help of test benches and machine components of different complexity, ranging from cubic components up to a complete machine tool with axis kinematics. For all complexity levels, the phenomenological and physical modelling method has been applied and compared, so an assessment of the correction potential is possible.

The validation results confirm the application potential of simple modelling techniques for an effective correction of the deformation of simple structures and machine components. Regarding the test bench, the physical model shows ideal results compared to the phenomenological approach. The lateral deformation of a machine tool headstock can be corrected as well. A further increase in complexity, however, leads to a significant decrease of correction performance. The effectivity of correction is largely dependent on both direction of dislocation and loading conditions. In contrast, the phenomenological approach shows good results for all levels of complexity. Therefore, the last hypothesis formulated in this thesis cannot be confirmed without limitations. The comparison of phenomenological models on the basis of temperature and deformation measurements leads to the conclusion, that the deformation measurements indeed have higher information content. However, the advantage is relatively minor.

Inhaltsverzeichnis

Со	ntent					
1	Einleitung1					
2	Stand der Technik in Forschung und Industrie5					
	2.1 Thermische Fehler von Werkzeugmaschinen					
	2.1.1	1 Beschreibung thermischer Fehler	6			
	2.1.2	2 Messtechnische Erfassung thermischer Fehler	7			
	2.1.3	3 Methoden zur Untersuchung des Temperaturverhaltens	13			
	2.2	Korrektur thermischer Fehler	14			
		2.2.1 Modellierung thermischer Fehler von Werkzeugmaschinen	15			
		2.2.2 Indirekte Korrektur mit Hilfe von Temperaturmessungen	19			
		2.2.3 Indirekte Korrektur mit Hilfe von Verformungsmessungen	21			
	2.3	Zusammenfassende Erkenntnisse aus dem Stand der Technik	24			
3	Aufg	gabenstellung und Zielsetzung	27			
	3.1	Zielsetzung	27			
	3.2	Thesen	28			
	3.3	Vorgehensweise	28			
4	Methode zur Korrektur von Strukturverformung					
	4.1. Konzent zur Nutzung von Verformungssensoren					
	4.2	Reschreibung des Verformungsmodells				
	1.2	4 2 1 Zweidimensionaler Modellansatz				
		4.2.2 Dreidimensionaler Modellansatz				
	4.3	Beschreibung komplexer Strukturen	41			
		4.3.1 Beschreibung der kinematischen Kette	41			
		4.3.2 Definition von Maschinenachsen	42			
	4.4	Einsatzgrenzen der Methode	44			
		4.4.1 Fehlereinflussanalyse	44			
		4.4.2 Einfluss weiterer Verformungsarten	47			
5	Validierung von Messmethode und Modellansatz51					
	5.1	Analyse des thermoelastischen Verhaltens einer Modellstruktur	51			
		5.1.1 Beschreibung des Prüfstands	51			
		5.1.2 Untersuchungsmethodik zur Verformungsanalyse	53			
		5.1.3 Untersuchungsergebnisse des Last-Verformungsverhaltens	55			
	5.2 Validierung des Verformungsmodells am Prüfstand					
	5.3	Validierung des Verformungsmodells an Baugruppen	61			
		5.3.1 Beschreibung des Spindelstocks für die Untersuchungen	61			
		5.3.2 Untersuchungsmethodik zur Verlagerungsanalyse	64			
		5.3.3 Untersuchungsergebnisse der Tool-Center-Point-Verlagerung	65			
	5.4	Bewertung von Messmethode und physikalischem Modell	77			

6	Untersuchung eines Bearbeitungszentrums mit Verformungssensorik7				
	6.1	Beschreibung des Versuchsaufbaus 6.1.1 Eingesetzte Testmaschine	.79 .79		
	6.2	Untersuchungsmethodik zur thermischen Charakterisierung	.84		
		6.2.1 Durchführung der Belastungsversuche	.84		
		6.2.2 Auswertungsmethodik	.87		
	6.3 Ergebnisse der Charakterisierung				
		6.3.1 Betrachtung der Verlagerung einzelner Belastungsfälle	.88		
		6.3.2 Sensitivitätsanalyse der integrierten Sensoren	.97		
		6.3.3 Analyse und Auswahl geeigneter Messstellen für die Korrektur1	01		
		6.3.4 Korrekturpotenzial bei Nutzung von Verformungssensoren1	06		
	6.4	Bewertung des Informationsgehalts von Verformungsmessungen1	09		
7 Validierung der Korrekturmethode an einem Bearbeitungszentrum			11		
	7.1 7.2	Parametrierung des Gesamtmodells eines Bearbeitungszentrums1 Anwendung des Korrekturmodells1	i 11 I 14		
		7.2.1 Visualisierung der Maschinenstruktur durch das Modell1	14		
		7.2.2 Analyse der Validierungsergebnisse1	16		
	7 0	7.2.3 Variation der Sensorauswahl	122		
	7.3	Abschließende Schlussfolgerung und Bewertung der Ergebnisse	23		
8 Übertragbarkeit der Erkenntnisse auf weitere Anwendun		rtragbarkeit der Erkenntnisse auf weitere Anwendungen1	25		
	8.1	Fallstudie eines Horizontalbearbeitungszentrums1	25		
		8.1.1 Systembeschreibung des Horizontalbearbeitungszentrums1	25		
		8.1.2 Korrekturergebnisse thermische bedingter Positionierfehler1	27		
	8.2	Fallstudie einer Fahrständermaschine1	28		
9	Zusa	ammenfassung und Ausblick1	31		
10	Literaturverzeichnis				
11	Anh	ang1	45		
	11.1	Qualifizierung der Messmittel1	145		
	11.2 Filterentwicklung für Verformungsmessungen				

Formelzeichen und Abkürzungsverzeichnis

Formula Symbols and Abbreviations

Abkürzungen

Abkürzung	Bedeutung
CFK	Carbonfaserverstärkter Kunststoff
const	Konstant
DMS	Dehnungsmessstreifen
EA	Evolutionäre Algorithmen
ETVE	Environmental Temperature Variation Error
FBG	Faser-Bragg-Gitter
FEM	Finite Elemente Methode
FL	Fuzzy Logik
GS	Grey-Systems
HSSB	High Speed Serial Bus
IDS	Integrated Deformation Sensor - Maschinenintegrierter Verfor mungssensor
IDS	Integrale Deformationssensoren
KGT	Kugelgewindetriebe
KNN	Künstliche neuronale Netze
LASSO	Least Absolute Shrinking and Selection Operator
min.	Minimum
mm	Millimeter
Mrd.	Milliarden
MSE	Mean Squared Error
n.v.	Nicht vorhanden
nm	Nanometer
SVM	Support Vector Machines

Abkürzung	Bedeutung
TCP	Tool Center Point - Bezugspunkt des Werkzeugs
μm	Mikrometer

Griechische Buchstaben

Formelzei- chen	Einheit	Bezeichnung
∂∆ls/∂φs	µm/µrad	Partielles Differential nach Scherungswinkel
∂∆lt/∂φt	µm/µrad	Partielles Differential nach Torsionswinkel
∂fi/∂xi	-	Allgemeines partielles Differential
∂δ _x /∂∆l	-	Partielles Differential bezüglich der Längenänderung der Messstrecke
∂δ _y /∂∆l	-	Partielles Differential bezüglich der Verlagerung in Y- Richtung
α	µrad	Winkel zwischen zwei Seiten
α		Kreiswinkel
α _x	µrad	Gemessener Verkippungswinkel
δ	μm	Verlagerung, (vektordarstellung)
δι	µm/m	Relative Positionierfehler der einzelnen Achsen (Spindelsteigungsfehler)
δί	μm	Allgemeine thermisch bedingte Verlagerungen
δ _{NP}	μm	Nullpunktfehler (Verschiebung des Ursprungs der KGT oder der Positionsmesssysteme)
δ _p	μm	Lokale Verlagerung
δ _{stat}	μm	Statisch bedingte Verlagerung an einer Soll-Position (Vektordarstellung)
δτርΡ	μm	Gesamtverlagerung am TCP (Vektordarstellung)
δ _{therm}	μm	Thermisch bedingte Verlagerung an einer Soll-Position (Vektordarstellung)
δ _{ber}	μm	Berechnete Verlagerung
δ _{gem}	μm	Gemessene Verlagerung

Formelzei- chen	Einheit	Bezeichnung
δ_{kal}	μm	Verlagerungen im Koordinatensystem des Messkopfes
δ _{m,i}	μm	Verlagerung an Stelle m auf Achse i
δ _{max}	μm	Maximale Verlagerung
δ _{min}	μm	Minimale Verlagerung
δ _{n,i}	μm	Verlagerung an Stelle n auf Achse i
δ _{NP,max}	μm	maximaler Nullpunktfehler
δ _{rest}	μm	erreichter Restfehler der Verlagrung
$\delta_{rest,arithm}$	μm	arithmetisches Mittel der korrigierten Verlagerung
δ _{rest,x}	μm	Restverlagerung in X-Richtung
δ _{rest,y}	μm	Restverlagerung in Y-Richtung
δ _{rest,z}	μm	Restverlagerung in Z-Richtung
δrmse	μm	Root Mean Square Error (RMSE)
δ _{stat}	μm	Statisch bedingte Verlagerung an einer Soll-Position
δ _{therm}	μm	Thermisch bedingte Verlagerung an einer Soll-Position
δ _u	μm	Gemessene oder unkorrigierte Verlagerung
$\delta_{u,arithm}$	μm	Arithmetisches Mittel der unkorrigierten Verlagerung
δ _x	μm	Verlagerung in X-Richtung
δ _y	μm	Verlagerung in Y-Richtung
δ _{y,i}	μm	Verlagerung in Y-Richtung an der Position i
δ _{y,Modell}	μm	Verlagerung aus dem Modell in Y-Richtung
δ _{y,TCP}	μm	TCP Verlagerung in Y-Richtung
δz	μm	Verlagerung in Z-Richtung
3	μm	Dehnung
3	μm	Restfehler (Vektordarstellung)
٤x	μm	Restfehler in X-Richtung

Formelzei- chen	Einheit	Bezeichnung
ε _y	μm	Restfehler in Y-Richtung
٤z	μm	Restfehler in Z-Richtung
λ	-	Komplexitätsparameter
μ	μm	Mittelwert
σ	μm	Standardabweichung
σrest	μm	Standardabweichung der korrigierten Verlagerung
σu	μm	Standardabweichung der unkorrigierten Verlagerung
σx	μm	Standardabweichung in X-Richtung
σ _y	μm	Standardabweichung in Y-Richtung
σz	μm	Standardabweichung in Z-Richtung
фs	mrad	Scherungswinkel
φt	mrad	Torsionswinkel
Ψ	µm/m	Parallelitätsfehler bezüglich zweiter Messstrecke

Kleinbuchstaben

Formelzei- chen	Einheit	Bezeichnung
Δl	μm	Längenänderung
ΔI_{S}	mm	Längenänderung durch Scherung
ΔI_t	mm	Längenänderung durch Torsion
Δр	μm	Messfehler einer Messstrecke
Δx_n	-	Allgemeine Differenz von Funktionswerten
a i,j	-	Einträge der Koeffizientenmatrix Ap
a i,x	-	Eintrag der Transformationsmatrix (X-Richtung)
ai,y	-	Eintrag der Transformationsmatrix (Y-Richtung)
ai,z	-	Eintrag der Transformationsmatrix (Z-Richtung)

Formelzei- chen	Einheit	Bezeichnung
aj	-	Eingangs- oder Ausgangswert eines künstlichen Neurons
b	-	Beobachtungswerte
b _{i,j}	-	Einträge der Koeffizientenmatrix Bp
d	mm	Abstand Messstrecken
d	mm	Abstand
di	mm	Kantenlänge des Dreiecks
di	µm/m	Verzerrung je Achsrichtung i
d _{max}	µm/m	maximale Verzerrung
ej	-	Gewichteter Eingangswert eines künstlichen Neu- rons
f	-	Allgemeine Aktivierungsfunktion eines künstlichen Neurons
f(t)	-	Funktion von Zeit t
f(x _{soll} , y _{soll} , z _{soll})	-	örtlich und zeitlich abhängige Funktion
gi,j	-	Gewicht eines künstlichen Neurons
k	-	Skalierungsfaktor eines künstlichen Neurons
I	mm	Längen
lo	-	Ausgangslänge, allgemeine Länge in unverformten Zustand
lo	mm	Ausgangslänge des Quaders
leff	mm	Effektive Länge
li	mm	Soll-Abstand der Referenzkugeln im Arbeitsaum in Achsrichtung i
li,0	mm	Länge im umverformten Zustand
lz	mm	Länge in Z-Richtung
m	-	Anzahl der Beobachtungen des Trainingsdatensat- zes
m	-	Anzahl der Hilfsgrößen