ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Emely Marie Harnisch

Two-Photon Polymerization on Metal Surfaces for Structuring Moulding Tools

Two-Photon Polymerization on Metal Surfaces for Structuring Moulding Tools

Zwei-Photonen-Polymerisation auf metallischen Oberflächen zur Strukturierung von Formeinsätzen

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Emely Marie Harnisch

Berichter:

Univ.-Prof. Dr.-Ing. Robert Heinrich Schmitt Univ.-Prof. Dr. rer. nat. Marcel Liauw

Tag der mündlichen Prüfung: 16. Mai 2019

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Emely Marie Harnisch

Two-Photon Polymerization on Metal Surfaces for Structuring Moulding Tools

Herausgeber: Prof. Dr.-Ing. T. Bergs Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 27/2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Emely Marie Harnisch:

Two-Photon Polymerization on Metal Surfaces for Structuring Moulding Tools

1. Auflage, 2019

Apprimus Verlag, Aachen, 2019 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-766-5

D 82 (Diss. RWTH Aachen University, 2019)

Für Eveline, Markus sowie Edelgard & Paul

"One child, one teacher, one book and one pen can change the world" - Malala Yousafzai

Vorwort

Diese Dissertation entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Fraunhofer-Institut für Produktionstechnologie IPT in der Abteilung Produktionsmesstechnik. An dieser Stelle möchte ich einigen Personen danken, die es mir ermöglichten, diese Arbeit anzufertigen und die mich bei diesem Vorhaben unterstützten.

An erster Stelle gilt mein Dank Herrn Univ.-Prof. Dr.-Ing. Robert Schmitt, der mir mit meiner Einstellung am Fraunhofer IPT nicht nur die Möglichkeit der Promotion, sondern auch zahlreiche weitere Möglichkeiten zur beruflichen und persönlichen Entwicklung eröffnete. Für sein Vertrauen in meine Arbeit am Institut und in diese Dissertation danke ich ihm ganz herzlich. Auch Herrn Univ-Prof. Dr. rer. nat. Marcel Liauw, der als Zweitprüfer mein Promotionsvorhaben begleitete, danke ich für die Zeit, die er sich hierfür nahm sowie äußerst wertvolle Korrekturen. Herrn Univ.-Prof. Dr. rer. nat. Reinhart Poprawe danke ich für die Übernahme des Vorsitzes der Promotionskommission und ebenfalls für die aufgewendete Zeit.

Meinem Abteilungsleiter am Fraunhofer IPT Niels König gilt mein großer Dank für aufwendige Korrekturen und äußerst hilfreiche Anmerkungen, die die Qualität dieses Schriftstücks deutlich verbesserten. Auch für sein Vertrauen in meine Arbeit und stete Unterstützung bei verschiedensten Vorhaben danke ich ihm ganz herzlich.

Einigen Studierenden, die im Rahmen ihrer Tätigkeiten als studentische MitarbeiterInnen oder AbschlussarbeiterInnen dieses Vorhaben durch ihre hervorragenden Fähigkeiten und ihren Fleiß unterstützten, gilt mein ganz besonderer Dank. Dies sind namentlich und chronologisch: Heiner Gerdes, Tommy Venek, Leonid Kiryanov, Natalia Grozmani, Daniel Kuhlen und Svenja Nohr. Meiner Kollegin Martina Vizcay Rodriguez aus der Metallographie danke ich sehr herzlich für die zahlreichen REM-Aufnahmen. Nicolai Brill gilt mein Dank für sinnvolle Anmerkungen zu Kapitel 4.

Meinen Kolleginnen und Kollegen aus dem Bereich 300 am Fraunhofer IPT danke ich für das besonders angenehme Arbeitsklima, stete Kollegialität und unzählige amüsante Momente, die den Arbeitsalltag bunt machen. Vor allem meiner wunderbaren Bürokollegin Angela Massonet möchte ich für unsere Freundschaft danken.

Neben dem Arbeitsumfeld haben mich in den vergangenen Jahren meine Familie und meine Freundinnen ebenfalls bei diesem Unterfangen begleitet, wofür ich auch ihnen äußerst dankbar bin. An dieser Stelle möchte ich vor allem meiner lieben Freundin Johanna Renn danken, die diesen langen und fachfremden Text vollständig Korrektur gelesen und damit einen hilfreichen Beitrag geleistet hat. Außerdem danke ich ihr sowie meinen Freundinnen Dr. med. Maria Isabel Schmidgen, Judith Weiler, Saskia Paul, Mareike Püster und Helen Kolb für ihren Besuch meines Promotionsvortrags, die damit verbundene weite Anreise und den entbehrten Urlaubstag.

Meinem Freund Dr.-Ing. Markus Große Böckmann danke ich von Herzen für seinen Beistand in den vergangenen sieben Jahren, ebenfalls für die Korrektur dieser Dissertation und für unser wunderschönes gemeinsames Leben.

Schließlich gilt mein großer Dank meiner Mutter Eveline Harnisch, die immer das Beste für mich im Sinn hat und mich seit Beginn meines Lebens stets unterstützt und fördert. Ihr verdanke ich alles was ich bin.

Summary

Given the fact of the increasing meaning of individual and functional micro- or nanostructures, it is of high interest to open up two-photon polymerization (TPP) as a structuring technology for production. TPP offers real 3D capability while providing a line width beyond the diffraction limit, so arbitrary geometries with e.g. optical, photonic or biological functionalities can be realized. The disadvantage about this technology is its relative small throughput when comparing it with established process chains in production, so the aim is to open up TPP as a mastering technology for metal substrates that serve as tools for injection moulding.

Within this thesis, the main research question, if TPP is suitable for the structuring of metal tools for injection moulding, is addressed. To control the process and allow for a prediction of the voxel shape on metal surfaces, a comprehensive model is implemented in Matlab considering the temperature development in the metal surface during TPP, the polymerization process in the photosensitive hybrid polymer OrmoComp[®] as well as the final intensity distribution resulting in a stationary wave due to the superposition of incident and reflected laser beams. OrmoComp[®] is regarded here, since it is a so called hybrid polymer, containing SiO_2 -groups, that cause the polymerized material to be more resistant against the harsh conditions during injection moulding like high pressures and temperatures.

By discretizing the heat conduction equation, the temperatures in three different materials, that are established as substrates for injection moulding, are calculated during TPP. To gain exact information about the polymerization process, the reaction equations for OrmoComp[®] are set up, while the corresponding transition states are simulated in Mopac to calculate the reaction constants. Using the model developed by Nitin Uppal and the reaction constants, the temperature, the monomer concentration, radical concentration, inhibitor concentration and photo initiator concentration are calculated via five coupled differential equations. By deriving the monomer conversion, the final voxel size can be predicted with this model, allowing for a comparison between the voxel size with regard to intensity distribution and the voxel size caused by polymerization. Within a third model, the final intensity distribution during TPP on metal surfaces is calculated by superposing the incident and reflected focussed laser beam. By using a threshold value in dependence on the results of the polymerization calculation, the extent of the polymerized area is computed.

To verify the results of the model, ascending scans consisting of simple lines on the three substrate materials, each with three different surface roughnesses were performed. A comparison of the line's cross sections from the experiments and the calculated voxel shape shows good agreement, also when considering variations of the parameters like the exposure dose. Thus, a model was implemented, that allows for the prediction of the resulting voxel shape during TPP on metal surfaces. Finally, simple geometries like cubes and semispheres were written on steel and casted with injection moulding for a validation.

Zusammenfassung

Vor dem Hintergrund der zunehmenden Bedeutung individueller und funktionaler Mikro- und Nanostrukturen ist es von großem Interesse, das Verfahren der Zwei-Photonen-Polymerisation (ZPP) für die Produktion zu erschließen. Die ZPP erlaubt volle 3D-Fähigkeit bei gleichzeitiger Linienbreite unterhalb des Beugungslimits, so dass beliebige Geometrien mit bspw. optischer, photonischer oder biologischer Funktionalität realisierbar sind. Im Vergleich zu etablierten Prozessketten ist der Durchsatz der ZPP gering, so dass das Ziel am Fraunhofer-Institut für Produktionstechnologie IPT darin besteht, das Verfahren als Masteringtechnologie für metallische Substrate zu erschließen, welche dann als strukturierte Formeinsätze im Spritzguss verwendet werden.

Im Rahmen dieser Arbeit wird die Hauptforschungsfrage, ob die ZPP zur Strukturierung von metallischen Werkzeugen für den Spritzguss geeignet ist, adressiert. Um den Prozess zu beherrschen und die Voxelausprägung auf Metall vorherzusagen, wird ein umfangreiches Model in Matlab implementiert. Dieses berücksichtigt die Temperaturentwicklung während der ZPP im Substrat, den Polymerisationsprozess in dem photosensitiven Hybridpolymer OrmoComp[®] sowie die resultierende Intensitätsverteilung, die aufgrund der Überlagerung von einfallendem und reflektiertem Laserstrahl einer stehenden Welle entspricht. Als Photopolymer wurde das Hybridmaterial OrmoComp[®] ausgewählt, da es aufgrund der enthaltenen SiO_2 -Gruppen im polymerisierten Zustand eine ausreichende Stabilität gegenüber hohen Temperaturen und Drücken aufweist.

Die Berechnung der Temperatur im Substrat während der ZPP erfolgt durch die Diskretisierung der Wärmeleitungsgleichung, wobei drei Substratmaterialien angenommen wurden, die im Spritzguss etabliert sind. Um den Polymerisationsprozess zu simulieren, wurden die Reaktionsgleichungen von OrmoComp[®] aufgestellt und die jeweiligen Übergangszustände im Mopac ermittelt, was die Berechnung der Reaktionskonstanten erlaubt. Mittels dieser berechneten Reaktionskonstanten und des Modells von Nitin Uppal, ist eine Darstellung der Temperatur sowie der Konzentrationen der Polymerbestandteile möglich, was eine Aussage über die Voxelgröße erlaubt. Der dritte Teil des Modells betrachtet die Intensitätsverteilung während der ZPP auf metallischen Oberflächen durch Überlagerung des einfallenden und reflektierten fokussierten Laserstrahls. Das Ausmaß der Polymerisation wird durch einen Schwellwert berücksichtigt, was schließlich die Darstellung der finalen Voxelform ermöglicht.

Zur Verifizierung der Simulationsergebnisse wurde zudem ein ascending scan aus einfachen Linien auf den drei betrachteten Substratmaterialien, je mit drei verschiedenen Rauheiten, durchgeführt. Dabei zeigen die experimentellen Linienquerschnitte und die berechneten Voxel auch unter Berücksichtigung verschiedener Parametervariationen eine gute Übereinstimmung. Die Entformbarkeit einfacher, auf Stahl hergestellter Geometrien mittels Spritzguss wird in einer Validierung bewiesen.

Contents

No	omen	clature		V
Lis	st of	Figures	5	хі
Lis	st of	Tables		ххі
1	Rele meri 1.1 1.2	vance ization Backg Struct	of structuring metal mouldings tools with two-photon poly- round and context of the research approach	1 4 6
2	 Phys 2.1 2.2 2.3 2.4 	sical Pr Single Optica 2.2.1 2.2.2 2.2.3 2.2.4 Optics 2.3.1 2.3.2 Chemi 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	rinciples Beam Two-Photon Absorption Il Fundamentals Wave Equation Gaussian Beam Superposition of waves Pulsed Laser of Metals Fresnels' formulas Heat conduction ical fundamentals Quantum Chemistry Computational Chemistry Basics of thermodynamics Reaction Kinetics Potential Energy Surfaces	9 10 11 12 13 14 16 17 18 20 22 23 25 28 31 33
3	Moc 3.1 3.2 3.3	lels for Appro 3.1.1 3.1.2 TPP c 3.2.1 3.2.2 Summ	TPP on metal surfaces and high throughput approaches aches to a high throughput TPP Beam shaping methods Moulding techniques on metal surfaces and related calculation approaches TPP on metal and opaque surfaces Related calculation approaches ary	37 37 38 39 41 41 45 52
	3.4	Conclu	usion to the state of the art	53

4	Con	cept to examine TPP on metal surfaces	55
	4.1	Extent of heat generation in the metal substrate during TPP	56
		4.1.1 Discretization of the Heat Conduction Equation (HCE)	56
		4.1.2 Implementation of the model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	59
	4.2	Chemical reactions in $OrmoComp^{\ensuremath{\mathbb{B}}}$ during exposure	62
		4.2.1 Setting up of the chemical reactions	63
		4.2.2 Geometry optimization and path calculation	70
		4.2.3 Calculation of the reaction constants	85
		4.2.4 Model by Nitin Uppal	87
		4.2.5 Calculation of the voxel size and shape	91
	4.3	Voxel formation on metal surfaces	95
		4.3.1 Gaussian Beam	95
		4.3.2 Fresnel Formulas	96
		4.3.3 Superposition	98
		4.3.4 Wave Packets	100
		4.3.5 Implementation of the model	102
5	TPF	on metal surfaces - Validation of the model	105
	5.1	Selection of metrology	105
		5.1.1 Fabrication of structures	106
		5.1.2 Quantitative comparison of the metrology	107
	5.2	Application of the model	108
		5.2.1 Simulation of the temperature during TPP	108
		5.2.2 Simulation of the polymerization during TPP	113
		5.2.3 Simulation of the voxel shape during TPP	124
	5.3	Verification of the model	133
		5.3.1 Choice of materials \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	133
		5.3.2 Design of a parameter variation array	134
		5.3.3 Evaluation Scheme	137
		5.3.4 Results on aluminium	143
		5.3.5 Results on brass \ldots	148
		5.3.6 Results on steel	153
		5.3.7 Results on glass	158
		5.3.8 Comparison of the materials	161
		5.3.9 Summary	165
	5.4	Comparison between calculated and real stationary waves	169
		5.4.1 Summary	175
	5.5	Injection moulding	176
		5.5.1 Summary	181
6	Sum	nmary and outlook	183
	6.1	Answering the research questions	183
	6.2	Further potentials and future work	186
Bi	bliog	raphy	189

7	List	of publications	205
o	Lnnu	t of student theses	207
0	mpu	t of student theses	201
Ap	pend	vendix	
	A.1	Additional inhibitor plots	209
	A.2	Nonlinear Polarization and Two-Photon Absorption	211
		A.2.1 Nonlinear Susceptibility	211
		A.2.2 Nonlinear Susceptibility of a classical anharmonic oscillator $\ref{eq:alpha}$	215
		A.2.3 Nonlinear Susceptibility in Quantum Mechanics	218
		A.2.4 Perturbation Theory and Density Matrix Formalism	219
		A.2.5 Third-order nonlinear Susceptibility	223
		A.2.6 Single Beam Two-Photon Absorption	226
	A.3	Intermediate steps for the calculation of the voxel shape in chapter 4.3	227
		A.3.1 Intermediate steps Gaussian beam	227
		A.3.2 Intermediate steps Fresnel formulas	230
		A.3.3 Intermediate steps superposition of waves	231
		A.3.4 Intermediate steps wave packets	234
	A.4	Intermediate steps for the calculation of the substrate temperature, ch.	
		4.1	236
	A.5	Intermediate steps for the calculation of the polymerization in chapters	
		4.2.4 and 4.2.5	238
	A.6	Influence of the complex magnetic permeability	240
	A.7	Cut-outs of a .mno file	241

Nomenclature

Abbreviations

μTM	Microtransfer moulding
2PII	Two-color photo-initiation/inhibition
AFM	Atomic force microscope
AG	Aktiengesellschaft
AM 1	Austin model 1
ВНТ	2,6-Di-tert-butyl-4-methylphenol
BMBF	Bundesministerium für Bildung und Forschung
CGH	Computer generated hologram
СМ	Confocal microscope
CML	Chemical markup language
CNDO	Complete neglect of differential overlap
COSMO	conductor-like screening model
CPU	Central processing unit
DEQ	Differential equation
DFT	Density Functional Theory
DL-SPPW	Dielectric loaded surface-plasmon-polariton waveguides
DMD	Digital multimirror device
DOE	Diffractive optical element
FDM	Finite difference method
FDTD	Finite difference time domain
FI	Find interface
FIB	Focussed ion beam
FORTH	Foundation for Research and Technology
FOV	Field of view
FT	Fourier transformation
FTCS	Forward-time centered-space
FVM	Finite volume method
FWHM	Full width at half maximum
GGA	Generalized gradient approximation

GmbH	Gesellschaft mit beschränkter Haftung
GT	Galvoscanner Technology
GTO	Gaussian-type orbitals
нсе	Heat conduction equation
HF	Hartree Fock
НМО	Hückel molecular orbital
HoF	Heat of formation
IPT	Institute for Production Technology
IRG	2-benzyl-2-dimethylamino-1-(4-morpholiniphenyl)-butanone-1s
KMU	Kleine und mittelständische Unternehmen
LCAO	Linear combination of atomic orbitals
LDA	Local density approximation
LED	Light Emitting Diode
LIFT	Laser-induced forward transfer
$MA - \mu TM \dots$	Membrane assisted microtransfer moulding
MEMS	Microelectromechanical systems
MNDO	Modified neglect of differential overlap
МО	Molecular orbital
MOEMS	microoptoelectromechanical systems
MRT	micro resist technology GmbH
MSDS	Material safety data sheet
NA	Numerical aperture
NDDO	Neglect of diatomic differential overlap
NDO	Neglect of differential overlap
NIL	Nano imprint lithography
NMM	Nano measuring machine
OLED	Organic Light Emitting Diode
OPA	One-photon absorption
PDMS	Polydimethyl siloxane
PES	Potential energy surface
PETPP	Plasmonic resonance enhanced two-photon polymerization
PM	Parameterized model
PMMA	Polymethylmetacrylate
PSF	Point spread function
RAPID	Resolution augmentation through photo-induced deactivation
RHF	Restricted Hartree Fock
SEM	Scanning electron microscope
SFB	Sonderforschungsbereich
SLM	Spatial light modulator

SME	Small and medium enterprises
SPECTARIS	Verband der Hightech-Industrie
SPP	Surface plasmon polaritons
STED	Stimulated-emission-depletion
STO	Slater-type orbitals
TE	Transverse electric
тн	Threshold
THIO	thioxanthen-9-one
$\mathrm{TM}\ \ldots\ldots\ldots$	Transverse magnetic
TPA	Two-photon absorption
TPL	Two-photon lithography
тро	$\label{eq:Diphenyl} Diphenyl (2,4,6-trimethy benzoyl) phosphinoxid$
TPP	Two-photon polymerization
TR	Transregio
$\mathrm{TS}\ \ldots\ldots\ldots$	Transition state
UFF	Universal force field
$\mathrm{UG}\ \ldots\ldots\ldots$	Unternehmergesellschaft
$\mathrm{UHF}\ \ldots\ldots\ldots$	Unrestricted Hartree Fock
UV	Ultra violet
VDMA	Verband Deutscher Maschinen- und Anlagenbau
WLI	White light interferometry
ZDO	Zero differential overlap
ZPE	Zero-point energy
ZVEI	$\label{eq:control} \ensuremath{\operatorname{Zentralverband}}\xspace \ensuremath{\operatorname{Elektrotechnik-}}\xspace und \ensuremath{\operatorname{Elektronikindustrie}}\xspace$

Symbols

Å	Angstrom
α	Molar absorption coefficient
<i>g</i>	Gradient matrix, 2.4.5
H	Hessian matrix, 2.4.5
χ_i	Atomic orbitals
δ	Phase shift
δ	TPA cross section of photoinitiator, $4.2.4$
$\Delta_{\neq} G_m^{\circ} \dots \dots$	Gibbs energy of activation
$\Delta_{\neq} H_m^\circ \dots$	Enthalpy of activation
$\Delta_{\neq} S_m^{\circ} \dots \dots$	Entropy of activation
\dot{Q}	Heat flux
ϵ_a	Orbital energies

ϵ_i	Energy state in Boltzmann distribution
ϵ_r	Relative dielectric constant
\hat{H}	Hamiltonian operator
\hat{n}	Complex refractive index
<i>ħ</i>	$\hbar = \frac{h}{2\pi}$
κ	Attenuation, 2.2
κ	Temperature conductivity, 2.3.2
κ	Transmission coefficient of the transition state, $2.4.4$
λ	Thermal conductivity, 4.1
[M]	Concentration of monomer
[P]	Concentration of photoinitiator
[R]	Concentration of radical
$[Z] \ldots \ldots \ldots$	Concentration of inhibitor
$\langle v_{rel} \rangle$	Medium relative velocity
μ	Magnetic permeability in matter
μ	Reduced mass of molecules, 2.4.4
μ_0	Magnetic permeability in vacuum
μ_r	Relative magnetic permeability
Φ	Photon flux
ψ	Wave function
ρ	Mass density
σ_2	TPA cross section
σ_{AB}	Collision cross section
Β	Magnetic flux density
Н	Magnetic field strength
q	Heat flux density
S	Poynting vector
θ_j	Basis functions
φ	Phase
\vec{E}	Electric field strength, 4.3
\vec{H}	Magnetic field strength, 4.3
\vec{S}	Poynting vector, 4.3
<i>A</i>	Helmholtz energy, 2.4.3
<i>A</i>	Preexponential factor
<i>A</i>	Surface, 4.1
C	Heat capacity
<i>c</i>	Molar concentration, 2.4.4
<i>c</i>	Specific heat capacity, 2.3.2
c°	Standard concentration

<i>c</i> _{<i>p</i>}	Specific heat capacity
<i>c</i> ₀	Speed of light in vacuum
<i>d</i>	Diameter of a molecule, 2.4.4
<i>d</i>	Molecular diffusion, 4.2.4
<i>E</i>	Energy
<i>e</i>	Charge of an electron
E_a	Activation energy, 2.4.3
E_{SCF}	Standard enthalpy of formation at 298 K
F	Farad, A.2.1
f	Frequency
f_1	Fock operator
G	Gibbs energy
$H \ \ldots \ldots \ldots$	Enthalpy
h	Planck's constant
H_m^{Θ}	Standard enthalpy
h_1	Core hamiltonian
H_f	Standard enthalpy of formation, 4.2.3
H_T	Correction of enthalpy due to temperature change
$J \ \ldots \ldots \ldots$	Coulomb operator
K	Exchange operator, 2.4.2
K	Heat conductivity, 2.3.2
<i>k</i>	Rate constant of a chemical reaction
k^{\neq}	Rate constant for the decay of the activated complex into products
k_B	Boltzmann constant
K_c^{\neq}	Equilibrium constant for the equilibrium between the reactants and the transition state
k_p	Reaction constant propagation
k_t	Reaction constant termination
k_Z	Reaction constant inhibition
<i>m</i>	Mass
<i>m</i>	Meter, A.2.1
$N \ \dots \dots \dots \dots$	Total number of molecules
<i>n</i>	Real part of complex refractive index
N_A	Avogadro constant
n_i	Number of molecules in energy state ϵ_i
P	Laser power
P	Steric factor for calculations concerning reaction kinetics
<i>p</i>	Pressure
$P_{e,i}$	Peclet number, 4.1
<i>q</i>	Heat

Q_L	Heat source
R	Gas constant
<i>r</i>	Complex reflection coefficient
<i>r</i>	Radius
R(z)	Radius of curvature of wave fronts
S	Entropy
S	Overlap integral
T	Period of time
T	Temperature
t	Complex transmission coefficient
$U \ \ldots \ldots \ldots$	Internal energy
$V \ \ldots \ldots \ldots$	Potential energy
$V \ \ldots \ldots \ldots$	Visibility, 2.2.3
V	Volume
<i>v</i>	Velocity
<i>w</i>	Work
w(z)	Beam radius depending on z
w_0	Beam waist
<i>Z</i>	Number of collisions per time and volume element
z'	Partition function
q_0	Target geometry
q_i	Initial geometry
<i>z</i> _{<i>R</i>}	Rayleigh length

List of Figures

1.1	The SEM-pictures show the difference in structure quality depending on the substrate material: a) Pyramid on a glass substrate, b) pyramid on a metal substrate [1].	5
2.1	Relevant areas that are addressed in the physical model for calculating the voxel size, comprising the substrate temperature, the polymeriza- tion reactions and the intensity distribution.	9
2.2	a) Difference between a Gaussian distribution and a squared Gaussian	
<u></u>	distribution, b) energy level diagram for TPA	11
2.3 2.4	Rectration energy for an exothermic reaction, reproduced from [2, p.805]. Geometry optimization of a reactant or product. The input structure R' or P' calculated until the energy has reached a minimum and the real structure R or P is found. The same procedure can be used to find the transition state. Reproduced from [3, p.26].	34
3.1	a) Set up for the calculation of the stationary wave in the polymer layer, reproduced from [4, p.653], b) Set up for gaining interference in the approach of Kanda energy and from $[5, p, 554]$	47
3.2	Ishikawa diagram, showing the influencing factors for the calculation of the voxel shape.	47 54
4.1	The requirements for calculating the voxel shape, derived from the state of the art in chapter 3 and displayed in the Ishikawa diagram in figure 3.2 (left), define the concept of this thesis (right).	55
4.2	Arrangement of control units for the discretization of the HCE [1]	57
4.3	Example for $2 \ge 2 \ge 2$ control volumes V_{ijk} and its numeration	60
4.4 4.5	Program set-up for the calculation of the temperature	61
46	OrmoComp [®] oligomer	-03 -63
4.7	Splitting of the TPO molecule into the benzoylic and the phosphinoylic radical by exposure.	64
4.8	Initiation by bencoylic radical: a) Tail addition of the radical, b) head addition of the radical.	64
4.9	Initiation by phosphinoylic radical: a) Tail addition of the radical, b) head addition of the radical	65

4.10	Propagation reactions head-to-tail. R is a shortcut for the initiator rad- ical, that hinded to the oligomer and can be replaced by the bencovic	
	or the phosphinovlic radical a) After the tail addition of the radical	
	the head has an unbound electron b) after the head addition of the	
	radical the tail has an unbound electron	66
1 11	Tree of possible reactions during polymerization. Two different radicals	00
1.11	$R_{\rm c}$ and $R_{\rm c}$ occur during exposure of the photoinitiator. In dependence	
	on where the radicals hind to an oligomer, the propagation and ter-	
	minipation are influenced. Inhibition takes place at each step but the	
	termination where radicals of and at different addition stages recom	
	bing. The branch with the highest probability to occur is marked with	
	rod arrows and applies to $R_{\rm c}$	66
4 19	Termination by radical	67
4.12	Inhibition of the photoinitiator radicals by PHT	70
4.13	Variation of the bond length to find the transitions state at the example	10
4.14	for the tail initiation with a honeovile eligemer: a) Variation of the bond	
	length of a product (with bond) b) variation of the distance between	
	the reactants (with bond)	79
1 15	Calculation of the HoF with different configurations of the reactants to	14
4.10	display the whole reaction path at the example of the tail initiation with	
	a bencovlic radical: a) Beactants in different cml-files corresponding to	
	an infinite distance b) reactants together in one cml-file with a large	
	distance in the order of the molecule size c) reactants together in one	
	cml-file with a small distance in the order of a view bond lengths c)	
	ontimized product	74
4 16	Beaction paths for a) initiation 1 and b) initiation 2	76
4 17	Reaction paths for a) initiation 3 and b) initiation 4	76
4 18	Reaction paths for a) propagation 1 and b) propagation 2. The name	10
1.10	"Prop a)" and "Prop b)" refer to figure 4.10	78
4 19	Reaction paths for a) propagation 3 and b) propagation 4. The name	
1110	"Prop a)" and "Prop b)" refer to figure 4.10	79
4.20	Reaction paths for a) termination 1 and b) termination 2	80
4.21	Reaction paths for a) termination 3 and b) termination 4.	81
4.22	Head-to-tail termination reaction from table 4.6 (educts). The inset	
	shows, where the reaction takes place and a bond between the tail and	
	the head will be formed, since both C atoms are only 3-binding in the	
	educts. The whole molecule consists of 780 atoms in total.	82
4.23	Inhibition, displayed in Avogadro, a) BHT with benzovlic radical, b)	
	BHT and phosphinovlic radical.	83
4.24	Reaction paths for inhibition, a) BHT with benzovlic radica, b) BHT	
	with phosphinovlic radical.	84
4.25	Resulting force constants from thermo calculation in Mopac. The hy-	
	drogen atom with number 9, being splitted off BHT during inhibition.	
	has a negative force constant.	85
4.26	FTCS grid following Uppal [6, p.56].	91
4.27	Set up of the Matlab program for the calculation of the polymerization.	94

4.28	Program set up for the calculation of the intensity distribution of the stationary wave	103
5.1	Choice of structures written with TPP for the GageR&R analysis. a) prism stumps with side lengths of 5 μ m to 20 μ m, b) to e) quarter semispheres with radii of 20, 10, 5 an 2.5 μ , f)-i) Siemens stars with different engender distances i) and b) line gride [7]	106
5.2	Temperature distribution a) lateral and b) in z-direction for brass at 40 mW and 100 $\mu m/s$, c) and d) display the corresponding cross sections.	100
5.3	Resulting maximum temperatures for a) aluminium and brass and b) steel, each for varying laser powers at 100 $\mu m/s$ and for steel also at	
5.4	1000 $\mu m/s$ [1]	110
5.5	Temperature at a depth of 1 μm in the substrate beyond the centre point of the focus for all materials while varying the laserpower	110
5.6	a) Temperature in steel in dependence on the distance from the focus centre for different grid setting, b) Temperature in aluminium in de-	
5.7	pendence on the distance from the focus centre for different grid setting. a) Temperature in brass in dependence on the distance from the focus centre for different grid setting, b) Difference between the sum of the temperatures of all materials to the analytic solution for different grid	112
5.8	settings at the inner- and outermost position	112
5.9	refer to the results from chapter 5.2.1, figure 5.3	115
F 10	eral voxel radius of the simulation with the experimental results, a) 298 K on glass, b) 390 K on aluminium.	115
5.10	Comparison of the radial and axial voxel radius in dependence on the initial temperature, using the corresponding reaction constants for a) the transition state theory from chapter 4.2.3, table 4.21 and b) the	
5.11	collision theory from chapter 4.2.3, table 4.22	116
5.12	concentration of the photoinitiator, the radicals and the inhibitor, b) Final temperature and time to 20% monomer conversion	117
5.13	final temperature and time to 20% monomer conversion, both in depen- dence on the laser power for the transition state theory at 298 K, using the corresponding reaction constants from chapter 4.2.3, table 4.21 Variation of the laser power for the transition state theory at 298 K.	118
	a) final concentration of inhibitor and photo initiator and b) axial and radical voxel radii.	118

5.14	Variation of the reaction constant combination corresponding to table 5.5 for the transitions state theory at 298 K a) inhibitor and radical	
	concetration b) axial and radial vovel radii	120
5 15	a) Final monomer concentration and final monomer conversion and b)	120
0.10	final temperature and time to 20% monomer conversion, both in depen-	
	donce on the reaction constant combination in table 5.5 for the transi	
	tion gtate theory at 208 K	191
5 16	Temporal development of the monomer conversion at a) 208 K and b)	121
0.10	400 K as well as the temporal development of the temporature in the	
	400 K as well as the temporal development of the temperature in the focus contro for a) 208 K and b) 400 K	191
5 17	Time dependence of the prosting constants for properties a) 208 K	121
0.1 <i>1</i>	h) 400 K and for inhibition a) 208 K d) 400 K	100
F 10	b) 400 K and for inhibition, c) 298 K, d) 400 K	122
0.18	Time dependence of the diffusion factor for a) 298 K and b) 400 K and (110 J^2)	100
F 10	Time dependence of the radical concentration for c) 298 K and d) 400 K	123
5.19	Time dependence of the photo initiator concentration at a) 298 K and b) 400 K as well as af the initiative concentration for a) 208 K and d)	
	b) 400 K as well as of the inhibitor concentration for c) 298 K and d) $400 K$	104
r 00	400 K	124
5.20	Line neight in dependence on the polymerization threshold value for a	
	focus radius of 300 nm, a) threshold value 0.02 to 0.1 and b) threshold	100
F 01		120
5.21	Medium line width in dependence on the polymerization threshold value	
	for a focus radius of 500 nm, a) threshold value 0.02 to 0.1 and b) threshold value 0.02 to 1.1	196
r 99	Maline manipulation being the second se	120
5.22	Medium maximum neight in dependence on the polymerization thresh-	
	old value for a focus radius of 300 nm, a) threshold value 0.02 to 0.1	107
r 99	Number of receiver in dependence on the relevant three bld	12(
0.20	while for a facua radius of 260 pm a) threshold value 0.02 to 0.1 and	
	b) threshold value 0.2 to 1	197
F 94	b) threshold value 0.2 to 1	121
0.24	Stationary waves for a focus radius of 500 him at varying z-distances	
	and threshold mints. Green areas correspond to polymerized material,	
	bution during the axial drive through a) g drive through distance 1	
	button during the axial drive through a_j z-drive through distance 1 μm through distance 1 μm through distance 1	
	μm , the should value 0.02 b) z-drive through distance 1 μm , the should value 1 d) z	
	value 0.1, c) z-urive through distance 1 μm , threshold value 1, d) z- drive through distance 0 μm threshold value 0.02 a) z drive through	
	distance 0 μm , theshold value 0.1 f) z drive through distance 0 μm	
	threshold value 1.	199
5 95	Line height in dependence on the polymerization threshold value for a	120
0.20	Line height in dependence on the polymerization threshold value for a focus radius of 180 nm, a) 0.02 to 0.1 and b) 0.2 to 1	190
5 26	Line width in dependence on the polymerization threshold value for a	129
0.20	the width in dependence on the polymerization threshold value for a focus radius of 180 nm, a) 0.02 to 0.1 and b) 0.2 to 1	130
5 97	Madium maximum height in dependence on the polymorization thresh	100
0.21	old value for a focus radius of 180 nm a) 0.02 to 0.1 and b) 0.2 to	
	1	130
	1	100