

Schriften der Albrecht Mendelssohn Bartholdy Graduate School of Law

Xenofon Kontargyris

IT Laws in the Era of Cloud Computing

A Comparative Analysis between EU and US Law on the Case Study of Data Protection and Privacy

Albrecht Mendelssohn Bartholdy Graduate School of Law

Schriften der Albrecht Mendelssohn Bartholdy Graduate School of Law

edited by

Prof. Dr. Stefan Oeter, Lehrstuhl für Öffentliches Recht, Völkerrecht und ausländisches öffentliches Recht, Universität Hamburg

Prof. Dr. Tilman Repgen, Lehrstuhl für Deutsche Rechtsgeschichte, Privatrechtsgeschichte der Neuzeit und Bürgerliches Recht, Universität Hamburg

Prof. Dr. Hans-Heinrich Trute, Lehrstuhl für Öffentliches Recht, Medien- und Telekommunikationsrecht, Universität Hamburg

Band 6

Xenofon Kontargyris

IT Laws in the Era of Cloud Computing

A Comparative Analysis between EU and US Law on the Case Study of Data Protection and Privacy

Gefördert durch einen Druckkostenzuschuss der Albrecht Mendelssohn Bartholdy Graduate School of Law.

Funded by a print subsidy from Albrecht Mendelssohn Bartholdy Graduate School of Law.

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de

a.t.: Hamburg, Univ., Diss., 2018

Original title: "ICT LAWS IN THE ERA OF CLOUD COMPUTING – A comparative analysis between EU and US law on the case study of data protection and privacy"

ISBN 978-3-8487-5362-8 (Print) 978-3-8452-9562-6 (ePDF)

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN 978-3-8487-5362-8 (Print) 978-3-8452-9562-6 (ePDF)

Library of Congress Cataloging-in-Publication Data

Kontargyris, Xenofon IT Laws in the Era of Cloud Computing A Comparative Analysis between EU and US Law on the Case Study of Data Protection and Privacy Xenofon Kontargyris (ed.) 378 p. Includes bibliographic references and index.

ISBN 978-3-8487-5362-8 (Print) 978-3-8452-9562-6 (ePDF)

1st Edition 2018

© Nomos Verlagsgesellschaft, Baden-Baden, Germany 2018. Printed and bound in Germany.

This work is subject to copyright. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without prior permission in writing from the publishers. Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to "Verwertungsgesellschaft Wort", Munich.

No responsibility for loss caused to any individual or organization acting on or refraining from action as a result of the material in this publication can be accepted by Nomos or the author and editors.

To my parents, who have been my greatest supporters even at times that I did not believe so strongly in myself.

Στους γονείς μου, που πιστεύουν πάντα σε μένα ακόμα κι όταν ο ίδιος δεν πιστεύω τόσο δυνατά στον εαυτό μου.

To my brother, who made sure that over the past three years no emergency would distract me from my goal.

Στον αδερφό μου, που τα τρία αυτά χρόνια δεν επέτρεψε σε απρόοπτα να με αποσπάσουν από το στόχο μου.

Foreword

I do not consider myself a genius. Over the course of my studies I have had the good fortune to meet and collaborate with colleagues and teachers who have razor sharp minds for science; I certainly do not feel I am one of them. Therefore, I am not one of those researchers who had been confident that they would sit down and conduct a PhD since their first day at University. Nevertheless, I have been lucky enough to be inspired and encouraged in the course of my academic life by friends, colleagues and teachers who saw potential in me and made me believe that everything is possible with hard, systematic work. Through this note, I would like to express my heartfelt gratitude firstly to Prof. Trute for giving me the chance to undertake this particular project despite the interdisciplinary challenges it posed for a lawyer; to Prof. Schulz for being an excellent second supervisor helping me to maintain the dual approaches between law and IT and between EU and US law that the challenge I had set up for myself necessitated; to Prof. Papadopoulou from my alma mater, the Aristotle's University of Thessaloniki, for offering me as much help and support as possible in order to remain academically sharp while I was looking for a suitable opportunity to conduct a project as demanding as an interdisciplinary PhD; to my ex-colleagues at Apogee Information Systems, my first fulltime employer and at the Directorate General for Media at the European Commission for facilitating my curiosity to get to know the real meaning of terms such as 'software', 'data processes', 'cloud-based systems' etc., which are always intriguing for an IT lawyer but require a lot more than a strong legal background in order to tackle regulatory challenges associated to them. And last but not least, I wish to cordially thank all those classmates and teachers from my school years and the colleagues, friends and teachers from my university years who helped me build the confidence it took to make it from high school to my LLB study, then on to my LLM and further onwards to my PhD term. Regardless of degrees and titles, all these people and experiences have taught me that everything is possible if you are determined to fight for it. And this is a lesson I will cherish for life!

Foreword

This work has been finalized on 27 September 2017. All its contents and arguments should be read in light of the legal status quo applicable at that time.

PS: Grandma, I know you are happy about this. I promise you I will not stop here!

Hamburg, 27. September 2017

Table of Contents

List of abbreviations	19
CHAPTER 1. Introduction	21
a. Reasoning of the project and current state of affairs	21
i. The European state of affairs	25
ii. The US state of affairs	27
iii. Current state of affairs in other countries	29
b. Research question and structure of the project	30
CHAPTER 2. Cloud computing; a historical and technical	
overview	33
a. Introduction – scope of this chapter	33
b. A brief history of the cloud	34
c. The NIST definition of cloud computing; a starting point	-
 d. The technologies that preceded cloud computing; a brief 	
overview and comparison	39
i. Cloud computing compared to traditional IT – Thei	
main differences and why the cloud matters	39
ii. Cloud computing environments compared to client-	
server systems	41
iii. Cloud computing compared to outsourcing – The k	
differences	42
e. Data handling needs and the parallel technological evolu	
- How developing computational requirements led to	
technological progress	44
f. Explaining cloud computing and its predecessors – what	did
the cloud replace and what is now done different than be	
i. File hosting	46
ii. Clustering	46
iii. Grid Computing	47
iv. Virtualization	48
g. Cloud computing: its core philosophy and structural feat	
i. The cloud's business model	49

1	ii. The architecture of cloud computing systems	49
n.	The resource management aspects of the cloud	50 50
	i. The cloud's compute modelii. Virtualization	50 51
	iii. Monitoring	51
	iv. Provenance	52 53
i.	The application model of the cloud	53
	The security model of the cloud	53 54
	What is cloud computing after all and why does it merit a	54
к.	new regulatory approach?	56
CHAF	PTER 3. EU vs. US: the two major schools of thought regarding internet and privacy regulation and why they took divergent paths. Can this distance be bridged in the context of a regulatory framework for the cloud?	58
0	Introduction – scope of the chapter	58
	How extensive is the influence of European data privacy standards outside Europe? Is it EU law that has been so	30
c.	influencing or is it more the entire European legal thinking? What is the main difference from Europe in USA's	59
	arrangement of their regulatory framework for privacy and	(2)
1	the internet?	63
a.	The 'privacy collision' between Europe and the USA: a brief historical overview	64
٩	Personal data privacy in Europe and the US: a pragmatic and	04
С.	an articulate approach	70
f	Cyber challenges and state-of-the-art in Europe and the USA	73
1.	i. EU's approach towards cyber challenges	73
	ii. The US approach towards cyber challenges	75
g.	Can cloud computing be a tipping point for regulating and	, 0
<i>D</i> .	thinking about privacy in the US or Europe?	76
	i. Privacy under the effect of the cloud in the US	77
	ii. Judicial obstacles	78
	iii. Legislative obstacles	79
	iv. Societal obstacles	80
h.	Europe's combined approach towards the cloud and	
	economic growth	81

	i.	A close look on how the EU and the US currently handle	
		sensitive consumer data on the cloud. It the current regime	0.0
		adequate and efficient enough?	82
		i. Regulating privacy and security of consumer sensitive	84
		data in the cloud; the US current status quo	84
		ii. Regulating privacy and security of consumer sensitive	85
		data in the cloud; the EU current status quo iii. The need for efficient protection of sensitive data also	03
		points towards regulatory reform in the cloud	86
		points towards regulatory reform in the cloud	80
C	HAI	PTER 4. An introduction to the definition of cloud	
		computing under EU law and the challenges it poses	89
	0		89
	a. h	Introduction – scope of this chapter The most important policy views on aspects of cloud	09
	b.	computing brought out so far and why they are not yet	
		sufficient	92
	c.	The European Data Protection Directive 95/46/EC; an	92
	U.	assessment of its effects on the prevalent views about data	
		protection and related IT technologies; are things different	
		under the GDPR?	96
	d	Focus on the General Data Protection Regulation: is the	70
	ч.	European Union's brand new law already insufficient to	
		effectively regulate the cloud?	101
		i. Does the GDPR set up a truly universal legal framework	
		for data transfer law?	103
		ii. What does the spirit of GDPR tell us about the longevity	
		of the current overall EU data protection regime?	105
	e.	GDPR and its readiness to respond to big scale uses of data in	
		the cloud; the case of machine learning	109
	f.	Vision for a cloud-based future	112
	g.	The road from data privacy to cloud computing regulation	113
		i. Privacy and security viewed through the years and	
		across major jurisdictions	113
		ii. Privacy issues particular to cloud computing	
		technologies	115
		iii. Why does cloud computing call for a new regulatory	
		framework?	116

CHAI	PTER 5. Legal pluralism and harmonization – how can we reach a common minimum understanding on how to	
	regulate the cloud?	118
a.	Introduction – scope of this chapter	118
	Internet Regulation: a paramount of unilateralism	119
	From governments to governance; learning to do laws for a	
	borderless world	122
d.	So far, existing laws about cyberspace are bad laws. Lessons	
	learnt?	125
e.	Lex informatica: The formulation of policy rules for the web	
	through applied technology. Can it offer any useful insight for	
	the conceptualization of a dedicated cloud computing	
	regime?	129
f.	Sectoral codes of conduct: the most dedicated attempt to	
	come up with cloud computing laws so far and how it could	
	be improved	131
g.	Efforts undertaken so far on the front of sector-based	
	regulation of IT and their common weakness	136
h.	Seeking the way forward on cloud computing regulation in	
	the field of global administrative law	138
	i. Defining global administrative law	138
	ii. The general theory on global administrative law and its	
	principles	140
	iii. Theoretical foundations of global administrative law	
	based on US and EU administrative law	141
i.	Legal pluralism in global administrative law	143
	i. The proposal	143
	ii. The problems of legal pluralism	146
j.	Can effective cloud computing regulation be achieved	140
1.	through international law? Not really.	148
К.	A comparatist approach and synthesis is the only way;	
	moving forward to regulate cloud computing through legal pluralism	151
	pidiansin	131
CHAI	PTER 6. Jurisdiction and accountability in the cloud	153
a.	Introduction – scope of this chapter	153
PART	I: Jurisdiction in the era of cloud computing	153

a.	The currently prevailing legal norms in EU law for claiming	
	jurisdiction over cases involving data transfer and processing	153
	i. Establishment – Art. 4 para. 1(a) DPD	154
	ii. International law – Art. 4 para. 1(b) DPD	157
	iii. Equipment – Art. 4 para. 1(c) DPD	158
	iv. Changes to current status quo by the upcoming GDPR	158
b.	Technology and internet jurisdiction: a process of	
	parallel 'give and take'	161
c.	From data protection law to international jurisdiction on the	
	internet; adapting laws to modern needs and reality	164
d.	What is the problem with asserting jurisdiction over cloud-	
	related cases under current EU laws?	168
e.	Steps to reduce jurisdictional disputes from the perspective of	
	EU law	170
f.	The internet jurisdiction risk of cloud computing under US	
	law	173
	i. The basics about determining jurisdiction under US law	173
	ii. Jurisdiction under the influence of technological	
	evolution; practices for alleviating jurisdiction risks in	
	the US and internationally over IT-related cases	176
g.	Corporate strategy as a pre-emptive measure for facing the	
U	long arm of cloud jurisdiction	178
	i. Virtual and physical environments	178
	ii. Accepting the inherent nature of cloud jurisdiction risk	179
h.	Where are cloud data centers located? How jurisdiction plays	
	a major part in deciding on geographic location, economic	
	and environmental parameters in cloud computing	179
DADT	II: Accountability on the cloud	181
		101
a.	Accountability: the essentials from data protection to cloud	101
1	computing	181
b.	Accountability is not self-regulation; clearing the picture	100
	between two comparable but critically different concepts	183
c.	Accountability in the cloud cannot be sufficiently settled with	105
	existing EU laws	185
d.	Providing answers to the privacy challenges of cloud	
	computing under US law; the importance of the Fourth	105
	Amendment principles	187

Table of Contents

e.	Achieving effective regulation of the cyberspace: discussing particularities of the web and how these should be mirrored in	
	modern laws about aspects of the digital world	190
f.	Tackling the issue of perspective in internet law; an essential	
	step towards a pragmatic accountability regime	193
g.	The road to an accountable cloud computing goes through the road to an accountable internet: how to achieve a sound	
	internet governance	196
h.	Effective accountability for cloud computing	197
i.	Accountability as a way to further reinforce privacy in the	
	cloud	199
CHAF	PTER 7. Risks and compliance in cloud computing	
	environments – views from Europe and the USA	202
a.	Introduction – scope of this chapter	202
PART	I: THE RISKS ASSOCIATED WITH CLOUD	
	COMPUTING	202
a.	Privacy issues raised on the cloud: existent for all kinds of	
	data across all types of cloud networks	202
	i. United States v. Miller	205
	ii. The Electronic Communications Privacy Act (ECPA) -	
	a step ahead but obscurity lingers	206
	iii. The USA PATRIOT Act	207
	iv. The HIPAA and compelled disclosures	207
	v. The Fair Credit Reporting Act	209
b.	Threats to privacy means threats to security: the two	
	prominent issues that go hand in hand in cloud computing	
	environments	210
c.	Privacy risks posed by the cloud put into question	
	cornerstone elements of information privacy laws	213
d.	The other side of the coin: how cloud computing's	
	architectural advantages can turn into threats for privacy	216
e.	The affluence of consumer data on cloud computing and	
0	particular threats to them because of the cloud's specificities	218
f.	Reviewing security, privacy and trust issues on the cloud	0.01
	from an EU perspective	221
PART	II: CLOUD COMPLIANCE	224

	Introductory remarks on the concept of 'cloud compliance' Effective regulation of technology: the need to define policy	224
0.	tools and policy actors	225
C	Incorporating users' privacy concerns into the rules	223
0.	governing design and deployment of cloud environments	227
d	Pragmatic answers regarding the deployment of secure and	221
u.	privacy-proof cloud networks	231
A	Incentivizing privacy and security by encouraging the	231
C.	adoption of privacy enhancing technologies	232
	adoption of privacy emilanening technologies	232
CHAI	PTER 8. Principles for regulating the cloud (1); conclusions	
01111	from the ontology of cloud computing networks	234
	Introduction – scope of this chapter	234
b.	Constructing the ontology of the cloud; is the cloud one and	
	only thing after all?	235
	i. The Firmware/Hardware layer	238
	ii. The Software Kernel layer	238
	iii. The Cloud Software Infrastructure layer	240
	iv. The Cloud Software Environment layer	242
	v. The Cloud Application layer (SaaS)	242
с.	Different uses but the same ontology: what does this mean for	
	cloud computing regulatory principles?	243
d.	Mapping the life cycle of data on cloud computing networks:	
	risks, security and privacy issues as indicators for the nature	
	of cloud computing regulation rules	245
	i. Data generation	246
	ii. Transfer	247
	iii. Use	247
	iv. Sharing	248
	v. Storage	249
	vi. Archival	251
	vii. Destruction	251
e.	Regulatory principles derived from the ontology of cloud	
	computing	252
	i. On the hardware/firmware layer	252
	ii. On the software/kernel layer	255
	iii. On the cloud software infrastructure layer	256
	iv. On the PaaS and SaaS layers	257

258
261
261
-01
262
267
270
270
275
277
278
278
279
282
282
283
284
285
286
286
287 288
289
289 289
289
290
270
291
-/1
291

	ii. Challenges in implementing cloud computing regulation iii. Projecting challenges in the assessment phase of a	294
	regulation on the cloud	297
CHAI	PTER 10. Principles for regulating the cloud (3); the adoption of cloud computing regulation as the big leap	
	forward from governing to governance in IT law	301
a.	Introduction – scope of this chapter	301
b.	Doing laws based on the local and global experience: the differences in approach and the need to combine both	
	perspectives in the case of cloud computing	301
c.	The ability of law to learn and evolve; how to achieve law	200
d.	evolution in the case of cloud computing How proportionality and teleological reasoning can help	309
u.	cloud computing regulation make IT laws overall more	
	efficient	313
e.	How technology itself can help establishing a sound system	
	of governance in the field of cloud computing	316
f.	The key to achieving a sound system of governance in cloud	
	computing regulation: legal interoperability and its significance as a concept in transnational law	321
σ	A brief summary of the trends on privacy regulation through	521
8.	time in a global context; the transit to a cloud computing	
	regulation governance regime is not a free fall into the	
	unknown	325
h.	Making a long-lasting governance regime a choice not a	
	necessity	327
i.	Can the transatlantic divide on privacy be bridged? Why the	
	extensive use of cloud computing technologies makes the call for convergence an urgent one?	329
	for convergence an argent one:	527
CHAI	PTER 11. Conclusion	335
a.	The driving forces that make the need for cloud computing	
	regulation a pressing one	335
b.	Overview of solutions and suggestions towards the	220
	development of sound cloud computing regulation regimes i. Normative proposals	338 338
	ii. Governance proposals	338 345
	Proposito	2.0

Table of Contents

iii. Policy proposalsc. Future challenges – insights for further research	347 349
List of laws and statutes	353
List of case law	351
Bibliographical index	355

List of abbreviations

(in alphabetical order)

Amazon Web Services	AWS
Application Programming Interface	API
Application Service Provision	ASP
Artificial Intelligence	AI
Asian-Pacific Economic Cooperation	APEC
Binding Corporate Rules	BCR
Charter of Fundamental Rights of the European Union	CFREU
Chief Executive Officer	CEO
Cloud Service Provider	CSP
Communication as a Service	CaaS
Communications Decency Act	CDA
Community Based Participatory Research	CBPR
Customer Relationship Management	CRM
Data as a Service	DaaS
Data Protection Directive (European)	DPD
Digital Millennium Copyright Act	DMCA
Electronic Communications Privacy Act	ECPA
European Convention on Human Rights	ECHR
European Economic Area	EEA
European Union	EU
Fair Credit Reporting Act	FCRA
Federal Trade Commission (US)	FTC
Foreign Intelligence and Surveillance Act	FISA
General Data Protection Regulation (European)	GDPR
Hardware as a Service	HaaS
Health Insurance Portability and Accountability Act	HIPAA
Information & Communications Technology	ICT
Information Technology	IT
Infrastructure as a Service	IaaS

List of abbreviations

Internet Corporation for Assigned Names and Numbers	ICANN
Internet of Things	IoT
Internet Service Provider(s)	ISP(s)
Local Area Network	LAN
National Institute of Standards and Technology	NIST
Official Journal (of the European Union)	OJ
Operating System	OS
Organization for Economic Co-operation and Development	OECD
Platform as a Service	PaaS
Platform for Privacy Preferences Project	P3P
Privacy Enhancing Technologies	PETs
Remote Computing Service	RCS
Secure Sockets Layer	SSL
Service Oriented Architecture	SOA
Service as a Service	SaaS
Software as a Service	SaaS
Stored Communications Act	SCA
Terms of Service (agreement)	ToS (agreement)
Transport Layer Security	TLS
Treaty on the European Union	TEU
United Nations Commission on International Trade Law	UNCITRAL
United Nations Universal Declaration of Human Rights	UDHR
United States (of America)	US(A)
United States of America: Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act Virtual Machine(s)	USA PATRIOT Act VM(s)

CHAPTER 1. Introduction

a. Reasoning of the project and current state of affairs

Since the cloud has started gaining popularity, one of the catch-phrases used about it by supporters and adversaries alike and which can indeed be read in a positive or negative manner, depending on one's predisposition, has been: "There is no cloud. It's just someone else's computer."¹ Cloud computing made its entry in the IT industry as a revolution which was meant to profoundly alter the way most of IT and digital data business had been done till then². Indeed, despite the partial loss of control over data that comes immediately with its use, cloud computing has been massively successful and, apart from average users' data, a great variety of critical records are also being entrusted to it, generating ever-growing concerns about their integrity, privacy and security.

In the face of these trends around the cloud and its uses, privacy and security have grown into two somewhat competing forces attempting to balance opposing needs: privacy focuses on the need to use information against the need to protect personal data, while security is centered on the need to provide access to records against the need to stop unauthorized access³. The importance of these competing goals has led to a plethora of legal and regulatory ventures to strike a balance and, ultimately, to achieve a certain level of trust in digital records and their storage in the cloud⁴. A particular challenge to the whole effort has come to be the fact that different jurisdictions approach privacy in substantially different manners while an in-depth understanding of what a jurisdiction certain data may be governed,

¹ Tom Geller, In privacy law, it's the U.S. vs. the world, 59 Commun. ACM 21–23 (2016.)

² See also Chapter 2.

³ Luciana Duranti, Trust in online records and data. Integrity in Government through Records Management: Essays in Honour of Anne Thurston.

⁴ D. Hofman, Duranti L. & E. How, *Trust in the Balance. Data Protection Laws as Tools for Privacy and Security in the Cloud*, 10 Algorithms 47 (2017.)

requires a tremendous analytical effort. Nonetheless, in order to protect privacy and enhance security, this effort is unavoidable.

Should one look for a single phrase to summarize why cloud computing does make a difference in the way we are handling digital information and why we should regulate all this information processing having cloud computing in our focus, a suitable passage could be the following: ..."preserving information in the cloud may be a black box process in which we know, at least ideally, what we put in for preservation, and we know what we want to access and retrieve—essentially the same things we put in—but often we do not know what technology is used by cloud service providers to manage, store, or process our information"⁵.

Even in the ideal case in which there was no intended malice by actors involved in the cloud, data record keeping and processing done via cloud computing poses a number of unanswered questions. As Duranti and Rogers have most recently categorized them⁶, those challenges broadly refer to: managing trans-jurisdictional data flows, attributing liability for and resolving data breaches, and establishing the chain of custody when a cloud service provider goes dark⁷. Given these risks, one might wonder why people continue to trust the cloud so strongly and at such a growing pace. The answer, as it will be demonstrated soon⁸, is that, from a technological efficiency point of view, there is no better option in the realm of the internet-driven world right now and the cloud stands out by far from all other available technologies. Of course, the greatest ally in dealing with such risks is constant technological innovation itself, which tries hard to keep pace with malicious and innocent challenges of the cloud alike and ensure the trustworthiness of records stored on it. However, approaches based solely on technical means cannot solve the problems that arise from technology and its maluses; besides, there is no technical solution to determined human misuse of technology, to say the least⁹. In fact, technological tools need support from legal, social, and business structures that set the

⁵ Luciana Duranti, Adam Jansen, Giovanni Michetti, Mumma Courtney, Daryll Prescott, Corinne Rogers & Thibodeau Kenneth, *Preservation as a Service for Trust*, in Security in the private cloud, 47–72 (John R. Vacca ed., 2017.)

⁶ Id.

⁷ This issue does not form part of this analysis which solely focuses on the public law aspects of cloud computing regulation, leaving civil or criminal law issues aside for future research.

⁸ See Chapter 2.

⁹ Luciana Duranti (note 3).

bar for minimum expectations from cloud service providers. While some users (particularly those heavily based on data storage and processing from their core operation model already) might indeed thoroughly analyze the "reputation, performance, competence, and confidence"¹⁰ of cloud service providers to verify their trustworthiness and robustness, experience and market data show that the majority continue to be quite instinctive with the choice of whom they entrust with their data¹¹. It is precisely for those cases - which probably constitute the majority anyway - where consumers rely upon a service without having sought assurances of its quality beforehand that the law must step in to provide the certainty and trust users cannot or did not bother to obtain on their own¹². The typological diversity of records kept in cloud environments is forcing the law to modernize existing regulatory tools and improvise on new ones. Combined together, these tools aim to strike the balance described earlier: between long-standing concerns, namely access, control, security, and trust and a world where data have got considerably detached from the physical bonds that traditionally kept them within the borders of a single jurisdiction and the control of an identified and trusted custodian.

Discussing "privacy" as a legal pursuit is challenging to say the least; according to Solove, "Privacy seems to be about everything, and therefore it appears to be nothing"¹³. The very conception of privacy is widely contextual; as it has been argued, "our conceptions of privacy result from our juridified intuitions—intuitions that reflect our knowledge of, and commitment to, the basic legal values of our culture"¹⁴.

On a broader basis, Americans' use of the term 'privacy' typically refers to "privacy as an aspect of liberty, the right to freedom from intrusions by the state"¹⁵. Consequently, American privacy laws tend to focus on the freedom to determine who and to what extent has access to one's

¹⁰ Luciana Duranti & Corinne Rogers, Trust in digital records. An increasingly cloudy legal area, 28 Computer Law & Security Review 522–531 (2012.)

¹¹ Frank B. Cross, *Law and trust*, 93 The Georgetown Law Journal 1457–1545 (2005.)

¹² Huaiqing Wang, Matthew K. O. Lee & Chen Wang, Consumer privacy concerns about Internet marketing, 41 Commun. ACM 63–70 (1998.)

¹³ Daniel J. Solove, A Taxonomy of Privacy, 154 University of Pennsylvania law review 477–560 (2006.)

¹⁴ James Q. Whitman, *The Two Western Cultures of Privacy. Dignity versus Liberty*, 113 The Yale Law Journal 1151–1221 (2004.)

¹⁵ For further analysis, see Chapter 3.

private life, particularly to the category of private information generally quoted as "personally identifiable information"¹⁶. From that perspective, gravity primarily lies with the possibility for a data subject to consent to their loss of privacy, while in laws developed under this prism the need for privacy is often juxtaposed by the need to use personally identifiable information for data subjects for countless different purposes. In contrast, the European concept of privacy views the term "as an aspect of dignity"17. The "juridified intuitions" on the foundations of European understandings of privacy cannot bear human dignity as a commodity. As a result, the American concept of 'privacy' coincides much better with the European notion of 'data protection'¹⁸. Both these policy areas on the two sides of the Atlantic seek to draw boundaries around information and records, putting up effective protection mechanisms for them from public or unauthorized private scrutiny. Such laws set off from the predicament that not all people can be trusted with all information¹⁹. In the pre-internet, offline era, this was operatively translated in controlling access to and, if necessary, retracting paper records containing sensitive information. However, under the profound impact of information and communications technologies on data and record keeping, along with an intensifying blur between "data" and "records," personally identifiable information can today be regarded as just a small subset of data²⁰, about which it cannot be said with certainty whether it is the original record or just an archived copy. However, this is a precarious approach as it strips the data off its context; an immediate effect is, for example, that we are no longer able to determine whether the data is 'private' for a particular purpose. Instead, by moving the protection focus at record, rather than data level, we could achieve better results. What is more, data mining and other big data techniques are increasingly rendering data-level privacy protection ineffective²¹.

17 James Q. Whitman (note 14).

20 Paul M. Schwartz & Daniel J. Solove (note 16).

¹⁶ Paul M. Schwartz & Daniel J. Solove, *The PII Problem: Privacy and a New Concept of Personally Identifiable Information*, 86 New York University Law Review 1814–1894 (2011.)

¹⁸ Id.

¹⁹ Luciana Duranti (note 3).

²¹ Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Chris Hanson, James Hendler, Lalana Kagal, Deborah L. McGuinness, Gerald Jay Sussman & K. Krasnow

Based on these two poles, i.e. the European versus the American legal thinking about data protection and privacy, this study aims to take the decisive step and look into the matter from the broader perspective of technologies facilitating data processing and archiving of all kinds instead of the acts of processing and archiving per se. Those technologies are beyond doubt those collectively termed as 'cloud computing'. And because of the fact that legal research which aims to build up on an existing regime and provide better answers to tangible problems, which have nevertheless been around for a long time (with several laws that have already tried to tackle them thus making any new approach conditional to cohesion and not just innovative spirit), cannot set off from nowhere but needs to have one firm foot on actual acquis before it can take the leap forward, the starting point of endeavors of this study will largely, though not exhaustively, be privacy and data protection laws from Europe and the US.

i. The European state of affairs

The latest development out of deployment of cloud computing technologies, i.e. big data decision-making algorithms, are by nature meant to discriminate, to make distinctions based on voluminous data of a wide variety. An immediate challenge of algorithmic discrimination is the loss of judgment²². "The machine is incapable of determining whether a distinction is ethical or not. Unless we come up with a comprehensive theory of discrimination that can be represented algorithmically, we have no rigorous way of distinguishing between ethical and non-ethical machine-based discrimination [... however,] some of our ethical and moral criteria are so fragile, nuanced, and culturally dependent that it is not clear that the machine will ever be capable of appropriately weighing them"²³. Still the data-driven approach to regulation of personally identifiable information runs on the assumption that by redacting or pseudonymizing the most sensitive kinds or parts of data set, we can prevent the algorithm from filling in missing information using the vast amounts of other data, quite possibly

Waterman, Transparent Accountable Data Mining: New Strategies for Privacy Protection (2006.)

²² Omer Tene & Jules Polonetsky, *Judged by the Tin Man: Individual Rights in the Age of Big Data*, 11 J. on Telecomm. & High Tech. L. 351–368 (2013.)

²³ Id.

even from the same data subject, that has at its disposal. However, sealing certain bits of data which have been labeled as personally identifiable information while leaving all other data available and open to whatever techniques resourceful data holders can devise, is a lost battle. The current data-centric approach to privacy will be less and less effective in building up or maintaining trust in cloud-based records²⁴.

The brand new European General Data Protection Regulation (GDPR)²⁵ explicitly recognizes these challenges, and seeks to establish a higher standard of trust and security for EU citizens²⁶. And while it does not categorically solve all big data challenges to privacy, it does provide a much firmer ground for European citizens to expect that their privacy will not be breached by resourceful data processors. Furthermore, the European Union provides a second line of legal protection for its citizens, as the GDPR directly cites Article 8(1) of the Charter of Fundamental Rights of the European Union (CFREU)²⁷ which has already been repeatedly interpreted as providing robust protection for the online version of the right to privacy²⁸. However, the GDPR largely remains a technology agnostic

²⁴ Jiahong Chen, How the best-laid plans go awry. The (unsolved) issues of applicable law in the General Data Protection Regulation, 6 International Data Privacy Law 310–323 (2017.)

²⁵ Regulation (EU) 2016/679 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation); (OJ) L119, 4/5/2016, p. 1–88.

²⁶ Recital 26 of the GDPR explicitly notes that, even though personal data may have undergone pseudonymization, "account should be taken of all of the means reasonably likely to be used [...] to identify the natural person directly or indirectly," distinguishing between pseudonymized data and anonymous data.

²⁷ Charter of Fundamental Rights of the European Union, 26 October 2012, 2012/C 326/02.

²⁸ Recital 73 of the GDPR reads: "Restrictions concerning specific principles and the rights of information, access to and rectification or erasure of personal data, the right to data portability, the right to object, decisions based on profiling, as well as the communication of a personal data breach to a data subject and certain related obligations of the controllers may be imposed by Union or Member State law, as far as necessary and proportionate in a democratic society to safeguard public security, including the protection of human life especially in response to natural or manmade disasters, the prevention, investigation and prosecution of criminal offences or the execution of criminal penalties, including the safeguarding against and the prevention of threats to public security, or of breaches of ethics for regula-

legislation²⁹, one that follows on the long path of data-focused EU privacy legislation, which is developed having specific existing or foreseeable applications of data-related technologies in sight instead of the specifications, present and foreseeable ones, of those technologies.

ii. The US state of affairs

The regulatory plateau in the US regarding phenomena occurring in the cloud, most prominently regarding the issue of how to gain access to data hosted on cloud environments, is substantially different to the one in Europe; not so much as to the aims it pursues or the genre of protection it wishes to grant to data subjects but rather on the way it has developed over the years and how it looks today³⁰. Owing to the endemic differences of legal tools between Europe and America, in the US there is no central legislation regarding cloud data but rather several legal resources (from provisions of the US constitution, to Acts, to case law) which provide legal basis for regulating cloud-related phenomena. The global clouds on which the greatest part of the IT world operates today pose challenging questions regarding the scope of traditional legal tools governing these phenomena and, most importantly, the issue of access to data stored in cloud facilities outside the United States. The far from settled landscape on the issue can be observed even through latest case law with regard to the Stored Communications Act (SCA)³¹. Different decisions expose numerous unan-

ted professions, other important objectives of general public interest of the Union or of a Member State, in particular an important economic or financial interest of the Union or of a Member State, the keeping of public registers kept for reasons of general public interest, further processing of archived personal data to provide specific information related to the political behavior under former totalitarian state regimes or the protection of the data subject or the rights and freedoms of others, including social protection, public health and humanitarian purposes. Those restrictions should be in accordance with the requirements set out in the Charter and in the European Convention for the Protection of Human Rights and Fundamental Freedoms.".

²⁹ For more extensive analysis on the GDPR and its shortcomings as well as the innovations it introduces refer to Chapter 4.

³⁰ For a comparative analysis on the development of data protection and privacy law in Europe and the US refer to Chapter 3.

³¹ The Stored Communications Act (SCA), 18 U.S.C. Chapter 121 §§ 2701–2712. For more refer to Chapter 3.

swered questions about the conditions under which parties can obtain cloud data. Specifically, in litigation involving extra-territorial data requests under the SCA US courts have at times focused on where the requested data is located, and on other instances on where the search or seizure of it will take place³². In addition to the SCA, there are further statutory authorities that grant government and private parties the permission to make extra-territorial data requests, creating additional unresolved issues as well. What is more, American academia is also far from settled about the meaning of territoriality for data access³³. This scattered plaving field produces equally varying legal outcomes which themselves demonstrate how disconcerted existing US laws applying to the cloud are, their most alarming effect being that they powerfully incentivize international data localization³⁴. Mandatory data localization is already a legal requirement in a number of countries such as Brazil and Russia, while there is additionally another important trend of voluntary data localization³⁵. Both of them are, to a significant degree, fueled by concerns about US rules for data access, which make more and more non-US companies to choose to bind themselves to national or regional protections which recognize or demand data localization for cloud networks. However, in the long run, this trend risks seriously disrupting the Internet and undermining one of its fundamental characteristics, the lack of boundaries in the circulation of da-

³² For an overview of the latest trends and developments in US law and jurisprudence regarding data and access to them, especially in relation to the cloud and information hosted on facilities abroad, refer to: Jennifer C. Daskal, *The Un-Territoriality of Data*, 125 Yale Law Journal 326–398 (2015); Andrew Keane Woods, *Against Data Exceptionalism*, 68 Stanford Law Review 729–789 (2016); Orin S. Kerr, *The Fourth Amendment and the Global Internet*, 67 Stanford Law Review 285–329 (2014); Orin S. Kerr, *The Next Generation Communications Privacy Act*, 162 University of Pennsylvania law review 373–419 (2014); David Cole & Federico Fabbrini, *Bridging the Transatlantic Divide? The United States, the European Union, and the Protection of Privacy Across Borders. iCourts Working Paper Series, No. 33, 2015* International Journal of Constitutional Law (2015); Damon C. Andrews & John M. Newman, *Personal Jurisdiction and Choice of Law in the Cloud*, 73 Md. L. Rev. 313–388 (2013.)

³³ Paul M. Schwartz, Legal Access to Cloud Information. Data Shards, Data Localization, and Data Trusts.

³⁴ For a thorough analysis on the issue of mandatory and voluntary data localization, refer to: Anupam Chander & Uyen P. Le, *Breaking the Web. Data Localization vs. the Global Internet* Emory Law Journal, Forthcoming 53 (2014.)

³⁵ Id.

ta and overall traffic³⁶. Therefore, it is high time for the US to work with other jurisdictions, primarily with the EU, towards developing internationally harmonized rules for access to cloud information.

iii. Current state of affairs in other countries

In response to growing concerns about security and privacy of data in the cloud, regulators in jurisdictions around the world are turning to data localization measures³⁷. These regulatory tools include laws, regulations, and policies designed to make sure that data and records are accessed, processed, and stored within a specific jurisdiction³⁸. Data localization measures are conceptualized with the aim of fortifying the privacy rights of data owners whose records cross jurisdictional borders³⁹.

Briefly, data localization laws are based on the assumption that, if the jurisdictions in which records and data can be accessed, processed, and stored are limited, those records will be sealed against bad actors for whom laws from other jurisdictions would provide no effective recourse. Realistically speaking though, this is a problematic assumption⁴⁰. Any records and data made available at some point online can eventually be accessed and harmed by malicious actors in almost any jurisdiction. And, of course, whether or not the jurisdiction in which the records are located can provide effect remedy in such an instance depends on more than just localization laws. Secondly, data localization laws assume that records hosted locally are by default more secure⁴¹. However, there is no guarantee for that; everything depends on adequate technical solutions and expertise being available within the jurisdiction where cloud services are provided. To put it plainly, it should not be taken for granted that there are actual data centers and hardware facilities by all cloud providers within the area of every single jurisdiction. In addition, data localization laws assume that local custody is a preferable means of protecting records and data and as-

³⁶ Paul M. Schwartz (note 33).

³⁷ Anupam Chander & Uyen P. Le (note 34).

³⁸ Id.

³⁹ Id.

⁴⁰ Paul M. Schwartz (note 33).

 ⁴¹ Y. Tian, Current Issues of Cross-Border Personal Data Protection in the Context of Cloud Computing and Trans-Pacific Partnership Agreement. Join or Withdraw, 34 Wisconsin International Law Journal 367–408 (2016.)

suring their trustworthiness. However, this predicament invalidates the very important element of evaluation of trustworthiness that any cloud service provider, regardless of their size, should undergo in order to survive on the market according to internationally accepted market practice⁴². The last assumption is that data localization laws provide augmented stability should cloud services prove untrustworthy or insecure, because, at least, they provide clarity as to which jurisdiction's laws will apply in resolving the disputes that may arise. In reality, however, there is no better safeguard for security of records and data in the cloud than the trust mechanisms of the international cloud market, only by taking part in which can a cloud service provider, regardless of size, survive and remain competitive; thus, all CSPs will do whatever it takes to make sure they remain part of it⁴³.

b. Research question and structure of the project

Given the state of affairs described above, this project is going to look for ways for achieving better coordinated regulation of the cloud and the issues arising from using it. The stated aim will not be pursued though having in mind the establishment of an international regulatory framework for the cloud, let alone the introduction of some other type of supranational jurisdiction for cloud and IT-related phenomena. Instead, in an attempt to be realistic in the way the research question is approached in conjunction with the regulatory state-of-the-art across jurisdictions, the project's focus will be on pinpointing and bringing together best practices regardless of their origin which, if combined and taken into consideration as the foundations for the future development of cloud regulation laws by law makers from all legal orders will lead to a more coherent governance scheme for cloud computing. Logically, some of the suggestions put forward in the course of this analysis may not sound as ground-breaking for all readers, depending on whether each one of them is more familiar with the European or US legal thinking on the matter. However, the originality of this analysis lies precisely on drawing for the first time the best each and every school of thought has to offer under the same roof.

⁴² Nicholas Platten, *Protectors of Privacy: Regulating Data in the Global Economy – By A.L. Newman*, 48 JCMS: Journal of Common Market Studies 453–454 (2010.)
43 *Id.*

The forthcoming analysis should be read in light of the following understandings:

- Although from a technical point of view it is always easier to discern between cloud computing per se and specific applications made possible thanks to the cloud, this distinction has not yet been unquestioningly achieved on the regulatory front. Therefore, while the technical parts of this research invariably refer to cloud computing generically, in the parts of legal analysis it is mandatory to begin discourse from the laws currently applicable in order to understand how the current status has been consolidated and how steps forward could be taken. Therefore, in parts of this project where the legal dimension of the research question is dealt with the starting point is mostly, but not exclusively, existing laws about privacy, data protection and data transfers on the cloud. It is hoped that by applying the findings and suggestions presented throughout this study, current laws will move forward towards a more generic and less case-based direction, grasping the cloud phenomenon per se and not limiting their understanding to specific cloud applications.
- With regard to the jurisdictions and the origins of scholarly opinion _ that form part of this comparative analysis, it needs to be pointed out right from the beginning that there is a similar distinction between resources and literature of a technical and those of a legal nature. in particular, given that, from a technological perspective, the cloud is viewed in the same manner worldwide, this study utilizes relevant resources from a variety of origins (e.g. from European, American, Chinese and Canadian academics, to name a few). However, due to the greatly varied ways in which the cloud has been viewed so far from a legal point of view, only the laws and regulations of the EU and the US form part of this study. The two jurisdictions together account for the biggest part of the ways in which law makers currently deal with the cloud⁴⁴. Moreover, this choice was also made due to practical factors, namely ease of access to resources, linguistic capabilities of the researcher (these two are the main reasons why the Chinese jurisdiction is left out of the scope of the project altogether) as well as time constraints for the completion of the project.

⁴⁴ For more on the significance EU and US laws and markets play with regard to cloud computing refer to Chapter 3.

With the above understandings in mind, the chapters of the analysis that follow deal with these groups of challenges⁴⁵ regarding the prospect of a more consolidated regime on cloud computing regulation:

- The jurisdictional challenge, mainly dealt with in Chapter 6;
- The privacy and security challenge, mainly dealt with in Chapter 7;
- The convergence challenge, mainly dealt with in Chapters 8, 9 and 10.

⁴⁵ Y. Tian (note 41).

CHAPTER 2. Cloud computing; a historical and technical overview

a. Introduction - scope of this chapter

Cloud computing technologies have been rapidly expanding over the past ten to fifteen years to be today the standard enabling technology for most of the applications and aspects of the internet as we know it. Cloud-based systems and cloud computing, as such, were not an invention, nor a pioneering discovery when they started to be widely commercialized in the beginning of 2000s. They had actually been around long before, as technically feasible arrangements for the handling of data and the execution of computational tasks. However, the growing appetite for processing power that an increasing e-economy necessitated, the commoditization of more and more internet-based services related to data handling and the equally fast rate at which consumers adopted these services led to a rapid commercialization of cloud technologies⁴⁶. Yet, despite the fact that the cloud, as a technical feasibility, had been around since long before, its true meaning and the ways in which it did things differently than before had not been adequately realized or examined for many years after its popularization as a commodity. In order to understand what cloud computing is all about and, eventually, demonstrate what it does differently in comparison to previous technical arrangements for data handling tasks, a review of the history of the cloud is the first step.

Getting familiar with the essence of the technical aspects of cloud computing is the aim of this chapter of the study.

⁴⁶ For more information on the history and technical evolution of cloud computing refer to: M. Arif, A history of cloud computing, available at: http://www.computer weekly.com/feature/A-history-of-cloud-computing (18 February 2015); Hongji Yang & Xiaodong Liu, Software reuse in the emerging cloud computing era (2012); Thomas Erl, Richardo Puttini & Zaigham Mahmood, Cloud computing. Concepts, technology, & architecture (2013); Antonio Regalado, Who Coined 'Cloud Computing'?, available at: https://www.technologyreview.com/s/425970/w ho-coined-cloud-computing/ (11 January 2017); Inc. Gartner, Cloud Computing Confusion Leads to Opportunity (2008).

b. A brief history of the cloud

Cloud computing has evolved to be the technology that we so extensively use today through a number of phases that included concepts like clientserver arrangements⁴⁷, grid⁴⁸ and utility computing⁴⁹, application service provision (ASP)⁵⁰ and, more recently, Software as a Service (SaaS)⁵¹.

On a visionary level, the idea of an "intergalactic computer network"⁵² was for the first time formulated in the 1960s by Joseph Carl Rob-

⁴⁷ The client-server model of computing is a distributed application structure that partitions tasks or workloads between the providers of a resource or service, called servers, and service requesters, called clients. At most times, clients and servers communicate over a computer network on separate hardware, but both client and server may reside in the same system. (https://www.techopedia.com/definition/183 21/client-server-model; last accessed on 01/11/2017.)

⁴⁸ Grid computing is a collection of computer resources from multiple locations that are dedicated to reaching a common goal. The grid can be thought of as a distributed system with non-interactive workloads that involve a large number of files. (https://www.techopedia.com/definition/87/grid-computing; last accessed on 01/11/2017.)

⁴⁹ Utility computing is a service provisioning model in which a service provider makes computing resources and infrastructure management available to the customer as needed, and charges them for specific usage rather than a flat rate. (https:// www.techopedia.com/definition/14622/utility-computing; last accessed on 01/11/2017.)

⁵⁰ Application Service Provisioning (ASP) is the business of providing computer-based services to customers over a network, such as access to a particular software application using a standard protocol (such as HTTP). (https://www.techopedia.com/definition/2476/application-service-provider-asp; last accessed on 01/11/2017.)

⁵¹ Software as a service (SaaS) is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. (https://www.te chopedia.com/definition/155/software-as-a-service-saas; last accessed on 01/11/2017.)

⁵² Intergalactic Computer Network or Galactic Network was a computer networking concept similar to today's Internet. The term was used for the first time in the early 1960s to refer to a networking system as an electronic commons open to all, 'the main and essential medium of informational interaction for governments, institutions, corporations, and individuals.' (https://en.wikipedia.org/wiki/Intergalactic_Computer_Network; last accessed on 01/11/2017.)

nett Licklider⁵³, who was responsible for facilitating the development of ARPANET⁵⁴ in 1969.

Licklider's vision was for everyone to be interconnected and able to access programs and data hosted at any site, from anywhere. "It is a vision that sounds a lot like what we are calling cloud computing"⁵⁵.

Another popular view is that the cloud concept was first envisaged by computer scientist John McCarthy who proposed the idea of computation being delivered as a public utility⁵⁶.

From a technical point of view, several decades went by with the knowhow related to today's cloud-based systems already existing. Literally, cloud technologies were no invention and did not come as a result of a ground-breaking discovery. They were simply the outcome of better or, at least, different exploitation of existing knowledge related to IT systems⁵⁷. One of the first milestones in cloud computing history was the arrival of

⁵³ Joseph Carl Robnett Licklider was an American psychologist and computer scientist who is considered one of the most important figures in computer science and general computing history. He is particularly remembered for being one of the first to foresee modern-style interactive computing and its application to all kinds of activities; and also as an Internet pioneer with an early vision of a worldwide computer network long before it was built. (https://en.wikipedia.org/wiki/J._C._R._Lic klider; last accessed on 01/11/2017.)

⁵⁴ The Advanced Research Projects Agency Network (ARPANET) was an early packet switching network and the first network to implement the protocol suite TCP/IP. Both technologies became the technical foundation of the Internet. ARPA-NET was initially funded by the Advanced Research Projects Agency (ARPA, later Defense Advanced Research Projects Agency, DARPA) of the United States Department of Defense. (https://www.techopedia.com/definition/2381/advanced-r esearch-projects-agency-network-arpanet; last accessed on 01/11/2017.)

⁵⁵ J. Locke, The Roots of Cloud Computing, available at: http://www.servercloudcan ada.com/2013/10/the-roots-of-cloud-computing/ (11 January 2017); last accessed on 01/11/2017.

⁵⁶ John McCarthy was an American computer scientist and cognitive scientist. McCarthy was one of the founders of the discipline of artificial intelligence. He coined the term "artificial intelligence" (AI), developed the Lisp programming language family, significantly influenced the design of the ALGOL programming language, popularized timesharing, and was very influential in the early development of AI. (https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist); last accessed on 01/11/2017.)

⁵⁷ M. Arif (note 46).

Salesforce.com⁵⁸ in 1999, which pioneered the concept of delivering enterprise applications via a simple website. The services firm paved the way for both specialist and mainstream software firms to deliver applications over the internet.

The next important step was Amazon Web Services⁵⁹ in 2002, which provided a suite of cloud based services including storage, computation and even human intelligence.

Another big milestone came in 2009, with the advent of Web 2.0⁶⁰, when Google and others started to offer browser-based enterprise applications through services such as Google Apps⁶¹.

c. The NIST definition of cloud computing; a starting point

It has been so far impossible among stakeholders, namely, regulators, the IT industry etc., to agree on a universally acceptable definition of cloud computing. However, for the purposes of this study when reference is made to 'cloud computing' this is to be understood under the definition published in 2011 by the US National Institute of Standards and Technology (NIST); so far, this definition is generally heralded as the most preva-

⁵⁸ Salesforce.com is a cloud computing company headquartered in San Francisco, California. Though its profits come basically from a customer relationship management (CRM) product, Salesforce also tries capitalizing on commercial applications of social networking through acquisition. (https://en.wikipedia.org/wiki/Sa lesforce.com; last accessed on 01/11/2017.)

⁵⁹ Amazon Web Services (AWS) is a collection of remote computing services, also called web services, that make up a cloud computing platform offered by Amazon.com. These services are based in 11 geographical regions across the world. The most central and well-known of these services are Amazon Elastic Compute Cloud and Amazon S3. These products are marketed as a service to provide large computing capacity more quickly and cheaper than a client company building an actual physical server farm. (https://en.wikipedia.org/wiki/Amazon_Web_Service s; last accessed on 01/11/2017.)

⁶⁰ Web 2.0 describes World Wide Web sites that emphasize user-generated content, usability, and interoperability. Although Web 2.0 suggests a new version of the World Wide Web, it does not refer to an update to any technical specification, but rather to cumulative changes in the way Web pages are made and used. (https://en. wikipedia.org/wiki/Web_2.0; last accessed on 01/11/2017.)

⁶¹ Google Apps is a suite of cloud computing productivity and collaboration software tools and software offered by Google. (https://en.wikipedia.org/wiki/Google_Apps _for_Work; last accessed on 01/11/2017.)

lent⁶² in explaining the 'cloud' and it reads as follows: "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics, three service models, and four deployment models"⁶³.

The most essential characteristics of cloud computing technologies and of the services developed based on them are⁶⁴:

- On-demand self-service: A consumer can unilaterally calculate and preorder or buy in real time computing capabilities, such as server time and network storage, as needed, automatically without requiring human interaction with a salesperson or service provider;
- Broad network access: Services are available over the network and accessed through standard mechanisms that promote use by heterogeneous client platforms (e.g., mobile phones, tablets, laptops, and workstations);
- Resource pooling: The provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. There is an impression of location independence owing to the fact that the customer generally has no control or knowledge over the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter). Examples of resources include storage, processing, memory and network bandwidth;
- Rapid elasticity: Resources can be elastically provisioned and released, in some cases automatically, to scale rapidly outward and inward in accordance with demand. To the consumer, the resources available for provisioning often appear to be unlimited and can be appropriated in any quantity at any time;

⁶² Bill Williams, The economics of cloud computing (2012.)

⁶³ Peter Mell & Timothy Grance, The NIST Definition of Cloud Computing. Recommendations of the National Institute of Standards and Technology, available at: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (4 November 2015.)

⁶⁴ Thomas Erl, Richardo Puttini & Zaigham Mahmood (note 46).; Peter Mell & Timothy Grance (note 63); Bill Williams (note 62).

Measured service: Cloud systems automatically control and optimize use of resources by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth and active user accounts). Resource usage can be monitored, controlled and reported, providing transparency for both providers and consumers of the utilized service.

Cloud computing services come in several different genres. These broad categories under which cloud-based applications fall are typically called 'service models' and they are the following⁶⁵:

- Software as a Service (SaaS): The consumer can use the provider's applications running on a cloud infrastructure. The applications are accessible from various client devices through either a thin client interface, such as a web browser (e.g. web-based email), or a program interface (e.g. a Dropbox installation on the user's laptop). The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings;
- Platform as a Service (PaaS): The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications built using programming languages, libraries, services, and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, or storage, but has control over the deployed applications and possibly configuration settings for the application-hosting environment;
- Infrastructure as a Service (IaaS): The capability provided to the consumer is to provision processing, storage, networks and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage and

⁶⁵ Christof Weinhardt, Arun Anandasivam, Benjamin Blau, Nikolay Borissov, Thomas Meinl, Wibke Michalk & Jochen Stößer, *Cloud Computing – A Classification, Business Models, and Research Directions*, 1 Bus. Inf. Syst. Eng. 391–399 (2009); Bill Williams (note 62); Norman Pelzl, Methodische Entwicklung von zukunftsorientierten Geschäftsmodellen im Cloud-Computing, Band 88 (2016.)