

André Waibel

Das Risiko verbriefter Forderungen

Grundlagen, Ratingverfahren und Problemfelder

Diplomarbeit

Bibliografische Information der Deutschen Nationalbibliothek:

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Copyright © 2006 Diplom.de ISBN: 9783836604871

André Waibel

Das Risiko verbriefter Forderungen

Grundlagen, Ratingverfahren und Problemfelder

Diplomarbeit

ISBN: 978-3-8366-0487-1

André Waibel

Das Risiko verbriefter Forderungen Grundlagen, Ratingverfahren und Problemfelder

André Waibel

Das Risiko verbriefter Forderungen - Grundlagen, Ratingverfahren und Problemfelder

ISBN: 978-3-8366-0487-1

Druck Diplomica® Verlag GmbH, Hamburg, 2007

Zugl. Universität zu Köln, Köln, Deutschland, Diplomarbeit, 2006

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden, und die Diplomarbeiten Agentur, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

© Diplomica Verlag GmbH http://www.diplom.de, Hamburg 2007 Printed in Germany

Inhaltsverzeichnis

Da	rstellı	ungsve	rzeichnisVI
Syı	mbolv	erzeicł	nnisVII
Ab	kürzı	ıngsver	zeichnisXVIII
1.	Einl	eitung.	
	1.1	Proble	emstellung
	1.2	Gang	der Untersuchung
2.	CDO	O-Grun	ndlagen2
	2.1	Einor	dnung von CDOs in den Bereich der "Asset Backed" – Produkte 2
	2.2	Ablau	of einer CDO – Transaktion
		2.2.1	Grundstruktur3
		2.2.2	Beteiligte Parteien4
	2.3	Drei I	Hauptgruppen von CDOs4
	2.4	Cover	rage Tests5
		2.4.1	O/C-Test5
		2.4.2	I/C-Test6
	2.5	Der C	ash Flow Waterfall
	2.6	Ziele	bei der Emission von CDOs6
	2.7	Die E	ntwicklung des Marktes für Kreditrisikotransfer7
		2.7.1	Historische Eckdaten7
		2.7.2	Marktindizes iTraxx und CDX7
		2.7.3	Neuere CDO-Formen
		2.7.4	Das PROMISE- und PROVIDE-Programm der KfW 8
		2.7.5	Der CDO-Sekundärmarkt
		2.7.6	Statistische Daten und aktuelle Situation
	2.8	Verbr	iefungstechnik10
		2.8.1	Der Transformationsvorgang
		2.8.2	Tranchierung als grundlegende Technik
		2.8.3	Optimale Strukturierung einer Kreditportfolioverbriefung11
		2.8.4	Ein einfaches Beispiel zur Erklärung des Verbriefungsvorgangs12

3.	Rati	ng-Gru	ındlagen	13
	3.1	Überb	lick über die Ratingagenturen	. 13
	3.2	Ablau	f eines Ratingprozesses	. 14
	3.3	Rating	gsymbole	. 15
	3.4	Chara	kterisierung von "Default"	. 15
		3.4.1	Definition nach Basel II und verwendete Notation	16
		3.4.2	Definitionen der Ratingagenturen	. 16
		3.4.3	Vergleich	. 17
		3.4.4	Time-Until-Default	. 17
			3.4.4.a Survival Funktion	. 18
			3.4.4.b Hazard Rate Funktion	.18
	3.5	Schlüs	sselelemente der Rating-Methodik für strukturierte Finanzprodukte	. 19
		3.5.1	Ausfallwahrscheinlichkeiten	. 20
		3.5.2	Recovery Rates	20
		3.5.3	Ausfallkorrelationen	21
	3.6	Die B	edeutung von Korrelationsannahmen	. 21
	3.7	Monte	e Carlo Simulationen	.22
	3.8	Scorin	ng-basierte und kausale Ratingsyteme	. 23
	3.9	Credit	Enhancement	.24
	3.10	Das "	Credit Spread Puzzle": Portfolio-Diversifikation und Risikoreduk-	
		tion		. 24
	3.11	Risiko	panalyse strukturierter Kreditprodukte	26
		3.11.1	Die Bedeutung des Modellrisikos	. 26
		3.11.2	Non-Default Risiken	. 26
	3.12	Konst	ruktion von Kreditkurven	. 27
		3.12.1	Historische Ausfallraten der Ratingagenturen	. 27
		3.12.2	Optionspreistheorie nach Merton	.28
		3.12.3	Marktinformationen	. 28
		3.12.4	Typischer Verlauf	29
	3.13	Copul	a Funktionen: Vom Einzelkredit zur Kreditportfolioanalyse	.30
	3.14	Asset-	vs. Defaultkorrelation	. 31
4.	Rati	ngverfa	ahren und Analysemodelle	. 32
	4.1	Die R	atingansätze der großen Ratingagenturen	32
		4.1.2	Moody's BET	32

		4.1.2.a	weighted Average Rating Factor (WARF)	. 32
		4.1.2.b	Diversity Score (DS)	. 34
		4.1.2.c	Ratingerstellung	.36
	4.1.3	Moody's	CB Ansatz	.37
	4.1.4	Moody's	Double BET und Multi BET	.38
	4.1.5	Moody's	Analysemodelle	38
	4.1.6	Fitch's V	ECTOR Modell	. 39
		4.1.6.a	Ausfallwahrscheinlichkeit	. 39
		4.1.6.b	Asset-Korrelation	.40
		4.1.6.c	Recovery Rate	.41
		4.1.6.d	Modell-Outputs und Cashflow-Modellierung	. 42
	4.1.7	Standard	& Poor's OSA-Ansatz und das EVALUATOR Modell	. 43
	4.1.8	Standard	& Poor's Actuarial Test	. 43
	4.1.9	Vergleich	n der Korrelationsannahmen der Ratingagenturen	.44
	4.1.10	Das Phän	omen des "Ratings Shopping"	. 45
	4.1.11	Kritische	Würdigung und die Notwendigkeit alternativer Modell-	
		ansätze		. 47
4.2	Theore	etische Mo	delle	48
	4.2.1	Das Ein-I	Faktor-Firmenwert-Modell	. 48
	4.2.2	Copula-M	Modelle	.50
		4.2.2.a	Copula-basierte Abhängigkeits-Maße	.51
		4.2.2.b	Ein-Faktor Gauß-Copula	. 52
		4.2.2.c	Stochastic Correlation Copula	.53
		4.2.2.d	Student t Copula	. 54
		4.2.2.e	Weitere Copula Modelle im Überblick	. 56
		4.2.2.f	Ermittlung der bedingten und unbedingten Verlustver-	
			teilung des Portfolios	.57
		4.2.2.g	Wahl der Copula und Schätzung der Parameter	.57
		4.2.2.h	Kritische Würdigung	. 58
	4.2.3	Single-St	ep Modelle	.59
	4.2.4	Multi-Ste	p Modelle	. 60
		4.2.4.a	Einfache CreditMetrics Erweiterung	.61
		4.2.4.b	Diffusion-driven CreditMetrics Erweiterung	. 61
		4.2.4.c	Stochastic Default Intensity Ansatz	.62

Lit	Literaturverzeichnis140			
An	Anhang93			
An	hangve	rzeich	nis	91
5.	Zusan	ımenf	assung	88
			4.3.5.b	Das Intensity-Gamma Modell
			4.3.5.a	Die perfekte Copula84
	۷	1.3.5	Modelle	zur Bewertung exotischer CDO-Strukturen84
	۷	1.3.4	Das Frail	ty-Modell81
	۷	1.3.3	Komonot	one Ausfallpfade79
	۷	1.3.2	Homogen	neous Pool Model+ (HPM+) Methode77
			4.3.1.d	Das Multifaktor Copula-Modell
			4.3.1.c	Das Zwei-Faktoren Modell73
			4.3.1.b	Stochastische Gewichtung des systematischen Faktors 71
			4.3.1.a	Stochastische Recovery Rates
	۷	1.3.1	Erweiter	ungen der Ein-Faktor Gauß-Copula69
	4.3	Alterna	ative Mod	ellansätze69
			4.2.5.d	Moment Generation Function (MGF) Methode 68
			4.2.5.c	Central Limit Theorem (CLT) Methode67
			4.2.5.b	LH+ Ansatz65
			4.2.5.a	Large Homogeneous Portfolio (LHP) Ansatz 64
	4	1.2.5	Vereinfac	chungen des Monte Carlo-Ansatzes

Darstellungsverzeichnis

Darst. 1:	Charakteristiken verschiedener CDO-Typen	3
Darst. 2:	Schematischer Überblick einer strukturierten Finanzierung	4
Darst. 3:	Zugrundeliegende Sicherheiten weltweiter CDO-Emissionen 2006	
	(13. Quartal)	9
Darst. 4:	Weltweite CDO-Emissionen (in Mrd. \$) pro Quartal nach CDO-	
	Тур	10
Darst. 5:	Das CDO Modellierungs-Schema	10
Darst. 6:	Beispielhafte Tranchierung einer CDO-Transaktion	13
Darst. 7:	Ratingsymbole der Agenturen und ihre Bedeutung	15
Darst. 8:	Verlustverteilung bei hoher und niedriger Ausfallkorrelation	22
Darst. 9:	Standardabweichung der Verluste und Reduktionsfaktor	
	(in Klammern) bei unterschiedlicher Größe des Referenzportfolios	25
Darst. 10:	Typischer Verlauf von Kreditkurven	29
Darst. 11:	Moody's Ratingfaktoren	33
Darst. 12:	Moody's Diversity Score-Tabelle	35
Darst. 13:	Inputfaktoren der Monte Carlo Simulation	39
Darst. 14:	Auszug aus Fitch's Recovery Rate-Annahmen	42
Darst. 15:	Finanzierungskosten verschiedener CDO-Strukturen	46
Darst. 16:	Copula-Dichten einer Gauß-Copula (links) und einer Student-t Copu	ıla
	(rechts)	55
Darst. 17:	Transformation der gleichverteilten Werte in Realisierungen der	
	Randverteilungen für ausgewählte Copulas	56

Symbolverzeichnis

$lpha_{_{it}}$	Ungewichtete Komponente des Returns des Assets <i>i</i> in Periode <i>t</i>
$oldsymbol{lpha}_{ij}$, $oldsymbol{eta}_{ij}$	Nichtnegative Konstanten
$\alpha(s), \beta(s)$	Koeffizienten der unbedingten Überlebenswahrscheinlichkeit
β	Korrelationsparameter
$oldsymbol{eta}_{ik}$	Gewichtung des k-ten Faktors von Asset i
$\overline{oldsymbol{eta}}_{ik}$	Durchschnittliche Faktorgewichtung
δ	Copula-spezifischer Parameter
$oldsymbol{arepsilon}_i$	Durchschnittliches idiosynkratisches Risiko
$oldsymbol{arepsilon}_{it}$	Idiosynkratisches Risko von Asset i in Periode t
${\cal E}_n$	Idiosynkratisches Risiko des Schuldners n
ϕ_2	Bivariate Normalverteilungsfunktion
$\phi_{2,\rho_0}(C_0,A)$	Dichte der bivariaten Normalverteilung mit
	Korrelationskoeffizient $ ho_0$, bewertet bei C_0 und A
ϕ^{-1}	Inverse Normalverteilungsfunktion
γ	Inter-Sektor-Korrelation
$\gamma^{\scriptscriptstyle (k)}$, $\omega^{\scriptscriptstyle (k)}$	Anpassungen der HPM+ Methode
κ	Parameter der stochastischen Differentialgleichung
λ	Intensitätsprozess
$\lambda_{_j}$	Abhängigkeitsparameter des systematischen Faktors der Asset-
	Teilmenge j
$\lambda_{_k}$	Parameter des Poisson-Prozesses mit zugehöriger
	Wahrscheinlichkeit π_k
$\lambda_{\scriptscriptstyle L}$	Lower Dependence
$\lambda_{\scriptscriptstyle U}$	Upper Dependence
λ_1,λ_2	Parameter des jeweiligen Poisson-Prozesses des Schuldners 1
	bzw. 2
$\lambda(t)$	Intensität des Ausfalls zum Zeitpunkt t

$\mu_{\scriptscriptstyle i}$	Konstante der i-ten Recovery Rate
μ_r'	r-ter Moment
v	Anzahl der Freiheitsgrade einer Student-t Verteilung
$\pi_{_k}$	Wahrscheinlichkeit, dass der Prozeßparameter λ den Wert λ_k
	annimmt
heta	Copula-spezifischer Parameter
θ	Parameter der stochastischen Differentialgleichung
$oldsymbol{ heta}_{ij}$	Die Zwei-Punkt-Verteilung der Faktorgewichtungen definierende
	reelle Zahl
ρ	Korrelationsparameter
ρ	LH+ Ansatz (Greenberg et al 2004): Korrelationskoeffizient des
	Sub-Portfolios
$ ho_{_{k(i)}}$	Korrelation des Asset i zugeordneten Industriesektors
$ ho_{\mathit{Sp}}$	Spearman's rho
$oldsymbol{ ho}_0$	Korrelationsparameter des einzelnen Assets
$ ho_{\scriptscriptstyle 12}$	Paarweise Returnkorrelation
σ	Standardabweichung
σ	Parameter der stochastischen Differentialgleichung
σ^2	Varianz
$ au_{i}$	Ausfallzeit des Schuldners i
$ au_{\scriptscriptstyle{K}}$	Kendall's tau
$ au_{k:n}$	Zeit bis zum k-ten Ausfall unter den n Schuldnern des Pools
	bezüglich des Ausfallpfades L
${\widetilde au}_{k:n}$	Zeit bis zum k -ten Ausfall unter den n Schuldnern des Pools
	bezüglich des Ausfallpfades \widetilde{L}
v_i , m_i	Größen, die den Wert des Assets i als standardnormalverteilten
	Ausdruck definieren
ω	Schranke des prozentualen Verlustes
ω_1,ω_2	Werte der Ergebnismenge
ξ_i	Standardnormalverteilte Zufallsvariable der i-ten Recovery Rate
$\psi(u)$	Wahrscheinlichkeitserzeugende Funktion

 ℓ_i Stetige Größe der Verlusthöhe des i-ten Schuldners Zeitintervall Δt ΔJ Parameter der stochastischen Differentialgleichung Γ^{i} Gamma-Prozess i P Wahrscheinlichkeitsmaß auf Σ Σ Ereignisalgebra Ergebnismenge Ω Logisches und Modell der stochastischen Recovery Rates (Andersen und Sidenius 2004): Diskrete Faltung 1_{.} Indikatorfunktion Driftrate des Multigamma-Prozesses a Faktorgewichte a_i, b_i *j*-te Faktorgewichtung des *i*-ten Schuldners a_{ij} A, BSchranken Durchschnittlicher Verlust A_{k} b Ober- bzw. Untergrenze des *k*-ten Intervalls B_{i} Unabhängige Bernoulli-verteilte Zufallsvariable $B(\cdot)$ Binomialverteilung $c_i(t)$ Ausfallrate des Schuldners i zum Zeitpunkt t \boldsymbol{C} Schranke, die der Gesamtverlust überschreitet $C_i(\cdot)$ Mappingfunktion des Assets i $C(\cdot)$ Copula-Funktion $\tilde{C}(\cdot)$ Upper Frechet Copula-Funktion C^{G} Gauß Copula C^{SC} Stochastic Correlation Copula Korrelation Cor **Kovarianz** Cov Element des Definitionsbereichs D d DLevel, das der Portfoliowert unterschreitet

D Modell der stochastischen Recovery Rates (Sidenius 2004):

Definitionsbereich

DD Default Treshold (Ausfallschwelle), fallweise mit Superskript i

für Unternehmen i bzw. t für Periode t

 DR_x Auf x Jahre bezogene Default Rate

*DR*₁ Einjährige Default Rate

DS_C Korrelierter Diversity Score

 DS_X Diversity Score des Pools X

Diversity Score des Pools Y

exp Exponentieller Wert zur Basis *e*

 $E_{V}(\cdot)$ Durch den Marktfaktor V bedingter Erwartungswert

 $E(\cdot)$ Erwartungswert

 EL_i Erwarteter Verlust des j-ten Szenarios

 EL_{rs} Erwarteter Verlust bei r Ausfällen im Pool X und s Ausfällen im

Pool Y

 EL_{TR} Erwarteter Verlust der betrachteten Tranche

 $f_{Y,F_{\epsilon}}(y)$ Bedingte Dichte der Frailty Variable

 $f(\cdot)$ Dichtefunktion

f(t), g(t) Beliebige Funktionen

f(t) * g(t) Faltung

F Identischer Nominalwert aller Assets im Pool

 $F_{(\cdot)}$ Randverteilungsfunktion

 F_i Nominalwert des Assets i

 $F_i^{\overline{V_i}}$ Kumulative Verteilung der $\overline{V_i}$

 F_{kt} Auf Periode t bezogener Faktor k

 F_t Zum Zeitpunkt t verfügbare Information

 $F_{Y,F,}(y)$ Bedingte Verteilung der Frailty Variable

 $F(\cdot)$ Verteilungsfunktion

 $F^{V}(\cdot)$ Verteilungsfunktion von V

$G_{t_l}(\cdot), G_{t_q}(\cdot)$	Verteilungsfunktion der Ausfallquote des komonotonen
	Ausfallpfades zum Zeitpunkt t_1 bzw. t_q
h_1, h_2	Ausfallintensität des dem Schuldner 1 bzw. 2 zugeordneten
	Poisson-Prozesses
h(t)	Hazard Rate (Ausfallrate)
$H(\cdot)$	Kumulative Verteilung der $\overline{V_i}$
i, j	Betrachtetes Asset i bzw. j aus einer Menge von N Assets im Pool
$inf\left\{ \cdot ight\}$	Infimum (untere Grenze)
$_{i}oldsymbol{q}_{x}$	Wahrscheinlichkeit, dass eine bestimmte Sicherheit in den
	nächsten i Jahren ausfallen wird, vorausgesetzt sie hat bereits x
	Jahre "überlebt", fallweise mit $i = n, n + l, t$.
I_{t}	Wachsender stochastischer Prozeß der Business Time
$I/C-Ratio_{Tranche_i}$	Kennzahl des Interest Coverage-Tests für Tranche i
j	Element der Teilmenge J
J	Teilmenge aller im Portfolio befindlichen Assets
k	Anzahl der Ausfälle, fallweise mit Index i für i Ausfälle im
	Portfolio
k	Betrachtete Periode bzw. Intervall
k(i)	Schuldner i zugeordneter Industriesektor
K_{i}	Ausfallschranke des Assets i
K_{i}	I/C-Test: Kupons der Tranche i
$K_{\scriptscriptstyle Pool}$	Kupon des Collateral Pools
K_{senior}	Summe der Kupons aller übergeordneten Tranchen
l_i	Verlusthöhe des i-ten Schuldners
l_i^{max}	Maximale Verlusthöhe des i-ten Schuldners
L	Anzahl der Ausfälle im Portfolio
L	LH+ Ansatz (Greenberg et al 2004): Gesamtverlust
L	Komonotone Ausfallpfade (Bluhm und Overbeck 2005b):
	Ursprünglicher Pfad der Ausfallquoten
L_{j}	Verlust im <i>j</i> -ten Szenario

L_{j}	Multifaktor-Copula Modell (Hull und White 2004): <i>LGD</i> des <i>j</i> -
	ten Schuldners
$L_{j}(t)$	Sektorspezifischer Verlust zum Zeitpunkt t
L_{ji}	Verlust des j-ten Schuldners bei stochastischer Recovery Rate
L_{rs}	Verlust bei r Ausfällen im Pool X und s Ausfällen im Pool Y
L_{t}	Ausfallquote des Portfolios zum Zeitpunkt t
L_{t_i} , L_{t_q}	Ausfallquoten des Portfolios zum Zeitpunkt t_1 bzw. t_q
L(t)	Kumulierte Verluste des Portfolios zum Zeitpunkt t
L(v)	Bedingter prozentualer Verlust des Portfolios
L^{hom}	Verlust des homogenen Teils des Gesamtportfolios
\widetilde{L}	Komonotoner Ausfallpfad
$\widetilde{L}_{t_i},\widetilde{L}_{t_q}$	Ausfallquoten des komonotonen Ausfallpfades zum Zeitpunkt t_1
	bzw. t_q
m	Anzahl der Faktoren
$max(\cdot)$	Maximum
$min(\cdot)$	Minimium
M_{i}	LGD des Schuldners i
$MGF_{W}(t)$	Momenterzeugende Funktion von W zum Zeitpunkt t
n	Anzahl der Assets im Referenzpool
n	Historische Ausfallraten (Li 2000): Obere Grenze des
	betrachteten Zeitintervalls
$_{n}$ p_{x}	Wahrscheinlichkeit, dass eine bestimmte Sicherheit bis zum Ende
	des Jahres n nicht ausfällt, vorausgesetzt sie hat bereits x Jahre
	"überlebt",
N	Nominalwert des Sub-Portfolios
$N_i(t)$	Ausfallindikator des Schuldners i zum Zeitpunkt t
N_0	Nominalwert des einzelnen Assets
$N_1(t), N_2(t)$	Frailty Modell (Schönbucher 2003): Dem Schuldner 1 bzw. 2
	zugeordneter Poisson-Prozess

Nominalwert der Tranche i

 NW_i

NW_{Pool}	Nominalwert des Collateral Pools
NW_{senior}	Summe der Nominalwerte aller übergeordneten Tranchen
$O/C-Ratio_{Tranche_i}$	Kennzahl des Overcollateralization-Tests für Tranche i
p	Ausfallwahrscheinlichkeit
p	LH+ Ansatz (Greenberg et al 2004): Durchschnittliche
	Ausfallwahrscheinlichkeit des Sub-Portfolios
\overline{p}	Durchschnittliche Ausfallwahrscheinlichkeit
$p_{\scriptscriptstyle A}$	Ausfallwahrscheinlichkeit von Schuldner A
p_{AAA_T}	Ausfallwahrscheinlichkeit für ein AAA geratetes Asset mit
	Laufzeit T
p_{AB}	Gemeinsame Ausfallwahrscheinlichkeit der Schuldner A und B
$p_{A/B}$	Bedingte Ausfallwahrscheinlichkeit des Schuldners A
$p_{\scriptscriptstyle B}$	Ausfallwahrscheinlichkeit von Schuldner B
$p_{{\scriptscriptstyle B/A}}$	Bedingte Ausfallwahrscheinlichkeit des Schuldners B
p_i, p_j	Ausfallwahrscheinlichkeit des Schuldners i bzw. j
p_{ji}	Ausfallwahrscheinlichkeit des Schuldners i bei stochastischer
	Recovery Rate
$p_{\scriptscriptstyle k}$	Wahrscheinlichkeit, dass der Verlust bis zum Zeitpunkt T im k-
	ten ntervall auftritt
$p_{\mathit{Senior-Tranche}}$	Ausfallwahrscheinlichkeit der Senior Tranche
$p_{\scriptscriptstyle t}^{\scriptscriptstyle i\!/\!\scriptscriptstyle V}$	Bedingte Ausfallwahrscheinlichkeit des Schuldners i zum
	Zeitpunkt t (bedingt durch V)
$p_{t}^{i W_{j}}$	Bedingte Ausfallwahrscheinlichkeit des Schuldners i zum
	Zeitpunkt t (bedingt durch W_j)
$p_{t,k}$	Wahrscheinlichkeit für k Ausfälle im Portfolio zum Zeitpunkt t
$p_T(k)$	Wahrscheinlichkeit, dass der gesamte Verlust bis zum
	Zeithorizont <i>T</i> im <i>k</i> -ten Intervall liegt
p_X	Ausfallwahrscheinlichkeit des Pools X
p_{X_T}	Ausfallwahrscheinlichkeit für eine Sicherheit mit Rating x und

Laufzeit T

$p_{\scriptscriptstyle Y}$	Ausfallwahrscheinlichkeit des Pools Y
p_0	Ausfallwahrscheinlichkeit des einzelnen Assets
$p_{2,2}$	Gemeinsame Wahrscheinlichkeit, dass zwei verschiedene Assets
	in Periode 2 ausfallen
p(v)	Bedingte Ausfallwahrscheinlichkeit
$\overline{p}(v)$	Durchschnittliche bedingte Ausfallwahrscheinlichkeit des
	Portfolios
P	Nominalwert des Portfolios
P_{j}	Wahrscheinlichkeit für j Ausfälle im Pool
P_{XY}	Wahrscheinlichkeit, dass r Assets in Pool X und s Assets in Pool
	Y ausfallen
$P(\cdot)$	Wahrscheinlichkeitsfunktional
P(k,T)	Wahrscheinlichkeit, dass der Verlust bis zum Zeitpunkt T im k -
	ten Intervall oder höher liegt
$P(k,[T_1,T_2])$	Wahrscheinlichkeit, dass ein Verlust sich in der Mitte des
	Intervalls k befindet und zwischen T_1 und T_2 auftritt
$P(t,T_1,T_2)$	Bedingte gemeinsame Überlebenswahrscheinlichkeit beider
	Schuldner (bedingt durch die zum Zeitpunkt t verfügbare
	Information)
$Po(\lambda_{_t})$	Poisson-Approximation mit Parameter λ_t
$P^{(i)}ig(\cdot Vig)$	Diskrete Verteilung für ℓ_i
P^*	Nominalwert des homogenen Portfolios
PV	Bedingter Erwartungswert des Portfoliowertes
q	Überlebenswahrscheinlichkeit
$q_{\scriptscriptstyle t}^{\scriptscriptstyle i/\!\!V}$	Bedingte Überlebenswahrscheinlichkeit des Schuldners i zum
	Zeitpunkt t (bedingt durch V)
$q_{\scriptscriptstyle t}^{{\scriptscriptstyle i/\!W_j}}$	Bedingte Überlebenswahrscheinlichkeit des Schuldners i zum
	Zeitpunkt t (bedingt durch W_j)
$q_{t,k:n}$	Wahrscheinlichkeit, dass die Ausfallquote des Portfolios zum
	Zeitpunkt t kleiner gleich $k - l$ von n Ausfällen beträgt