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Abstract 

The miniaturization of optical devices to spatial dimensions akin to their electronic 

device counterparts requires structures that guide electromagnetic energy with a lateral 

confinement below the diffraction limit of light. This cannot be achieved using 

conventional optical waveguides or photonic crystal defect waveguides. Thus, a size 

mismatch between electronic and optical integrated devices exists and needs to be 

overcome. 

In this thesis, the possibility of employing plasmon-polariton excitations in “plasmon 

waveguides” consisting of closely spaced metal nanoclusters with a subwavelength cross 

section for the confinement and guiding of electromagnetic energy is examined both 

theoretically and experimentally. The feasibility of energy transport with mode sizes 

below the diffraction limit of visible light over distances of several hundred nanometers 

is demonstrated. 

As a macroscopic analogue to nanoscale plasmon waveguides, the transport of 

electromagnetic energy in the microwave regime of the electromagnetic spectrum along 

structures consisting of closely spaced centimeter-scale metal rods is investigated. The 

dispersion relation for the propagation of electromagnetic waves is determined using full-

field electrodynamic simulations, showing that information transport occurs at a group 

velocity of 0.65c for fabricated structures consisting of centimeter-scale copper rods 

excited at 8 GHz (λ = 3.7 cm). The electromagnetic energy is highly confined to the 

arrays, and the propagation loss in a straight array is about 6 dB/16 cm. Routing of 

energy around 90-degree corners is possible with a power loss of 3-4 dB, and tee 

structures for the splitting of the energy flow and for the fabrication of an all-optical 
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modulator are investigated. Analogies to plasmon waveguides consisting of arrays 

of nanometer-size metal clusters are discussed. 

The possibility of guiding electromagnetic energy at visible frequencies with mode 

sizes below the diffraction limit is analyzed using an analytical point-dipole model for 

energy transfer in ordered one-dimensional arrays of closely spaced metal nanoparticles. 

It is shown that such arrays can work as plasmon waveguides that guide electromagnetic 

energy on the nanoscale. Energy transport in these arrays occurs via near-field coupling 

between metal nanoparticles, which sets up plasmon modes. This coupling leads to 

coherent propagation of energy with group velocities exceeding the saturation velocity of 

electrons in semiconductor devices. The point-dipole model suggests the feasibility of 

complex guiding geometries such as 90-degree corners and tee structures for the routing 

of electromagnetic energy akin to the fabricated macroscopic guiding structures, and the 

possibility of an all-optical modulator operating below the diffraction limit is suggested. 

The interparticle coupling in plasmon waveguides is examined using finite-difference 

time-domain (FDTD) simulations. Local excitations of plasmon waveguides show direct 

evidence for optical pulse propagation below the diffraction limit of light with group 

velocities up to 0.06c in plasmon waveguides consisting of arrays of spherical noble 

metal nanoparticles in air. The calculated dispersion relation and group velocities 

correlate well with predications from the simple point-dipole model. A change in particle 

shape to spheroidal particles shows up to a threefold increase in group velocity for 

structures that can be fabricated using electron beam lithography. Pulses with transverse 

polarization are shown to propagate with negative phase velocities antiparallel to the 

energy flow. 



 vii

Plasmon waveguides consisting of spherical and spheroidal gold and silver 

nanoparticles were fabricated using electron beam lithography with lift-off on ITO coated 

quartz slides. Far-field polarization spectroscopy reveals the existence of longitudinal and 

transverse collective plasmon-polariton modes. Measurements of the polarization 

dependent extinction confirm that the collective modes arise from near-field optical 

interactions. The key parameters that govern the energy transport are determined for 

various interparticle spacings and particle chain lengths using measurements of the 

resonance frequencies of the collective plasmon modes. For spherical Au nanoparticles 

with a diameter of 50 nm and an interparticle spacing of 75 nm, the energy attenuation of 

the plasmon waveguide is 6 dB/30 nm. This loss can be reduced and the energy 

attenuation length conversely increased by approximately one order of magnitude by 

using spheroidal silver nanoparticles as building blocks of plasmon waveguides, which 

show an enhanced interparticle coupling and a decreased plasmon damping. 

Near-field optical microscopy allows for the local optical analysis and excitation of 

plasmon waveguides. Using the tip of a near-field optical microscope as a local excitation 

source and fluorescent polystyrene nanospheres as detectors, experimental evidence for 

energy transport over a distance of about 0.5 µm is presented for plasmon waveguides 

consisting of silver rods with a 3:1 aspect ratio and a center-to-center spacing of 80 nm. 

Ways to further improve the efficiency of energy guiding in plasmon waveguides and 

possible applications are discussed. 
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