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Abstract

The miniaturization of optical devices to spatial dimensions akin to their electronic
device counterparts requires structures that guide electromagnetic energy with a lateral
confinement below the diffraction limit of light. This cannot be achieved using
conventional optical waveguides or photonic crystal defect waveguides. Thus, a size
mismatch between electronic and optical integrated devices exists and needs to be
overcome.

In this thesis, the possibility of employing plasmon-polariton excitations in “plasmon
waveguides” consisting of closely spaced metal nanoclusters with a subwavelength cross
section for the confinement and guiding of electromagnetic energy is examined both
theoretically and experimentally. The feasibility of energy transport with mode sizes
below the diffraction limit of visible light over distances of several hundred nanometers
is demonstrated.

As a macroscopic analogue to nanoscale plasmon waveguides, the transport of
electromagnetic energy in the microwave regime of the electromagnetic spectrum along
structures consisting of closely spaced centimeter-scale metal rods is investigated. The
dispersion relation for the propagation of electromagnetic waves is determined using full-
field electrodynamic simulations, showing that information transport occurs at a group
velocity of 0.65¢ for fabricated structures consisting of centimeter-scale copper rods
excited at 8 GHz (4 =3.7 cm). The electromagnetic energy is highly confined to the
arrays, and the propagation loss in a straight array is about 6 dB/16 cm. Routing of
energy around 90-degree corners is possible with a power loss of 3-4 dB, and tee

structures for the splitting of the energy flow and for the fabrication of an all-optical
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modulator are investigated. Analogies to plasmon waveguides consisting of arrays
of nanometer-size metal clusters are discussed.

The possibility of guiding electromagnetic energy at visible frequencies with mode
sizes below the diffraction limit is analyzed using an analytical point-dipole model for
energy transfer in ordered one-dimensional arrays of closely spaced metal nanoparticles.
It is shown that such arrays can work as plasmon waveguides that guide electromagnetic
energy on the nanoscale. Energy transport in these arrays occurs via near-field coupling
between metal nanoparticles, which sets up plasmon modes. This coupling leads to
coherent propagation of energy with group velocities exceeding the saturation velocity of
electrons in semiconductor devices. The point-dipole model suggests the feasibility of
complex guiding geometries such as 90-degree corners and tee structures for the routing
of electromagnetic energy akin to the fabricated macroscopic guiding structures, and the
possibility of an all-optical modulator operating below the diffraction limit is suggested.

The interparticle coupling in plasmon waveguides is examined using finite-difference
time-domain (FDTD) simulations. Local excitations of plasmon waveguides show direct
evidence for optical pulse propagation below the diffraction limit of light with group
velocities up to 0.06¢ in plasmon waveguides consisting of arrays of spherical noble
metal nanoparticles in air. The calculated dispersion relation and group velocities
correlate well with predications from the simple point-dipole model. A change in particle
shape to spheroidal particles shows up to a threefold increase in group velocity for
structures that can be fabricated using electron beam lithography. Pulses with transverse
polarization are shown to propagate with negative phase velocities antiparallel to the

energy flow.
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Plasmon waveguides consisting of spherical and spheroidal gold and silver
nanoparticles were fabricated using electron beam lithography with lift-off on ITO coated
quartz slides. Far-field polarization spectroscopy reveals the existence of longitudinal and
transverse collective plasmon-polariton modes. Measurements of the polarization
dependent extinction confirm that the collective modes arise from near-field optical
interactions. The key parameters that govern the energy transport are determined for
various interparticle spacings and particle chain lengths using measurements of the
resonance frequencies of the collective plasmon modes. For spherical Au nanoparticles
with a diameter of 50 nm and an interparticle spacing of 75 nm, the energy attenuation of
the plasmon waveguide is 6 dB/30 nm. This loss can be reduced and the energy
attenuation length conversely increased by approximately one order of magnitude by
using spheroidal silver nanoparticles as building blocks of plasmon waveguides, which
show an enhanced interparticle coupling and a decreased plasmon damping.

Near-field optical microscopy allows for the local optical analysis and excitation of
plasmon waveguides. Using the tip of a near-field optical microscope as a local excitation
source and fluorescent polystyrene nanospheres as detectors, experimental evidence for
energy transport over a distance of about 0.5 um is presented for plasmon waveguides
consisting of silver rods with a 3:1 aspect ratio and a center-to-center spacing of 80 nm.
Ways to further improve the efficiency of energy guiding in plasmon waveguides and

possible applications are discussed.
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