۱۸/	ï	rts		h	2	f+
\mathbf{v}	- 1	1 12	U	ш	а	1 L

Jan Elers

Überprüfung der Einsatzmöglichkeit von Produktionskennlinien als Instrument des Produktions-Controlling bei Wertstromoptimierten Fertigungen

Diplomarbeit

Bibliografische Information der Deutschen Nationalbibliothek:

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Copyright © 2001 Diplom.de ISBN: 9783832462826

Jan Elers

Überprüfung der Einsatzmöglichkeit von Produktionskennlinien als Instrument des Produktions-Controlling bei Wertstromoptimierten Fertigungen

Jan Elers

Überprüfung der Einsatzmöglichkeit von Produktionskennlinien als Instrument des Produktions-Controlling bei Wertstromoptimierten Fertigungen

Diplomarbeit an der Fachhochschule Hamburg Fachbereich Wirtschaft 3 Monate Bearbeitungsdauer November 2001 Abgabe

agentur@diplom.de ————www.diplom.de

ID 6282

Elers, Jan: Überprüfung der Einsatzmöglichkeit von Produktionskennlinien als Instrument des Produktions-Controlling bei Wertstromoptimierten Fertigungen

Hamburg: Diplomica GmbH, 2003

Zugl.: Hamburg, Fachhochschule, Diplomarbeit, 2001

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden, und die Diplomarbeiten Agentur, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

Diplomica GmbH http://www.diplom.de, Hamburg 2003 Printed in Germany

Inhaltsverzeichnis

V	erzeichr	nis der verwendeten Abkürzungen und Formelzeichen	III
1	Einfü	hrung	1
2	Stand	l der Technik	4
		oduktion	
	2.1.1	Ziele der Produktion	
	2.1.2	Organisation der Produktion	7
	2.2 Mo	odelle zur Abbildung der Produktion	7
	2.2.1	Modell für Produktionen nach dem Werkstattprinzip (Trichtermodell)	
	2.2.2	Modell für Produktionen nach dem Fließprinzip (Wertstromdesign)	
	2.3 Pro	oduktionsplanung und -steuerung	26
	2.3.1	Steuerung von Produktionen nach dem Werkstattprinzip mit der Belastungsorientierten	
		Auftragsfreigabe	28
	2.3.2	Steuerung von Produktionen nach dem Fließprinzip mit KANBAN	30
	2.4 Co	ntrolling	31
	2.4.1	Produktionscontrolling bei Produktionen nach dem Werkstattprinzip	36
	2.4.2	Produktionscontrolling bei Fertigungen nach dem Fließprinzip	40
3	Offen	e Punkte/ Ziel der Arbeit/ Vorgehensweise	44
4	Über	prüfung der Einsatzmöglichkeit von Betriebskennlinien zum Controllin	g von
	Wert	strom-optimierten Produktionen	46
	4.1 An	wendungsvoraussetzungen von Betriebskennlinien	46
	4.1.1	Überprüfung der Anwendungsvoraussetzungen von Produktionskennlinien	46
	4.1.2	Überprüfung der Anwendungsvoraussetzungen von Lagerkennlinien	52
	4.2 Ab	bildung des logistischen Potentials	53
	4.2.1	Abbildung von Fließfertigungen in Form von Fertigungszellen	53
	4.2.2	Abbildung von KANBAN-Supermärkten und FiFo-Bahnen	56
	4.2.3	Abbildung des Ausgleiches des Produktionsmixes und des –volumens	60
	4.3 Ab	bildung der Prinzipien von Wertstromdesign mit Betriebskennlinien	61
	4.3.1	Abbildung der relevanten Stell- und Zielgrößen	61
	4.3.2	Übereinstimmung der Definitionen_	65
	4.3.3	Vereinheitlichung unterschiedlicher Definitionen	69

4.	4 Vo	rschläge zur Anpassung von Betriebskennlinien	_ 70	
	4.4.1	Einbindung des Kundentaktes in die Produktionskennlinien	_ 70	
	4.4.2	Einbindung des "EPEI" in die Produktionskennlinien	_ 72	
	4.4.3	Einbindung der Wertschöpfung in die Produktionskennlinien	_ 74	
4.	.5 We	eitere Anforderungen	_ 75	
5	Schlu	ssbetrachtung	78	
5.	.1 Zu	sammenfassung	_ 78	
5.	5.2 Ausblick			
Sun	nmary	·	82	
Abb	oildun	gs- und Tabellenverzeichnis	83	
Glo	ssar_		85	
Lite	eratur	verzeichnis	89	
Dan	ıksagu	ing	93	
Anł	nang_		_ 1	
1	For	rmelübersicht Betriebskennlinien	_ II	
2	Syı	mbole des Wertstromdesigns	_IV	
3	Gr	afische Darstellungsmöglichkeiten von Kennzahlen zur Messung der Leistung von		
	We	ertstrom-ontimierten Produktionen	\mathbf{V}	

Verzeichnis der verwendeten Abkürzungen und Formelzeichen

Abkürzungen

activity-based costing abc

Arbeitsgang AG

BOA Belastungsorientierte Auftragsfreigabe General Ledger (engl.), Hauptbuch
Manufacturing Resource Planning
Optimized Production Technology
Produktions-Controlling
Produktionsplanung und -steuerung GL **MRP** OPT

PC

PPS

Formelzeichen

C

ronnerzeici	<u>1C11</u>	
Zeichen		Bedeutung
FIFO		First in - First out
i,j		Allgemeine Laufvariablen
m		Mittelwert
max		Maximalwert
mg		Mittlerer gewichteter Wert
S		Standardabweichung
TLOS		Teillos
V		Variationskoeffizient
(t)		Mit Hilfe der Kennlinientheorie berechneter Mittelwert (als Funk-
		tion des Laufparameters t)
(T)		Wert einer Größe zum Zeitpunkt T
. ,	Einheit	Bedeutung
	ANZ	Anzahl
	BKT	Betriebskalendertag
	ME	Mengeneinheiten (allgemein; z.B. Stk; m²; kg)
	Std	Stunden
	Stk	Stück
	Std * BKT	Flächenangabe (Stunden * Betriebskalendertage)
	Sek	Sekunden
	%	Prozent
Zeichen	Einheit	Bedeutung
α_1	-	Streckfaktor der Kennlinientheorie
A	%	Auslastung
AB	Std	Zugang
В	Std	Bestand
BA	-	Bestand (in Anzahl Aufträgen)
$\mathrm{BI}_{\mathrm{min}}$	Std	Idealer Mindestbestand
BL	ME	Lagerbestand
BL_0	ME	Unterer Grenzwert des Lagerbestandes
BL_1	ME	Erweiterter Grenzwert des Lagerbestandes
BL_S	ME	Sicherheitsbestand
BR	ME/ BKT	Bedarfsrate
$\mathrm{B}_{\mathrm{rel}}$	%	Relativer Bestand
\circ		

C_{NORM}-Parameter

EPEI F _{FM}	z.B. Tage ME* BKT	Every Part Every Intervall (Wertstromdesign) Fehlmengenfläche
FG	-	Flussgrad
Kundentakt	Stk/ Sek	Produktionstakt, um genau den Kundenbedarf zu befriedigen (Wertstromdesign)
L	Std/ BKT	Leistung
L_{max}	Std/ BKT	Maximal mögliche (mittlere) Leistung
LV	BKT	Lieferverzug Lagerabgang
LV_0	BKT	Grenzlieferverzug
LV_1	BKT	Erweiterter Grenzlieferverzug
M_{AB}	ME	Lagerabgangsfläche
M_N	ME	Nachfragemenge
n	-	Anzahl auszuwertender Ereignisse
P	BKT	Bezugszeitraum (Periode)
R	BKT	Reichweite
RZ	Sek	Rüstzeit (Wertstromdesign)
t	-	Laufvariable in der Kennlinientheorie (0≤t≤1)
TA^{-}	BKT	Negative Terminabweichung (Vorzeitige Auslieferung)
TA^{+}	BKT	Positive Terminabweichung (Verzögerung)
TBE	BKT	Termin Bearbeitungsende eines Arbeitsvorganges
TBEV	BKT	Termin Bearbeitungsende des Vorgängerarbeitsvorganges
$t_{\rm e}$	min/ ME	Einzelzeit je Mengeneinheit (Vorgabezeit)
TKAP	Std	Tageskapazität
$t_{\rm r}$	min	Rüstzeit je Arbeitsvorgang (Vorgabezeit)
TRA	BKT	Rüstanfang
WBZ	BKT	Wiederbeschaffungszeit
WIP	Stk	work-in-process (Wertstromdesign)
X	ME	Losgröße
X_{AB}	ME	Lagerabgangsmenge je Abgangsereignis
X_{ZU}	ME	Lagerzugangsmenge je Zugangsereignis
Z	-	Anzahl Zeitabschnitte im Bezugszeitraum
ZAU	Std	Auftragszeit (Vorgabestunden)
ZDF	BKT	Durchführungszeit (Arbeitsvorgang)
ZDL	BKT	Durchlaufzeit (Arbeitsvorgang)
ZTR		Transportzeit; Dimensionsangabe vom Anwendungsfall abhängig
		(z.B. min; Std; BKT)
ZU	Std	Zugang
ZUE	BKT	Übergangszeit (Arbeitsvorgang)
ZZ	Sek/ Stück	
_ <u>_</u>	SOIL STOCK	

1 Einführung

Industrieunternehmen wirtschaften in einem Marktumfeld, das dem ständigen Wandel unterzogen ist¹. Ein härter werdender Wettbewerb, gesättigte Märkte, eine starke Differenzierung der Nachfrage und kurze Produktlebenszyklen sind Merkmale dieser "turbulenten Aufgabenumwelten"².

Der Produktionsbereich hat sich diesem Umfeld anzupassen. Eine Massenproduktion im tayloristischen Stil wird den heutigen Anforderungen nicht mehr gerecht. Eine Antwort auf diese Herausforderung wurde in Japan von der Firma Toyota als Lean Production entwickelt. Das Konzept wurde hierzulande Anfang der 90er Jahre durch eine Studie vom Massachusetts Institut of Technology (MIT)³ bekannt.

Eine Methode, um Lean Production in der Produktion umzusetzen, ist **Wertstromdesign**. Mit Wertstromdesign steht ein Modell zur Verfügung, mit dem sich die Produktion mit einfachen Mitteln abbilden und optimieren lässt.

Eine "schlanke" (=lean) oder Wertstrom-optimierte Produktion muss, wie jede andere Produktion auch, gesteuert (Produktionsplanung und –steuerung) und überwacht (Controlling) werden.

Ein Element der Produktionsplanung und –steuerung beim Wertstromdesign ist Kanban. Beim Controlling wurde das Konzept des Lean Management Accounting entwickelt. Allerdings mangelt es für Wertstrom-optimierte Produktionen an Controlling-Instrumenten, mit denen die Zusammenhänge zwischen den logistischen Zielgrößen der Produktion, wie Durchlaufzeit, Leistung und Bestand ermittelt und visualisiert werden können. Das Wissen über die Zusammenhänge zwischen den logistischen Zielgrößen ist aber wichtig, um eine einseitige Optimierung der Produktion nach einer Zielgröße zu vermeiden.

.

¹ Vgl. im folgenden [Zahn-95, S.134-143]

² [Zahn-95, S. 139]

³ Vgl. [Woma-90]