
Michael Fink

Declarative Logic-Programming
Components for Information Agents

Doctoral Thesis / Dissertation

Computer Science



Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred,
distributed, leased, licensed or publicly performed or used in any way except as
specifically permitted in writing by the publishers, as allowed under the terms and
conditions under which it was purchased or as strictly permitted by applicable
copyright law. Any unauthorized distribution or use of this text may be a direct
infringement of the author s and publisher s rights and those responsible may be
liable in law accordingly.

Copyright © 2002 Diplom.de
ISBN: 9783832462529

https://www.diplom.de/document/221472



Michael Fink

Declarative Logic-Programming Components for Infor-
mation Agents

Diplom.de





 

ID 6252 

 
 
 

Michael Fink 
 
 

Declarative Logic-
Programming Components for 
Information Agents 
 
 
Dissertation / Doktorarbeit 
an der Technischen Universität Wien 
Fachbereich Technische Naturwissenschaften und Informatik 
5 Semester Bearbeitungsdauer 
September 2002 Abgabe 

 
 
 
 
 
 
 
 
 
 
 



 

 

ID 6252 
Fink, Michael: Declarative Logic-Programming Components for Information Agents 
Hamburg: Diplomica GmbH, 2002  
Zugl.: Wien, Technische Universität, Dissertation / Doktorarbeit, 2002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, 
insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von 
Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der 
Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, 
bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung 
dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen 
der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik 
Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich 
vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des 
Urheberrechtes. 

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in 
diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, 
dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei 
zu betrachten wären und daher von jedermann benutzt werden dürften. 

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können 
Fehler nicht vollständig ausgeschlossen werden, und die Diplomarbeiten Agentur, die 
Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine 
Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen. 

Diplomica GmbH 
http://www.diplom.de, Hamburg 2002 
Printed in Germany 



Abstract

At present, the World Wide Web faces several problems regarding the search for specific infor-
mation, arising, on the one hand, from the vast number of information sources available, and, on
the other hand, from their intrinsic heterogeneity. A promising approach for solving the complex
problems emerging in this context is the use of information agents in a multi-agent environment,
which cooperatively solve advanced information-retrieval problems. An intelligent information
agent provides advanced capabilities resorting to some form of logical reasoning, based on ad
hoc knowledge about the task in question and on background knowledge of the domain, suitably
represented in a knowledge base.

In this thesis, our interest is in the role which some methods from the field of declarative logic
programming can play in the realization of reasoning capabilities for intelligent information
agents. We consider the task of updating extended logic programs (ELPs), since, in order to
ensure adaptivity, an agent’s knowledge base is subject to change. To this end, we develop up-
date agents, which follow a declarative update policy and are implemented in theIMPACT agent
environment. The proposed update agents adhere to a clear semantics and are able to deal with
incomplete or inconsistent information in an appropriate way.

Furthermore, we introduce a framework for reasoning about evolving knowledge bases, which
are represented as ELPs and maintained by an update policy. We describe a formal model which
captures various update approaches, and define a logical language for expressing properties of
evolving knowledge bases. We further investigate the semantical properties of knowledge states
with respect to reasoning. In particular, we describe finitary characterizations of the knowledge
evolution, and derive complexity results for our framework.

Finally, we consider a particular problem of information agents, namelyinformation source se-
lection, and develop an intelligent site-selection agent. We use ELPs for representing relevant
knowledge and for declarative query analysis and query abstraction. We define syntax and se-
mantics of declarative site-selection programs, making use of advanced methods from answer
set programming for priority handling and quantitative reasoning. A site selection component is
implemented on top of theDLV KR system and itsplp front-end for prioritized ELPs. We re-
port experimental results for this implementation, obtained using a representative example from
a movie domain.



Kurzfassung

Die Suche nach spezifischer Information im Internet steht zur Zeit einer Reihe von Problemen
gegenüber, die sich einerseits auf die große Anzahl verfügbarer Informationsquellen und ande-
rerseits auf deren immanente Heterogenität zurückführen lassen. Ein vielversprechender Ansatz
zur Lösung der komplexen Probleme, die in diesem Zusammenhang auftreten, ist der Einsatz von
Informationsagenten in Multi-Agenten Systemen, in denen mehrere Informationsagenten koope-
rieren, um gemeinsam schwierige Aufgaben der Informationsbeschaffung zu lösen. Ein intelli-
genter Informationsagent entwickelt dabei besondere Fähigkeiten, indem er logisches Schließen
auf eine Wissensbasis anwendet, die auf formalem Wissen über die jeweilige Aufgabe und auf
Hintergrundwissen über den Problembereich basiert.

In dieser Dissertation wird untersucht, welche Rolle Methoden der deklarativen logischen Pro-
grammierung in der Entwicklung von Komponenten für intelligente Informationsagenten spie-
len können. Es wird zunächst das Problem betrachtet, eine Wissensbasis, die durch sogenannte
Erweiterte Logische Programme(ELPs) repräsentiert ist, entsprechend zu aktualisieren. Dies
ist deshalb von besonderer Bedeutung, da von einem intelligenten Informationsagenten erwartet
wird, daß er sich an Änderungen seines Umfeldes entsprechend anpaßt. Es werden sogenannte
„Update Agents“ entwickelt und alsIMPACT -Agenten implementiert, die diese Aufgabe lösen,
indem sie einer deklarativen Strategie folgen. Die vorgeschlagenen Agenten zeichnen sich durch
ihre klar definierte Semantik aus und sind darüberhinaus in der Lage, mit unvollständiger sowie
inkonsistenter Information umzugehen.

Desweiteren wird ein theoretisches System eingeführt, welches das logische Schließen über dy-
namische Wissensbasen ermöglicht, welche als ELPs repräsentiert sind und anhand einer de-
klarativen Strategie aktualisiert werden. In diesem formalen Modell lassen sich verschiedenste
Update-Ansätze und Methoden ausdrücken. Eine eigens definierte logische Sprache ermöglicht
es, Eigenschaften derartiger Wissensbasen formal auszudrücken und durch formales Schließen
zu verifizieren. Da letzteres aber rechnergestützt nur möglich ist, wenn die „Evolution“ der Wis-
sensbasis durch eine endliche Anzahl verschiedener Zustände beschreibbar ist, werden endliche
Charakterisierungen herausgearbeitet und zur Untersuchung der computationalen Komplexität
des Systems herangezogen.

Zuletzt widmen wir uns einer konkreten Aufgabe von Informationsagenten, nämlich der Auswahl
geeigneter Informationsquellen, und entwickeln dafür einen intelligenten „Site-Selection Agent“.
Dabei werden ELPs nicht nur zur Repräsentation relevanten Wissens verwendet, sondern auch
um Anfragen deklarativ zu analysieren und eine abstrakte Repräsentation einer Anfrage zu be-
rechnen. Syntax und Semantik deklarativer „Site-Selection Programme“ werden definiert, indem



vi

auf fortgeschrittene Methoden der Answer-Set Programmierung zurückgegriffen wird, die der
Behandlung von Prioritäten und dem quantitativen Schließen dienen. Unter Zuhilfenahme des
Wissensverarbeitungs-SystemsDLV und dessen Front-endplp für ELPs mit Prioritäten wird
eine „Site-Selection“ Komponente für intelligente Informationsagenten implementiert. Experi-
mentelle Ergebnisse werden anhand einer repräsentativen Beispielanwendung aus dem Kino-
filmbereich gewonnen und analysiert.
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1 Introduction

In the past decade, with the World Wide Web entering our daily life, a wealth of information has
become available to a large group of users. The Internet hype was carried by a wave of optimism
and expectations in the radically new forms of communication, information dissemination, and
information retrieval the new technology provided. To date, it seems that while the Web is still
highly appreciated for communicating and publishing, when searching the Web for information,
users are often dissatisfied with the means for searching and the results obtained.

A user faces several problems when looking for desired information on the Web, which arise from
the vast amount of available information sources and from their heterogeneity, since standards
are missing. First of all, the user has to identify the relevant sources which should be queried,
since bounds on resources, time, and/or cost of services usually do not permit to queryall sources
which are available. The generation of a query plan is often quite expensive and cannot be optimal
when the user has no additional information about the knowledge contained in each source, but
merely a short description of it. Then, once the user has made up his or her plan, for each source
the query must be formulated in the appropriate way, depending on the interfaces available, as
well as on the data organization and presentation. Furthermore, the user must possibly adapt
the query more than once for each source in order to get the desired information, and must
learn several different query approaches. Furthermore, it may happen that some sources provide
as a result only partial or incomplete information to a query. The user has then to merge all
data retrieved, taking into account that the information provided by different sources may be
inconsistent. In such a situation, the user needs some notion of reliability for the sources in order
to choose the proper information.

There is need for a suitable information processing infrastructure relieving the user from these
tedious tasks. A promising approach for solving the complex problem is the use of amulti-agent
systemfor accessing several heterogeneous information sources. The user is presented a uniform
interface for accessing all available services and information sources, without having to bother
with the heterogeneity underneath. It is the system as a whole which takes care of searching the
appropriate sources, accessing them, and returning to the user the required information, and this
to an extent as complete and consistent as possible.

The realization of such systems requests for special functionalities and capabilities, which emerge
from specialized tasks like search and assessment of information sources, query planning, and
information merging and fusion, thereby dealing with incomplete information and inconsisten-
cies. Such capabilities are provided as services on request by various kinds ofinformation agents,
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which usually form a society of agents for cooperatively solving complex information-retrieval
problems. It is not hard to imagine that an advanced approach to any of these problems must
involve, in some form, logical reasoning tasks, based on ad hoc knowledge about the task in
question and on background knowledge of the domain, suitably represented in a knowledge base.
It is the goal of this thesis to investigate how methods from declarative logic programming can
be employed to allow information agents to solve some of their tasks more “intelligently”.

1.1 Intelligent Information Agents

In this thesis, we focus oninformation agents(sometimes also calledmiddle agents[46]), a
special kind of so-called software agents (see [122], for an extensive overview of software agent
programming approaches). The term information agent is broadly used in the literature and
several types of information agents, as well as facilities for their cooperation, have been suggested
and implemented. Following [76], they can be classified as follows:

Facilitators: Agents which take control over a set of subordinated agents and coordinate the
services they offer and the use of the resources they require.

Brokers: Agents often used for matching between a set of different data sources and user re-
quests. Brokers receive requests, look for relevant sources matching them, and then per-
form actions using services from other agents (combining them with their own resources
or information).

Mediators: In the mediator approach [131], meta-knowledge about a number of other agents
(sometimes calledprovider agents) is available to the mediator, which exploits it to create
higher-level services (not provided by the underlying agents) for user applications. These
new services result by the combination and merging of low-level services on the basis of
the comprehensive meta-information which the mediator has. In a sense, mediators may
be seen as enhanced, high-level brokers.

Yellow Pages: A yellow pages dictionary helps users and other agents in finding the right pro-
viders (other agents or information sources) for the kind of service they need, possibly
performing a match between advertised services, ontology of the domain in question and
service requests.

Blackboards: A blackboard serves as a temporal repository for service requests which remain
to be processed. Agents offering some service can access the blackboard and look for (and
retrieve from it) service requests which they can satisfy.

We are particularly interested in information agents acting as mediators. Thus, we assume that
the agent has knowledge about the application domain of interest, and some meta-knowledge
about the contents and features of the distributed, heterogeneous information sources the system
has access to.
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In order to satisfy a user request, an information agent may have to solve various subgoals,
such as identifying and possibly ranking relevant information sources; retrieving the required
information (or ask some appropriate provider agent for it); processing the information returned
by the sources by combining, merging, and integrating them; optimizing the number of accessed
sources, or the total cost and time required for the search, or the precision and completeness of
the results.

For fulfilling these tasks, an agent has to make decisions about what to do or how to proceed at
certain points. Anintelligent information agenttakes its decisions by reasoning using the knowl-
edge that it possesses about the application and the particular request to be answered. Rather than
having decision mechanisms implicitly hard-coded into the agent’s program, we assume that the
agent’s decision making facilities are modularized and attached to it asreasoning components.
The latter can be realized in many ways, by using one of the numerous approaches that have been
developed in the agent and AI literature.

1.1.1 Problems and challenges

Intelligent information agents are supposed to provide advanced capabilities which help in im-
proving the quality of query results. It is these capabilites that might be realized as, or supported
by, reasoning components. We list some of these capabilities below, without claiming that the
list is exhaustive:

• Decompose a requestin its “atomic” parts on the basis of available knowledge about
the information sources, and reformulate it according to the corresponding data structure.
The decomposition task can be of varying complexity and can generate a set of possible
decompositions, based on the information about the underlying sources and the domain of
interest [102, 103, 104, 37, 91, 23, 24, 26, 17, 18, 82, 83, 120, 6, 7, 8, 9].

• Integrate the query with additional user information, if available. This could require
asking first aprofiling agentfor the user profile, habits, rights and interests.

• Select the information sourcesto be queried, using the meta-knowledge about them and
about the application domain to determine which of the sources contain relevant data to
answer the query [102, 103, 104, 37, 91, 23, 24, 26, 8, 9, 17, 18, 82, 83, 120]. If possible,
determine further preferred information sources to be queried.

• Create a query plan.Determine in which order sub-queries are to be performed [102, 103,
104, 17, 18], on the basis of query decomposition, of the data available in every source,
and of preference over sources, in order to optimize the execution.

• Execute the plan, asking the corresponding provider agents for the required services and
waiting for their answers, possibly adapting the query plan dynamically to run-time infor-
mation and to the answers obtained so far [102, 103, 17, 18, 98].

• Compose and merge the answers.This task can have varying complexity, from simply
collecting all the answers and passing them to the interface agent without processing them,
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to organizing the retrieved data in some form (e.g., eliminating multiple instances of the
same information), to merging them in a single comprehensive answer, and so on [37, 91,
23, 24, 8, 9, 82, 83, 120].

• Detect and possibly remove inconsistenciesamong retrieved data [37, 91, 8, 9] on the
basis of an inconsistency removal strategy and of meta-knowledge about the sources, or
meta-knowledge contained in the answers themselves.

• Integrate incomplete information by means of internal reasoning capabilities [82, 83,
120].

• Start a learning procedure in order to improve or update internal models and reasoning
rules [17, 18], perhaps providing input to the profiling agent as well.

1.1.2 Systems and frameworks

Some of the tasks for intelligent information agents identified above have already been widely
addressed and some feasible solutions have been developed. Following the grouping suggested
in [105], existing intelligent Web systems have their main focus in some of the following fields:

User modeling and profiling: addressing the issue of deploying adaptive user interfaces and
recommendation systems, integrating user queries on the basis of the user profile or directly
suggesting the user items of interest.

Analysis and preprocessing of information sources:building up, on the basis of an applica-
tion domain description, the meta-knowledge on which reasoning and decision making is
based.

Information integration and information management: covering a wide area of applications
and different problems.

Especially in the field of information integration a large number of systems and frameworks
has been developed, e.g., the Information Manifold [102, 103, 104], Carnot [91, 37], InfoS-
leuth [23, 24, 26],HERMES [8, 9, 10, 127],IMPACT [128, 19, 69, 70],SIMS [17, 18], or
TSIMMIS [82, 83, 120] (for an overview of these systems cf. [64]). They are highly relevant,
since the kind of problems tackled by them and suggestions for solutions are of interest in the
whole field of heterogeneous information integration. However, many of these systems use ad
hoc procedural techniques, rather than declarative methods – especially declarative logic pro-
gramming methods – in which we are interested in. For a comprehensive overview of existing
systems in the field of information integration and of the role of computational logic in some of
them, we refer to [52]; for hints and relevant literature on user modeling and preprocessing of
information sources, see [105].
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1.2 Declarative Methods

By declarative methods, as opposed to procedural methods, we mean methods that allow us to
specify a problem in a formal language and to use an inference mechanism in order to solve
it, instead of operationally constructing, i.e., “programming”, the solution of the problem. In
particular, bydeclarative logic programmingwe mean logic programming techniques, where the
ordering of rules, as well as the ordering of atoms or literals in their bodies, have no influence on
the inference procedure and thus on the models obtained (e.g.,answer set programming[118] as
opposed to Prolog).

Our motivation to employ declarative methods – and in particular answer set programming tech-
niques – for developing reasoning components for information agents is driven by the following
advantages:

• They provide a clear formal semantics to the reasoning component.

• Changes in the specification are easily incorporated by modifying or adding suitable rules
or constraints, without the need for re-designing the entire component, as might be the
case, e.g., in procedural languages.

• Answer set programming is capable of handling incomplete information and performing
nonmonotonic inferences, which, arguably, is an inherent feature of the problem domain.

• Finally, the declarative nature of the answer set semantics formalism permits the coupling
with other logic-based components, e.g., sophisticated ontology tools and their reasoning
engines, which may be employed in order to providing advanced features.

In search for feasible or improved solutions to the challenges and problems of intelligent infor-
mation agents, given in Section 1.1.1, some central reasoning sub-tasks can be identified, which
the agent itself must have or be able to access in form of reasoning components. For some of
these reasoning tasks, listed below, declarative methods seem to be promising.

• Priority handling. Dealing with priority in the logic programming context has received
considerable attention, see, e.g., [86, 30, 93, 77, 47, 29, 32, 31, 14]. Priority information
needs to be encoded in the knowledge base of the agent, possibly explicitly in the object
language in which the knowledge itself is expressed. The preference relation may be static
or dynamic, in the latter case reasoning procedures have to account for possible changes.

• Revision and update.The knowledge base of the agent can be subject to change on the ba-
sis of information from the environment (the application domain itself, other agents inside
or outside the system, etc.), in order to incorporate changes in the outside world or changes
in the knowledge about it [29, 111, 101, 92, 123, 94, 78, 79, 11, 12, 13, 14, 15]. The epis-
temic state and the intended belief set of the agent have thus to be continuously revised,
depending on some specified update policy, which could be in turn explicitly described in
the knowledge base and maybe dynamically updated too.
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• Inconsistency removal. The agent should in the presence of conflicts in the knowledge
base be able to detect them and to find an acceptablefall-backknowledge configuration, in
order to ensure that the decision making process is not stopped or inconsistent as a whole.
The fall-back configuration is usually required to preserve “as much as possible” of the
available knowledge.

• Decision making with incomplete information. Under the manifestation of incomplete
information, some reasoning and deduction capabilities may provide candidate hypotheses
for the missing information pieces, in order to ensure that the process of decision making
can derive plausible results.

• Temporal reasoning. The evolution of a dynamic knowledge base could be subject to
specifications [15], and corresponding forms of reasoning about this evolution could be
provided for ensuring that the agent’s behavior is appropriate, e.g., that some undesired
status cannot be reached [71, 43].

• Learning. Based on the history of the agent (sequence of changes in its knowledge base,
or sequence of observations), some form of inductive learning could be implemented [123,
94, 50].

A number of different models and methods for knowledge representation and reasoning have been
developed in the past, which may be used for this purpose, e.g., description logics, abduction,
induction, and argumentation (cf. [122] for a broad overview and references). However, the focus
of this thesis is on the role which some methods from the field of declarative logic programming
can play in the realization of reasoning components for information agents. In particular, we
are interested to see how they can be used, extended, and further developed for the needs of this
domain of application. For an overview of methods from declarative logic programming aimed
at the above reasoning tasks the reader is referred to [64]

1.3 Outline

The main problems addressed in this thesis are the following. First, we consider the task of
updating logic programs. Since an information agent is situated in an environment which is
subject to change, it is required to adapt over time, and to adjust its decision making. For agents
utilizing logic programming techniques for representing (parts of) their knowledge, this requires
the agent to be able to update logic programs accordingly, in order to ensure adaptivity. Several
approaches for updating nonmonotonic logic programs, have been proposed, cf. [11, 12, 55,
56, 121, 79, 94, 101]. Towards a reasoning component for updating the knowledge base of an
information agent using extended logic programs for knowledge representation, we choose one
of the approaches, viz.update answer set semantics[55, 56, 121], develop algorithms for its
implementation, and realize a tool for application.

Besides an underlying update semantics, which specifies how new, possibly inconsistent infor-
mation is to be incorporated into the knowledge base, an agent needs to have a certainupdate
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policy, i.e., a specification of how to react upon the arrival of an update. The issue of how to
specify change requests for knowledge bases has received growing attention more recently and
suitable specification languages for nonmonotonic logic programs have been developed [15, 99,
100, 16, 57, 121, 62, 60]. We choose an approach, the languageEPI [57, 121, 62, 60], which
is not only independent of the underlying update semantics, but can also be “agentized” in the
IMPACT [128, 19, 69, 70] agent architecture in a straightforward way. By this means, we build
so-calledupdate agentsby “plugging-in” the implementation of update answer set semantics,
developed before.

Second, we address the task of temporal reasoning. Every intelligent agent is supposed to be able
to reason about future states, e.g., consequences of its behavior. While the update component
outlined above, enables an information agent, built on declarative logic programming techniques,
to query its knowledge state after a number of updates have occurred, it does not enable the agent
to answer queries such as whether a particular fact will be true in all possible future knowledge
states. Analogous issues, calledmaintenanceandavoidance, have been recently studied in the
agent community [133]. However, reasoning about an evolving knowledge base, maintained
using an update policy, has not yet been formally addressed. Thus, we aim at a framework for
expressing reasoning problems over such evolving knowledge bases, where we generalize from
the update policy – and of course of the update semantics – used. Within the framework, it
shall be possible to capture different approaches of incorporating updates into logic programs,
still paying attention to the specific nature of the problem. Furthermore, it should be possible to
evaluate a formula, which specifies a desired evolution behavior, across different realizations of
update policies based on different grounds.

Third, we consider a particular problem of information agents, namely information source se-
lection, and develop an intelligentsite selection agentbuilding on declarative methods. Given a
query by the user and a collection of information sources, the agent’s task is to select a source for
answering the query such that the utility of the answer, in terms of quality of the result and other
criteria, like, e.g., costs, is as large as possible for the user. An intelligent solution to this problem
needs to combine several aspects, such as basic properties of the information sources, knowledge
about their contents, and knowledge about the particular application domain. To this end, our site
selection component will incorporate advanced methods from declarative logic programming for
priority handling [30, 49, 95] and quantitative reasoning [34].

Main results. The main contributions of this thesis can be summarized as follows:

(1) We develop algorithms that allow for update answer set semantics to be implemented by
the use of existing logic programming systems as an underlying reasoning engine. Based on
these algorithms, we develop a tool, calledupd , which is conceived as a front-end to the state-
of-the-art solverDLV [68, 54]. The implementation allows for different modes of reasoning and
handles also refinements of the semantics involving certain minimality-of-change criteria.

(2) We develop update agents, which deploy the update front-end as their basic reasoning
component and follow a declarative update policy. To this end, we implement theEPI framework
for update specification by developing appropriate software packages for theIMPACT agent
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platform. The implementation is generic in the sense that it allows for other implementations
of update semantics for logic programs to be plugged in. Furthermore, agents can make use of
additional features ofIMPACT, e.g., enriching the policy language with deontic modalities.

(3) We introduce a generic formal model in which various approaches for updating extended
logic programs can be expressed. In particular, we introduce the concept of anevolution frame,
whose components serve to describe the evolution of knowledge states. Based on evolution
frames, we define the syntax and the semantics of a logical language for reasoning about evolving
knowledge bases, such that properties of an evolving knowledge base can be formally stated and
evaluated in a systematic fashion, rather than ad hoc.

(4) We investigate semantical properties of knowledge states for reasoning. In particular, since
in principle a knowledge base may evolve forever, we are concerned with finitary characteriza-
tions of evolution. To this end, we introduce various notions of equivalence between knowledge
states, and show several filtration results. As an application, we establish this for evolution frames
which model policies in theEPI framework for logic program updates using the answer set se-
mantics, as well as for LUPS and LUPS∗ policies [15, 16, 99] under the dynamic stable model
semantics [12].

(5) We derive complexity results for reasoning. Namely, we consider the problem of deciding
whether a given property, expressed by a formula in our logical language, holds for a given
knowledge state in a given evolution frame. While the problem is undecidable in general, we
single out several cases in which the problem is decidable, adopting some general assumptions
about the underlying evolution frame. In this way, we identify meaningful conditions under
which the problem ranges from PSPACE up to2-EXPSPACE complexity. We again apply this to
theEPI framework, showing that its propositional fragment has PSPACE complexity.

(6) We develop a reasoning component for intelligent information source selection, using ex-
tended logic programs (ELPs) [85] to represent rich descriptions of the information sources, an
underlying domain theory, and queries in a formal language. We perform query analysis by ELPs
and computequery abstractions. At the heart, a declarativesite selection programrepresents
both qualitative and quantitativecriteria (e.g., site preference and costs).

(7) We consider the interesting and, to our knowledge, novel issue ofcontextsin logic pro-
grams. Structured data items require a careful definition of the selection semantics whilst in-
heritance-based approaches, such as [33], do not apply here. Furthermore, implicit priorities,
derived from context information, must be combined with explicit user preferences from the
selection policy, and arising conflicts must be resolved.

(8) We have implemented a site selection agent and performed experiments in an example
application from the movie domain. Our example application comprises several XML databases,
wrapped from movie databases available on the Web, and handles queries in XML-QL. Experi-
ments that we have conducted show that the system behaved intuitively on a number of natural
queries, some of which require reasoning from the background knowledge to identify the proper
selection.
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The remainder of this thesis is organized as follows. In the next chapter we briefly introduce
extended logic programs, the basic formalism used for knowledge representation throughout this
thesis, and theIMPACT agent architecture, which represents the platform underlying our agent
implementations. Chapter 3 is devoted to update agents. There, we first introduce update answer
set semantics for updating extended logic programs, and then we address its implementation. In
the second part of the chapter, theEPI framework for update specifications is outlined leading
to the realization of update agents. In Chapter 4, we deal with reasoning about the evolution
of nonmonotonic knowledge bases. The formal definitions of an evolution frame and a formal
language for expressing properties of an evolving knowledge base serve as a starting point for
investigations on equivalence relations over knowledge states, which are useful in order to obtain
finite characterizations of the transition graph, and on the computational complexity of reasoning.
Site selection agents are the topic of Chapter 5. After giving an overview of the site selection
process and architecture, we formally define our approach to knowledge-based site selection,
before we turn to its implementation and application serving as a basis for the experimental results
reported. Finally, Chapter 6 concludes the thesis with a summary and some general remarks.

All original results contained in this thesis have been published as refereed papers in journals
and proceedings of international conferences. The update semantics and its implementation are
reported inTheory and Practice of Logic Programming[63] and appeared in preliminary form
in the proceedings of JELIA 2000 [55]. TheEPI language and its agentization inIMPACT have
been presented at IJCAI 2001 [57] as well as at the AISB 2001 Symposium on Adaptive Agents
and Multi-Agent Systems [58]. Most results of Chapter 4 are contained, in preliminary form,
in the proceedings of LPAR 2001 [59], and the site-selection approach of Chapter 5 has been
presented at KR 2002 [61].



2 Preliminaries

2.1 Declarative Logic Programming

The key method for knowledge representation used throughout this thesis is declarative logic
programming. In particular, we deal with extended logic programs [85], i.e., sets of rules, built
over a setA of (first-order) atoms where both default negationnot (often also referred to as
weak negation and also called negation as failure) and strong negation¬ (sometimes also called
classical negation) is available. Facts are represented byliterals. A literal, L, is either an atom
A (a positive literal) or a strongly negated atom¬A (a negative literal). For a literalL, the
complementary literal, ¬L, is ¬A if L = A, andA if L = ¬A, for some atomA. For a set
S of literals, we define¬S = {¬L | L ∈ S}. We also denote byLitA the setA ∪ ¬A of all
literals overA. A literal preceded by the default negation signnot is said to be aweakly negated
literal. In contrast to strong negation¬L, expressing the fact thatL is false, the intuition of weak
negation is, thatnot L is trueif we cannot assert thatL is true, i.e., if eitherL is false or we do
not know whetherL is true or false. We first consider the propositional case, i.e.,A is a set of
propositional atoms, while first-order programs will be introduced in Section 2.1.3.

2.1.1 Syntax

A rule, r, has the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln,

whereLi, 0 ≤ i ≤ n, are literals. We callL0 theheadof r andB(r) = {L1, . . . , Lm,not Lm+1,

. . . ,not Ln} thebodyof r. Furthermore, we will often useH(r) to denote the head of ruler. If
B(r) 6= ∅, we also allow the case whereL0 may be absent. We defineB+(r) = {L1, . . . , Lm}
andB−(r) = {Lm+1, . . . , Ln}. The elements ofB+(r) are referred to as theprerequisites
of r. Intuitively, rule r means that we can concludeL0 if (i) L1, . . . , Lm are known and (ii)
Lm+1, . . . , Ln arenot known. We employ the usual conventions for writing rules likeL0 ←
B1 ∪B2 orL0 ← B1 ∪ {L} asL0 ← B1, B2 andL0 ← B1, L, respectively.

If r has an empty head, thenr is aconstraint; if H(r) = {L0} and the body ofr is empty, then
r is a fact. In the latter case, slightly abusing notation,r is often simply represented by its head
literalL0. If n = m (i.e., if r contains no default negation), thenr is abasic rule.
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An extended logic program(ELP),P , is a (possibly infinite) set of rules. If all rules inP are
basic, thenP is a basic program. We say thatP is an extended logic programoverA if all
atoms occurring in the rules ofP are in a certain specified setA of atoms. Usually,A will
simply be understood as the set ofall atoms occurring inP . We denote byLA the set of all rules
constructible using the literals inLitA.

Example 1 Consider a knowledge baseKB represented as an ELP consisting of the following
rules:

KB = {r1 : night ,← ,

r2 : tv_on ← ,

r3 : watch_tv ← tv_on,
r4 : sleep ← night ,not tv_on }.

KB consists of two facts,r1 andr2, capturing a situation where it is night and my TV is on. The
basic ruler3 states that whenever my TV is on, then I am watching TV. Finally, ruler4 specifies
to infer, by default, that I am asleep, whenever it is night and it cannot be concluded that my TV
is on. 2

A set of literals isconsistentiff it does not contain a complementary pairA, ¬A of literals.
Consistent sets of literals are also referred to asinterpretations.

A literal L is true in an interpretationI (symbolicallyI |= L) iff L ∈ I, andfalseotherwise.
Given a ruler, the bodyB(r) of r is true inI iff (i) eachL ∈ B+(r) is true inI and (ii) each
L ∈ B−(p) is false inI. In other words,B(r) is true inI iff B+(r) ⊆ I andB−(r)∩ I = ∅. We
write I |= B(r) to express thatB(r) is true inI. Ruler is true inI iff H(r) is true inI whenever
B(r) is true inI. In particular, ifr is a constraint, thenr is true inI if B(r) is not true inI. The
fact thatr is true inI will be denoted byI |= r. Likewise, for a programP , I |= P means that
I |= r for all r ∈ P . In this case,I is said to be amodelof P .

2.1.2 Semantics

Since rules may include weak negation, they are more expressive than ordinary Horn clauses.
This is the intuitive reason why we cannot always assign a unique set of consequences to an ELP.
Another effect is that there exist several semantics of ELPs [53]. One of the most important is the
concept of an answer set [85], introduced below, which generalizes the concept of a stable model
for general logic programs[84] (i.e., programs not containing classical negation,¬).

Let r be a rule. Thenr+ denotes the basic rule obtained fromr by deleting all weakly negated
literals in the body ofr, i.e.,r+ = H(r) ← B+(r). Furthermore, we say that ruler is defeated
by a set of literalsS if some literal inB−(r) is true inS, i.e., ifB−(r) ∩ S 6= ∅. As well, each
literal inB−(r) ∩ S is said todefeatr.

Thereduct, PS , of a programP relative toa setS of literals is defined by

PS = {r+ | r ∈ Π andr is not defeated byS}.
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In other words,PS is obtained fromP by (i) deleting anyr ∈ P which is defeated byS and
(ii) deleting each weakly negated literal occurring in the bodies of the remaining rules. An
interpretationI is ananswer setof a programP iff it is a minimal model ofP I , i.e.,I |= P I and
no modelI ′ of P I exists, such thatI is a proper subset ofI ′. Observe that any answer set ofP
is a fortiori a model ofP . The set of allgenerating rulesof an answer setS from P is given by
GR(P, S) = {r ∈ P | S |= B(r)}.

By AS(P ) we denote the collection of all answer sets ofP . If AS(P ) 6= ∅, thenP is said
to besatisfiable, otherwiseP is inconsistent. The answer set semantics is due to Gelfond and
Lifschitz [85] and, thus, the reductP I is often called theGelfond-Lifschitz reduct.

Example 2 Reconsider the knowledge baseKB of Example 1. Given the interpretationS =
{night , tv_on,watch_tv}, the reductKBS consists of the rulesr1, r2, andr3. It is easily verified
thatS is a minimal model ofKBS . Hence,S is an answer set ofKB . 2

2.1.3 First-order programs

It is quite straightforward to extend the notion of answer sets to the case where variables may
occur in rules. This is done in the usual way by defining the semantics of programs with variables
in terms of the semantics of ground programs.

Let A be some countable first-order alphabet without equality and letP be a set of predicate
symbols fromA. By afirst-order program, P , overP we understand a set of rules withP being
the totality of predicate symbols occurring in the rules ofP .

For a list X = X1, . . . , Xn of variables, we writer(X) to indicate that ruler may contain
the variablesX1, . . . , Xn. Accordingly, instances ofr(X) will be denoted byr(t), wheret =
t1, . . . , tn is a list of terms andr(t) results fromr(X) by uniformly replacing occurrences ofXi

by ti (1 ≤ i ≤ n). We retain our convention of denoting the head of ruler byH(r) and the body
of r byB(r).

TheHerbrand universeof a programP consists of all terms constructible from the constants and
function symbols occurring inP . An instancer(t) of a ruler(X) ∈ P is groundiff t is a list of
terms from the Herbrand universe ofP . Theground instantiation, P ∗, ofP consists of all ground
instances of the rules fromP . As already mentioned above, the ground instantiationP ∗ of the
first-order programP determines the answer sets ofP . More specifically, the setAS(P ) of all
answer sets ofP is identified with the setAS(P ∗), where the answer sets of ground programs
are defined as for the propositional case.

2.1.4 Belief set and epistemic state

If a logic programP is regarded as theepistemic stateof an agent, then the given semantics can
be used for assigning abelief stateto any epistemic stateP in the following way.

Let I ⊆ LitA be an interpretation. Define

BelA(I) = {r ∈ LA | I |= r}.
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Furthermore, for a setI of interpretations, letBelA(I) =
⋂
i∈I BelA(I).

Definition 1 For a logic programP , the belief state,BelA(P ), of P is given byBelA(P ) =
BelA(AS(P )), whereAS(P ) is the collection of all answer sets ofP .

We writeP |=A r if r ∈ BelA(P ). As well, for any programQ, we writeP |=A Q if P |=A q
for all q ∈ Q. Two programs,P1 andP2, areequivalent(modulo the setA), symbolically
P1 ≡A P2, iff BelA(P1) = BelA(P2). Usually we will drop the subscript “A ” in BelA(·), |=A,
and≡A if no ambiguity can arise.

2.1.5 Computational complexity

We appeal to the basic concepts of complexity theory as they can be found in [115] ([97] is
also a good source for basic complexity classes; for a background on complexity results in logic
programming, cf. [124, 66, 45]; for complexity results of nonmonotonic logics in general see [89,
36]). Let us briefly recall the definitions of relevant complexity classes.

We consider complexity classes of the form TIME(f) (deterministic time), NTIME(f) (nonde-
terministic time), SPACE(f) (deterministic space), and NSPACE(f) (nondeterministic space),
where f : N → N, is a nondecreasing, polynomial-time computable function. The class
TIME(f(n)) contains all decision problems which are solvable by a deterministic Turing ma-
chine in at mostf(n) steps, while NTIME(f(n)) contains all decision problems which are solv-
able by a nondeterministic Turing machine in time bounded byf(n). Similarly, SPACE(f(n))
contains all decision problems solvable by a deterministic Turing machine requiring at most space
f(n) and NSPACE(f(n)) contains all decision problems solvable by a nondeterministic Turing
machine using space bounded byf(n).

We define the class P, consisting of all decision problems which are solvable in polynomial
time using a deterministic Turing machine, asP =

⋃
k>0 TIME(nk). Correspondingly, the class

NP =
⋃
k>0 NTIME(nk) consists of all decision problems which are solvable in polynomial time

using a nondeterministic Turing machine. Moreover,ΣP
2 is the class of all decision problems

solvable by a nondeterministic Turing machine in polynomial time with access to an oracle for
problems in NP (ΣP

2 is also written as NPNP). Furthermore, coNP refers to the class of problems
whose complementary problems are in NP, andΠP

2 contains the complements of the problems in
ΣP

2 .1 All the mentioned classes belong to thepolynomial hierarchy: NP and coNP are at the first
level of the polynomial hierarchy, andΣP

2 andΠP
2 are the second level. As well, NP⊆ ΣP

2 and
coNP⊆ ΠP

2 . It is widely held that these inclusions are proper.

Moreover, PSPACE is the class of all decision problems which are solvable in polynomial space
using a deterministic Turing machine (i.e., PSPACE=

⋃
k>0 SPACE(nk)). Similarly, NPSPACE

is the class of all decision problems which are solvable in polynomial space using a nondetermin-
istic Turing machine (i.e., NPSPACE=

⋃
k>0 NSPACE(nk)). It is well known that NPSPACE =

1Two decision problems,D1 andD2, are complementary (or,D1 andD2 are complements of each other) if it
holds thatI is a yes-instance ofD1 exactly if I is a no-instance ofD2.
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PSPACE, as well as it holds that every decision problem in the polynomial hierarchy is solvable
in PSPACE. Furthermore,

EXPSPACE=
⋃
k>0

SPACE(2n
k
) and2-EXPSPACE=

⋃
k>0

SPACE(22n
k

),

are the classes of decision problems solvable in (single) exponential space, respectively double
exponential space, using a deterministic Turing machine. Similarly,

EXPTIME =
⋃
k>0

TIME(2n
k
) and2-EXPTIME =

⋃
k>0

TIME(22n
k

),

are the exponential time, respectively double exponential time, classes.

Finite, propositional extended logic programming resides at the first level of the polynomial
hierarchy [110, 45], i.e., determining whether an extended logic programP has an answer set is
NP-complete, and determining whetherL ∈ Bel(P ) for some literalL is coNP-complete.

2.2 IMPACT Agents

As an agent framework for implementations, theInteractive Maryland Platform for Agents Col-
laborating Together(IMPACT ) ([128, 19, 69, 70]) agent system has been chosen for the follow-
ing reasons:IMPACT is an agent framework which allows for existing legacy code and data
sources to be “agentized”. Moreover, the behavior of anIMPACT agent, i.e., which actions it
takes upon a state change, is specified declaratively by a set of rules. The possibility to employ
existing implementations, together with the possibility of declarative agent specifications, makes
the utilization of the declarative logic-programming components developed in this thesis within
IMPACT agents straightforward.

Figure 2.1 shows the overall architecture of anIMPACT agent. All IMPACT agents have the
same architecture, and hence the same components, but thecontentsof these components can be
different, leading to different behaviors and capabilities offered by different agents.

Basically, the behavior of the agent is driven by anaction policy. Each agent possesses a message
box, which contains incoming and outgoing messages. On the basis of the content of the message
box and of queries to legacy data (performed by means of function calls which abstract both from
the structure of the underlying data and of the information sources), the actions to be performed
are selected under a declarative semantics. Constraints ensure security and integrity of data and
behavior. Actions may themselves be changes to available data, postings of messages to other
agents, and so on.

2.2.1 Agent data structures

Agents are built “on top” of some existing body of code. Thus, to every agent, a set of types
can be assigned, which contains all data types or data structures that the agent manipulates. As
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Figure 2.1:IMPACT agent architecture.

usual, each data type has an associateddomainwhich is the space of objects of that type. The set
of data structures is manipulated by a set of functions that are callable by external programs via
code calls. Such functions constitute theapplication programmer interface(API) of the package
on top of which the agent is built. An agent includes a specification of all signatures of these
API function calls (i.e., types of the inputs to such function calls and types of the output of such
function calls).

Every code callS : f(t1, . . . , tn), wheret1, . . . , tn areterms, i.e., either values or variables, is
based on a body of software code,S (a so-calledsoftware package). Such a code call says “exe-
cute functionf as defined in packageS on the list of arguments”. A code call can be evaluated
providing it is ground, i.e., all argumentsti must be values. Its output is a set of objects.

Code call atomsare expressions of the formin(t, cc) or notin(t, cc), wheret is a term andcc
is a code call. A ground termt succeeds (i.e., has answertrue) if t is in the set of values returned
by cc, otherwise it fails (i.e., has answerfalse). If t is a variable, then a code call atom returns
each value from the result ofcc, i.e., its answer is the set of ground substitutions fort such that
the code call atom succeeds.

A code call conditionis a conjunction of code call atoms andconstraint atoms, which may
involve deconstruction operations. An example of a constraint atom isX > 25, whereX is a
variable. A code call condition checks whether the stated condition is true. In general, constraint
atoms are of the formt1 ◦ t2 where◦ ∈ {=, 6=, <, ≤, >, ≥} andt1, t2 are terms.

Each agent has access to a message box data structure, together with some API function calls to
access it.

At any given point in time, the actual set of objects in the data structures (and the message box)
managed by the agent constitutes thestateof the agent. The set of ground code calls which are
true in it are identified as the state,O, of the agent.
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2.2.2 Actions

The agent has a set ofactions. For example, reading a message from the message box, executing a
request, updating the agent data structures, or even doing nothing is an action. Expressionsα(t),
whereα is an action andt is a list of terms, areaction atoms. They represent the sets of (ground)
actions which result if all variables int are instantiated by values. Only such actions may be
executed by an agent. Every action has a precondition,Pre(α), a set of effects that describe how
the agent state changes when the action is executed, and anexecution scriptor methodconsisting
of a body of physical code that implements the action.

2.2.3 Agent programs

Each agent has a set of rules (action rules) called theagent programspecifying the principles
under which the agent is operating. These rules specify, using deontic modalities, what the agent
may do, must do, may not do, etc. ExpressionsOα(t), Pα(t), Fα(t), Doα(t), andWα(t),
whereα(t) is an action atom, are calledaction status atoms. These action status atoms are
respectively read asα(t) is obligatory, α(t) is permitted, α(t) is forbidden, do α(t), and the
obligation to doα(t) is waived.

If A is an action status atom, thenA and¬A are calledaction status literals. An agent program
P is a finite set of rules of the form

A ← χ&L1 & · · · &Ln,

whereA is an action status atom,χ is a code call condition, andL1, . . . , Ln are action status
literals.

2.2.4 Semantics

Each agent program has aformal semanticswhich is defined in terms of semantical structures
calledstatus sets, i.e., sets of ground action status atoms. More specifically, the semantics of
an agent is defined with respect tofeasible status sets, which satisfy various conditions. First, a
feasible status setS is required to be closed under the rules of the agent program and comply to
the deontic and action axioms listed below. Second, concurrently executing all actionsα such
thatDo (α) ∈ S should take the agent from its current stateO to another stateO′ which satisfies
the integrity constraints, IC, associated with the agent. Third, concurrent execution of the set
of all actionsα such thatDo (α) ∈ S should not violate any of theaction constraints, AC,
associated with the agent.

The deontic and action axioms a feasible status setS has to obey for any ground actionα, consist
of deontic and action consistency axioms:

• If Oα ∈ S, thenWα /∈ S,

• If Pα ∈ S, thenFα /∈ S,



18 2 Preliminaries

• If Pα ∈ S, thenOS |= Pre(α) (i.e.,α is executable in the stateOS),

and ofdeontic and action closure rules:

• Oα ∈ S → Pα ∈ S,

• Oα ∈ S → Doα ∈ S, and

• Doα ∈ S → Pα ∈ S.

Additionally, stronger semantical notions than feasible status sets have been introduced forIM-
PACT agents, namelyrational status setsandreasonable status sets. Informally, rational status
sets are minimal feasible status sets, i.e., no subset of the action status set can be removed while
the program rules and deontic axioms are still satisfied. Reasonable status sets further restrict
rational status sets by the treatment of negation in the spirit of the treatment of default negation
for logic programs as introduced in the previous section. Thus, reasonable status sets extend the
stable model semantics of logic programs as shown in [128]. Moreover, reasonable status sets
have elegant important properties and are computationally not as hard as the other semantics,
cf. [128].

There are also further components ofIMPACT agents which are not relevant for our purposes
here. A more detailed description of theIMPACT system and the semantics ofIMPACT agents
can be found in [128, 69].



3 Update Agents

“A wise man changes his mind, a fool never will.” (Spanish Proverb)

Logic programming has not only been conceived as a computational logic paradigm for problem
solving – offering a number of advantages over conventional programming languages – and as
a well-suited tool for declarative knowledge representation and common-sense reasoning [21] –
possessing a high potential as a key technology to equip software agents with advanced reasoning
capabilities in order to make those agents behave intelligently (e.g., [122]) – but it has also been
realized that further work is needed on extending the current methods and techniques to fully
support the needs of agents.

An important aspect is that an agent is situated in an environment which is subject to change.
This requests the agent to adapt over time, and to adjust its decision making. For agents utilizing
logic programming techniques for representing knowledge, this requires the agent to be capable
of updating logic programs accordingly, in order to ensure adaptivity.

In a simple (but, as for currently deployed agent systems, realistic) setting, an agent’s knowledge
base,KB , may be modeled as a logic program, which the agent may evaluate to answer queries
that arise. Given various approaches to semantics, the problem of evaluating a logic program is
quite well-understood. However, an agent might be prompted to adjust its knowledge baseKB
after receiving new information in terms of anupdateU , given by a clause or a set of clauses that
need to be incorporated intoKB . Simply adding the rules ofU to KB does not give a satisfactory
solution in practice, and will result in inconsistency even in simple cases. For example, ifKB
contains the rulesa ← b andb ← , andU consists of the rule¬a ← stating thata is false,
then the unionKB ∪ U is not consistent under predominant semantics such as the answer set
semantics [85] or the (extended) well-founded semantics [129].

Besides an underlying update semantics, which specifies how new, possibly inconsistent infor-
mation is to be incorporated into the knowledge base, an agent needs to have a certainupdate
policy, i.e., a specification of how to react upon the arrival of an update. For instance, the policy
may specify the change or retraction of certain rules from the knowledge base, given some par-
ticular information. More precisely, given a new piece of information, the update mechanism has
to address the following questions:

1. Which facts and rules should be incorporated?

2. How should facts and rules be incorporated?


