Matthias Hartung

Entwurf aktiver zeitkontinuierlicher Filter in BICMOS-Technologie

Diplomarbeit

Bibliografische Information der Deutschen Nationalbibliothek:

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Copyright © 1999 Diplom.de ISBN: 9783832421960

Entwurf aktiver zeitkontinuierlicher Filter in BICMOS-Technologie

Matthias Hartung

Entwurf aktiver zeitkontinuierlicher Filter in BICMOS- Technologie

Diplomarbeit an der Fachhochschule Jena Fachbereich Elektrotechnik Prüfer Prof. Dr.- Ing. W. Ostritz 3 Monate Bearbeitungsdauer November 1999 Abgabe

Diplomarbeiten Agentur Dipl. Kfm. Dipl. Hdl. Björn Bedey Dipl. Wi.-Ing. Martin Haschke und Guido Meyer GbR

Hermannstal 119 k 22119 Hamburg

agentur@diplom.de www.diplom.de Hartung, Matthias: Entwurf aktiver zeitkontinuierlicher Filter in BICMOS- Technologie / Matthias Hartung - Hamburg: Diplomarbeiten Agentur, 2000 Zugl.: Jena, Fachhochschule, Diplom, 1999

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden, und die Diplomarbeiten Agentur, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

Dipl. Kfm. Dipl. Hdl. Björn Bedey, Dipl. Wi.-Ing. Martin Haschke & Guido Meyer GbR Diplomarbeiten Agentur, http://www.diplom.de, Hamburg 1999 Printed in Germany

Wissensquellen gewinnbringend nutzen

Qualität, Praxisrelevanz und Aktualität zeichnen unsere Studien aus. Wir bieten Ihnen im Auftrag unserer Autorinnen und Autoren Wirtschaftsstudien und wissenschaftliche Abschlussarbeiten – Dissertationen, Diplomarbeiten, Magisterarbeiten, Staatsexamensarbeiten und Studienarbeiten zum Kauf. Sie wurden an deutschen Universitäten, Fachhochschulen, Akademien oder vergleichbaren Institutionen der Europäischen Union geschrieben. Der Notendurchschnitt liegt bei 1,5.

Wettbewerbsvorteile verschaffen – Vergleichen Sie den Preis unserer Studien mit den Honoraren externer Berater. Um dieses Wissen selbst zusammenzutragen, müssten Sie viel Zeit und Geld aufbringen.

http://www.diplom.de bietet Ihnen unser vollständiges Lieferprogramm mit mehreren tausend Studien im Internet. Neben dem Online-Katalog und der Online-Suchmaschine für Ihre Recherche steht Ihnen auch eine Online-Bestellfunktion zur Verfügung. Inhaltliche Zusammenfassungen und Inhaltsverzeichnisse zu jeder Studie sind im Internet einsehbar.

Individueller Service – Gerne senden wir Ihnen auch unseren Papierkatalog zu. Bitte fordern Sie Ihr individuelles Exemplar bei uns an. Für Fragen, Anregungen und individuelle Anfragen stehen wir Ihnen gerne zur Verfügung. Wir freuen uns auf eine gute Zusammenarbeit

Ihr Team der Diplomarbeiten Agentur

Dipl. Kfm. Dipl. Hdl. Björn Bedey – Dipl. WiIng. Martin Haschke ––– und Guido Meyer GbR ––––––	
Hermannstal 119 k 22119 Hamburg	
Fon: 040 / 655 99 20 Fax: 040 / 655 99 222	
agentur@diplom.de www.diplom.de	

Inhaltsverzeichnis

1 EINLEITUNG		<u> 10 </u>
1.1	ZIELSTELLUNG	10
1.2	DER BEGRIFF DES FILTERS / FILTERSYNTHESE	10
1.3	EINTEILUNGS- UND REALISIERUNGSMÖGLICHKEITEN	11
<u>2 EI</u>	INIGE THEORETISCHE GRUNDLAGEN	14
2.1	NORMIERUNG / ENTNORMIERUNG	14
2.2	ÜBERTRAGUNGSFUNKTION	17
2.3	BODEDIAGRAMM	22
2.4	Pole, Nullstellen, PN-Schema	24
2.4.1	ALLGEMEINES	24
2.4.2	BEDEUTUNG DER LAGE VON POL- UND NULLSTELLEN	26
2.5	REALISIERBARKEITS- UND STABILITÄTSKRITERIEN	30
2.6	FILTERENTWURF - ALLGEMEIN	31
2.6.1	ENTWURF PASSIVER FILTER (RLC)	31
2.6.1.	1 Dämpfungstoleranzschema	31
2.6.1.	2 Tiefpaßentwurf	33
2.6.1.	3 Bandpaßentwurf	36
2.6.1.	3.1 Tiefpaß-Bandpaß-Transformation	36
2.6.1.	3.2 Seriell-Parallel-Wandlung	37
2.6.2	REALISIERUNG AKTIVER FILTERSTRUKTUREN	38
2.6.2.	1 Die Referenzfiltermethode	38
2.6.2.	2 Der Gyrator / Transkonduktanzen	38
2.6.2.	2.1 Wirkungsweise und prinzipieller Aufbau des Gyrators	38
2.6.2.	2.2 Simulation von Induktivitäten	40
2.6.2.	2.3 Prinzip des Steilheitsverstärkers (Transkonduktanz)	42

<u>3 FILTI</u>	ERSYNTHESE	44
3.1 DA	AS RLC-REFERENZFILTER	44
3.2 DA	AS RC-GYRATOR-FILTER	45
3.3 DA	AS TRANSKONDUKTANZ-C-FILTER	46
3.3.1	FILTERSTRUKTUR	46
3.3.2	DER TRANSKONDUKTANZVERSTÄRKER	49
3.3.2.1	Prinzip	49
3.3.2.2	Linearisierung	51
3.3.2.3	Negative Impedance Converter (NIC)	54
3.3.2.4	Biasing	56
3.3.2.5	Die komplette Schaltung	58
3.3.2.5.1	Baugruppen	58
3.3.2.5.2	Simulation	59
3.3.3	SIMULATION DES BANDPAßFILTERS	64
3.3.3.1	Verwendung von idealen BIAS-Quellen	64
3.3.3.2	Simulation mit realen BIAS-Quellen	66
4 SCHL	UßBEMERKUNGEN / FAZIT	70

Abbildungsverzeichnis

Abbildung 1	Grundaufgaben von Filtern	11
Abbildung 2	Zu normierende Schaltung und der Betragsverlauf ihrer Übertragungsfunktion	16
Abbildung 3	Amplituden- und Phasengang (Bodediagramm)	22
Abbildung 4	Dämpfung und Gruppenlaufzeit des gewählten Beispiels	23
Abbildung 5	Ortskurve <u>H(j</u> ω)	24
Abbildung 6	PN-Schema der Beispielfunktion	26
Abbildung 7	Definition von Polfrequenz und Polgüte	28
Abbildung 8	PN-Schemata Elementar-Tiefpaß, -hochpaß, -bandpaß, -bandsperre, -allpaß	29
Abbildung 9	Dämpfungstoleranzschema Tiefpaß	31
Abbildung 10	Dämpfungstoleranzschema Bandpaß	32
Abbildung 11	Realisierungsschaltungen für Polynomtiefpässe (6. Grad)	34
Abbildung 12	Realisierungsschaltungen für einen Cauer-Tiefpaß 3. Grades	34
Abbildung 13	Vergleich der Amplitudengänge verschiedener Tiefpässe 3. Ordnung	35
Abbildung 14	Seriell-Parallel-Wandlung	37
Abbildung 15	Schaltsymbol des Gyrators	39
Abbildung 16	Realisierung eines Gyrators mit zwei spannungsgesteuerten Stromquellen	40
Abbildung 17	Simulation einer Induktivität	41
Abbildung 18	NF-Ersatzschaltbild einer spannungsgesteuerten Stromquelle	42
Abbildung 19	Schaltsymbol der Transkonduktanz mit differentieller Signalführung	42
Abbildung 20	Transformation des RC-Tiefpasses in einen Bandpaβ 2. Ordnung	44
Abbildung 21	Das RC-Gyrator-Filter	46
Abbildung 22	Verschaltung zweier Transkonduktanzen zu einem Gyrator	47
Abbildung 23	Realisierung eines Widerstandes mit einer Transkonduktanz	47
Abbildung 24	Das Transkonduktanz-C-Filter	48
Abbildung 25	Differenzverstärker mit Linearisierungswiderstand (R_lin)	49
Abbildung 26	Das parallel-connected Doublet	51
Abbildung 27	Linearisierung mit dem parallel-connected Doublet	52
Abbildung 28	Das verwendete series-connected Doublet mit Levelshiftern	53
Abbildung 29	Relativer Oberwellengehalt bei Ansteuerung mit 78mV, 1MHz	53
Abbildung 30	Erläuterung zur Funktionsweise des NIC	55
Abbildung 31	Simulation des NIC mit $R_E = 32,8 \text{ k}\Omega$ und $I_{tail} = 50 \mu A$	56
Abbildung 32	Widlar-Stromspiegel (links) und Kaskode-Spiegel (rechts)	57
Abbildung 33	Testbench des Transkonduktanzverstärkers	59
Abbildung 34	Einstellbereich der Steilheit und Linearität bei $IB1 = 50 \ \mu A$	60
Abbildung 35	Verlauf der Steilheit, lastabhängig	60