

FORSCHUNGSBERICHTE

351

Christian Markus Seidel Finite-Elemente-Simulation des Aufbauprozesses beim Laserstrahlschmelzen Christian Markus Seidel

Finite-Elemente-Simulation des Aufbauprozesses beim Laserstrahlschmelzen

utzverlag · München 2019

Forschungsberichte iwb Band 351

Ebook (PDF)-Ausgabe: ISBN 978-3-8316-7520-3 Version: 1 vom Copyright© utzverlag 2019

Alternative Ausgabe: Softcover ISBN 978-3-8316-4833-7 Copyright© utzverlag 2019

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Werkzeugmaschinen und Fertigungstechnik

Finite-Elemente-Simulation des Aufbauprozesses beim Laserstrahlschmelzen

Christian Markus Seidel

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Gunther Reinhart

Prüfer der Dissertation:

- 1. Univ.-Prof. Dr.-Ing. Michael Zäh
- Hon.-Prof. Dr.-Ing. Thomas J. Uihlein (Brandenburgische Technische Universität Cottbus)

Die Dissertation wurde am 12.05.2016 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 05.07.2016 angenommen.

Christian Markus Seidel

Finite-Elemente-Simulation des Aufbauprozesses beim Laserstrahlschmelzen

Forschungsberichte IWB

Band 351

Zugl.: Diss., München, Techn. Univ., 2016

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Das Werk ist urheberrechtlich geschützt. Sämtliche, auch auszugsweise Verwertungen bleiben vorbehalten.

Copyright © utzverlag GmbH · 2019

ISBN 978-3-8316-4833-7 (gebundenes Buch) ISBN 978-3-8316-7520-3 (E-Book)

Printed in Germany utzverlag GmbH, München 089-277791-00 · www.utzverlag.de

Geleitwort der Herausgeber

Die Produktionstechnik ist für die Weiterentwicklung unserer Industriegesellschaft von zentraler Bedeutung, denn die Leistungsfähigkeit eines Industriebetriebes hängt entscheidend von den eingesetzten Produktionsmitteln, den angewandten Produktionsverfahren und der eingeführten Produktionsorganisation ab. Erst das optimale Zusammenspiel von Mensch, Organisation und Technik erlaubt es, alle Potentiale für den Unternehmenserfolg auszuschöpfen.

Um in dem Spannungsfeld Komplexität, Kosten, Zeit und Qualität bestehen zu können, müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt werden. Dabei ist es notwendig, die Komplexität von Produkten, Produktionsabläufen und -systemen einerseits zu verringern und andererseits besser zu beherrschen.

Ziel der Forschungsarbeiten des *iwb* ist die ständige Verbesserung von Produktentwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produktionsanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie Systeme zur Auftragsabwicklung werden unter besonderer Berücksichtigung mitarbeiterorientierter Anforderungen entwickelt. Die dabei notwendige Steigerung des Automatisierungsgrades darf jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. Fragen der optimalen Einbindung des Menschen in den Produktentstehungsprozess spielen deshalb eine sehr wichtige Rolle.

Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch aus den Forschungsbereichen des *iwb*. Diese reichen von der Entwicklung von Produktionssystemen über deren Planung bis hin zu den eingesetzten Technologien in den Bereichen Fertigung und Montage. Steuerung und Betrieb von Produktionssystemen, Qualitätssicherung, Verfügbarkeit und Autonomie sind Querschnittsthemen hierfür. In den *iwb* Forschungsberichten werden neue Ergebnisse und Erkenntnisse aus der praxisnahen Forschung des *iwb* veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissenstransfer zwischen dem Hochschulbereich und dem Anwender in der Praxis zu verbessern.

Gunther Reinhart

Vorwort

Die Simulation des Laserstrahlschmelzens hat in den letzten Jahren deutlich an Bedeutung gewonnen. Zahlreiche große Softwarehäuser bieten zwischenzeitlich kommerziell verfügbare Softwaretools an, mit denen die Vorhersage von Maßhaltigkeitsabweichungen und Eigenspannungen möglich sein soll. Aus diesem Grund habe ich mich entschieden, einige Jahre nach dem Abschluss meiner Promotion, die vorliegende Dissertation über den Utz-Verlag verfügbar zu machen. Die Inhalte dieses Werks entstanden während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Werkzeugmaschinen und Betriebswissenschaften (*iwb*) der Technischen Universität München im Zeitraum von 2012 bis 2014.

Herrn Prof. Dr.-Ing. Michael Zäh und Herrn Prof. Dr.-Ing. Gunther Reinhart, den Leitern des *iwb*, gilt mein besonderer Dank für die wohlwollende Förderung und großzügige Unterstützung meiner Arbeit. Durch ihre begeisternde Art, im Themenfeld Produktion an der Technischen Universität München zu lehren, haben sie maßgeblich dazu beigetragen, dass ich mich für die Erstellung dieser Arbeit entschieden habe. Ihre konstruktiv kritischen Rückmeldungen haben darüber hinaus im positivsten Sinne meine Arbeitsweise geprägt. Heute sind Michael Zäh und Gunther Reinhart Vorbilder für meine eigenen Lehraktivitäten an der Hochschule München.

Des Weiteren gilt mein herzlicher Dank Herrn Hon.-Prof. Dr.-Ing. Thomas J. Uihlein von der Brandenburgisch Technischen Universität Cottbus für die zahlreichen Diskussionen zur Arbeit und für die Übernahme des Korreferates. Herrn Prof. Dr.-Ing. Marc Lotz und Herrn Prof. Dr.-Ing. Johannes Schilp möchte ich für die kritische und konstruktive Durchsicht dieser Arbeit danken. Darüber hinaus bedanke ich mich bei allen Studierenden, die mich bei der Erstellung dieser Arbeit unterstützt haben, sowie allen Mitarbeiterinnen und Mitarbeitern des *iwb*. Dazu gehören vor allem Herr Martin Wunderer, Herr Dr.-Ing. Toni Adam Krol und Herr Johannes Weirather. Den Mitarbeiterinnen und Mitarbeitern der MTU Aero Engines AG, die am Projekt *AeroSim* beteiligt waren, sowie Herrn Clemens Groth von der CADFEM GmbH danke ich für die ausgezeichnete Zusammenarbeit.

Ich möchte meinen Freunden Dank aussprechen, die mir durch ihr Interesse an der Arbeit sowie ihre verständnisvolle Art eine wesentliche und kontinuierliche Unterstützung waren. Abschließend gilt der größte Dank meiner Familie und im Speziellen Jill, Hannelore, Markus und Verena, die mich vergleichslos während der Erstellung dieser Arbeit unterstützt haben.

München, November 2019

Prof. Dr.-Ing. Christian M. Seidel

Inhaltsverzeichnis

Inhaltsverzeichnisi				
At	okürzu	ngsverzeichnisvii		
Ve	rzeich	nis der Formelzeichenix		
1	Einle	itung1		
	1.1	Additive Fertigung und Laserstrahlschmelzen1		
	1.2	Motivation		
	1.3	Zielsetzung und Vorgehensweise		
2	Grun	dlagen9		
	2.1	Begriffsdefinitionen		
		2.1.1 Aufbauprozess, -modell, -simulation		
		2.1.2 Einzelspur-, Einzelschicht-, Multischichtsimulation		
		2.1.3 Aufwandsindex im Kontext der Simulation		
		2.1.4 Filigraner Bauteilbereich		
	2.2	Laserstrahlschmelzen		
	2.3	Schichtdaten als Informationsquelle14		
		2.3.1 Schichterzeugung (Slicen)		
		2.3.2 Schichtdaten im CLI-Format		
	2.4	Finite-Elemente-Simulation des Laserstrahlschmelzens		
		2.4.1 Ablauf einer Finite-Elemente-Berechnung		
		2.4.2 Thermomechanische Simulation des Aufbauprozesses 19		

Inhaltsverzeichnis

3	Stan	d der Technik zur Aufbauprozesssimulation	23	
	3.1	Vorgehen		
	3.2	Forschergruppe Livermore, USA		
	3.3	Forschergruppe Louisville, USA		
	3.4	Forschergruppe Augsburg, Deutschland		
	3.5	Forschergruppe Bremen, Deutschland		
	3.6	EU-gefördertes Forschungsprojekt Merlin		
	3.7	Weitere relevante Arbeiten		
	3.8	Resümee zum Stand der Technik		
	3.9	Angestrebter Erkenntniszugewinn durch diese Arbeit		
4	Anfo	orderungen an die Aufbauprozesssimulation		
	4.1	Vorgehen		
	4.2	Ergebnisse der Anwenderbefragung		
	4.3	Anforderungen durch zukünftige EntwicklungenAnforderungen auf Basis einer Prozessanalyse		
	4.4			
		4.4.1 Vorgehen und Randbedingungen	44	
		4.4.2 Bauteilmodellierung		
		4.4.3 Materialmodellierung	49	
		4.4.4 Modellierung der Wärmeeinbringung	51	
		4.4.5 Modellierung von Umgebungseinflüssen	52	
	4.5	Zusammenfassung	53	
5	Meth	hoden zur Modellierung des Aufbauprozesses	55	
	5.1	Digitale Prozesskette zur Bauteilmodellierung	55	
		5.1.1 Vorgehen	55	

		5.1.2	Auswahl eines Datenformats	56
		5.1.3	Prozesskette unter Verwendung von Anlagendaten	62
		5.1.4	Filigranitätsbewertung	65
	5.2	Elasto	p-plastische Materialmodellierung	79
		5.2.1	Vorgehen	79
		5.2.2	Einflussanalyse der Verformungsarten	80
		5.2.3	Planung von Warmzugversuchen	86
		5.2.4	Durchführung und Auswertung von Warmzugversuchen	93
		5.2.5	Diskussion des Gültigkeitsbereichs	98
	5.3	Mode	llierung der Wärmeeinbringung in Schichtverbunde 1	03
		5.3.1	Vorgehen 1	03
		5.3.2	Modellierung der Belichtungsstrategie 1	04
		5.3.3	Multi-Skalen-Ansatz zur Wahl von Lastparametern 1	11
		5.3.4	Zeitschrittweiten bei einer sequenziellen Kopplung 1	22
	5.4	Mode	llierung von Umgebungseinflüssen 1	25
		5.4.1	Vorgehen 1	25
		5.4.2	Bauplatte und umliegende Maschinenstruktur 1	26
		5.4.3	Fertigung umliegender Bauteile 1	28
	5.5	Zusan	nmenfassung 1	31
6	Anwe	ndung	g der Aufbauprozesssimulation1	33
	6.1	Vorge	2hen 1	33
	6.2	Mode	llbeschreibung 1	34
		6.2.1	Strukturierung nach DIN SPEC 32534-1 1	34
		6.2.2	Physikalisches Modell 1	35

		6.2.3	2.3 Mathematisches Modell und Lösungsmethode	
		6.2.4	Implementierung	. 136
	6.3	Grundlagenstudien an Laborbauteilen		
		6.3.1	Stehender und liegender Quader	. 140
		6.3.2	Brückengeometrien	. 143
	6.4	Simul	ationsgestützte Prozessauslegung	. 148
		6.4.1	"Boroskopauge" – Fertigungsvariantenvergleich	. 148
		6.4.2	$Triebwerks schaufel-lokale\ Prozessparameter an passung$. 151
		6.4.3	Triebwerksschaufel – Vordeformation	. 157
	6.5	Bewei	rtung	. 159
		6.5.1	Resümee in Bezug auf die Anwenderanforderungen	. 159
		6.5.2	Wirtschaftlichkeitsbetrachtung	. 161
		mmenfassung und Ausblick16		
7	Zusar	nmenf	assung und Ausblick	.163
7	Zusar 7.1	nmenf Zusan	assung und Ausblick	. 163 . 163
7	Zusar 7.1 7.2	nmenf Zusan Ausbl	assung und Ausblick	. 163 . 163 . 165
7	Zusar 7.1 7.2	nmenf Zusan Ausbl	assung und Ausblick	.163 . 163 . 165
7	Zusar 7.1 7.2 Litera	nmenf Zusan Ausbl turver	rzeichnis	. 163 . 163 . 165 . 169
7 8 9	Zusar 7.1 7.2 Litera Anhar	nmenf Zusan Ausbl hturven	assung und Ausblick	. 163 . 163 . 165 . 169 . 183
7 8 9	Zusar 7.1 7.2 Litera 9.1	nmenf Zusan Ausbl turven ng	assung und Ausblick nmenfassung ick rzeichnis bogen zur Anwenderbefragung	.163 .163 .165 .169 .183 .183
7 8 9	Zusar 7.1 7.2 Litera 9.1 9.2	nmenf Zusan Ausbl turver ng Fragel Algori	assung und Ausblick nmenfassung ick rzeichnis bogen zur Anwenderbefragung ithmus zum Sortieren von CLI-Daten	.163 .163 .165 .169 .183 .183 .185
7 8 9	Zusar 7.1 7.2 Litera 9.1 9.2 9.3	nmenf Zusan Ausbl tturven ng Fragel Algori Bewen	rassung und Ausblick	.163 .163 .165 .165 .183 .183 .185 .186
7 8 9	Zusar 7.1 7.2 Litera 9.1 9.2 9.3 9.4	nmenf Zusan Ausbl nturver ng Fragel Algori Bewer Progra	rassung und Ausblick nmenfassung ick rzeichnis bogen zur Anwenderbefragung ithmus zum Sortieren von CLI-Daten rtung der Filigranität anhand von Beispielbauteilen	. 163 . 163 . 165 . 165 . 169 . 183 . 183 . 183 . 185 . 186 . 189
7 8 9	Zusar 7.1 7.2 Litera 9.1 9.2 9.3 9.4 9.5	nmenf Zusan Ausbl nturvei ng Fragel Algori Bewei Progra Unters	rassung und Ausblick	. 163 . 163 . 165 . 165 . 183 . 183 . 183 . 185 . 186 . 189 . 190

	9.6.1	Vorbemerkungen	192
	9.6.2	Bauplattenwerkstoff 1.1730	192
	9.6.3	Laserstrahlgeschmolzenes Inconel 718	195
	9.6.4	Pulverförmiges Inconel 718	197
9.7	Verze	ichnis betreuter Studienarbeiten	198

Abkürzungsverzeichnis

APDL	Skriptsprache innerhalb der Software ANSYS [®] Mechanica (aus dem Englischen: Ansys Parametric Design Language		
AP	Auswertepunkt		
BKIN	Materialmodellierung durch eine stetig stückweise lineare Approximation der Spannungs-Dehnungs-Kurve mit zwei Stützstellen (aus dem Englischen: <i>Bilinear Kinematic</i> <i>Hardening</i>)		
CLI	Dateiformat für Schichtinformationen in der additiven Fertigung (aus dem Englischen: <i>Common Layer Interface</i>)		
DB	Deckbänder einer Triebwerksschaufel		
EBM	Elektronenstrahlschmelzen (aus dem Englischen: <i>Electron Beam Melting</i>)		
engl.	englisch		
FE	Finite-Elemente		
FEA	Finite-Elemente-Analyse		
FFB	Freiformbereich einer Triebwerksschaufel		
KINH	Materialmodellierung durch eine stetig stückweise lineare Approximation einer Spannungs-Dehnungs-Kurve mit mehreren Stützstellen (aus dem Englischen: <i>Multilinear</i> <i>Kinematic Hardening</i>)		
KP	kritischer Punkt		
LBM	Laserstrahlschmelzen (aus dem Englischen: Laser Beam Melting)		
LBM-Bauteile	laserstrahlgeschmolzene Bauteile		
LLNL	Lawrence Livermore National Laboratory		
LS	Längenskalen		

NPV	Kapitalwert (aus dem Englischen: <i>Net Present Value</i>), synonym: (Netto-)Barwert oder Netto-Kapitalwert
РРР	Modellkonfiguration der Forschergruppe Livermore (aus dem Englischen: <i>Process-Property-Performance-</i> <i>Connection</i>)
RT	Raumtemperatur
STL	Dateiformat für Oberflächenmodelle (aus dem Englischen: Surface Tessellation Language)
SVB	Schichtverbund
ZS	Zeitskalen

Verzeichnis der Formelzeichen

Große lateinische Buchstaben

Symbol	Einheit	Bedeutung
Α	mm ²	Fläche
A _{owq}	$\mu m^2 \mid mm^2$	Fläche der Oberflächenwärmequelle
$A_{Schicht,i}$	mm ²	zu belichtende Fläche des Schichtverbunds i
AI	min/%	Aufwandsindex
CI	Ра	Parameter für die BKIN-Materialmodellie- rung, welcher der Elastizitätsgrenze ent- spricht
C2	Pa	Parameter für die BKIN-Materialmodellie- rung, welcher dem Tangentenmodul ent- spricht
C_t	€	Zahlungen, die im Zusammenhang mit einer Investition stehen
E_i	N/mm ²	Elastizitätsmodul, Laufvariable i
E_g	%	Ergebnisgenauigkeit
$ ilde{F}$	Ν	Last im elastischen Bereich
F _B	Ν	Biegekraft während des Beschichtungsvor- gangs
Ι	mm^4	Flächenträgheitsmoment
L_i	mm	Länge <i>i</i> eines Laserverfahrvektors
$L_{Vektoren,gesamt}$	mm	kumulierte Gesamtlänge der Laserverfahr- vektoren pro Scanfläche
$L_{Vektoren,Fläche}$	mm	aneinandergereihte Gesamtlänge aller Laser- verfahrvektoren einer Schicht

$MP_{AK,m}$	-	Mittelpunkte von Konturlinien, Laufvariable <i>m</i>
M _{max}	Nmm	maximal auftretendes Biegemoment
N _{Berech,th}	-	Berechnungsschritt der thermischen Analyse
NFlächen,Schicht	_	Anzahl angestrebter Scanflächen pro Schicht
N _{Last,th}	-	Lastschritt der thermischen Analyse
N _{Last,m}	-	Lastschritt der mechanischen Analyse
$N_{Zwischen,th}$	_	Zwischenberechnungsschritt der thermischen Analyse
$P_i \mid P_j \mid P_n$	_	Betrachtungspunkte P mit Laufvariable <i>i</i> , <i>j</i> oder <i>n</i>
P_L	W	Laserleistung
Q	W/m ³	volumetrische Wärmeerzeugung
Q_0	J	eingebrachte Wärmeenergie
R	mm	Zylinderradius
R _{pi,j}	N/mm ² MPa	Ersatzstreckgrenze bei <i>i</i> % plastischem Rest- anteil und einem Probenaufbauwinkel <i>j</i> zur x- y-Ebene in °
$R_{m,j}$	N/mm ² MPa	Zugfestigkeit bei einem Probenaufbauwinkel <i>j</i> zur x-y-Ebene in °
S	-	Sicherheitsfaktor
Τ̈́	K/s	(zeitlich veränderliche) Temperaturrate
T ₀	Κ	Starttemperatur
T_B	Κ	Bauplattentemperatur an der Unterseite
$T_{S,i}$	K	Solidustemperatur des Werkstoffes <i>i</i>
W _i	0	Winkel zwischen zwei Laserverfahrvektoren

Symbol	Einheit	Bedeutung
а	_	Absorptionsgrad
b	mm	Breite der Streifen bei der Streifenbelichtung
b _{SI}	mm	Breite der von der Schmelzisothermen einge- schlossenen Fläche
b _{SSB}	mm	Breite der Schmelzspur
c _p	J/(kg·K)	spezifische Wärmekapazität
d_a	mm	Distanz zu einem Kontrollvolumen
d_B	mm	Dicke einer Bauplatte
d_F	mm	Laserfokusdurchmesser
d_S	μm	Schichtdicke
e_S	μm	Elementlänge
e _h	μm	Elementhöhe
h_g	mm	Gesamthöhe
h _{SVB}	μm	Höhe des Schichtverbunds
k	-	Kalibrierungsfaktor des Einzelschichtmodells
l_{SI}	μm	Länge der von der Schmelzisothermen einge- schlossenen Fläche
l_x	mm	Längenmaß in x-Richtung
l_y	mm	Längenmaß in y-Richtung
n	_	Schichtnummer
$q_{Einzelschicht}$	W/m ²	Oberflächenwärmequelle des Einzelschicht- modells
r	_	Zinssatz

Kleine lateinische Buchstaben

Verzeichnis der Formelzeichen

t _{Abkühlj,i}	S	Dauer der Abkühlphase j in Schicht i
t_B	min	Berechnungsdauer
t _{Belichtung,i}	S	Belichtungsdauer der Schicht i
$t_{Beschichtung}$	S	Dauer für einen Beschichtungsvorgang
t _{Last}	S	Lastdauer
t_{SB}	μm	Schmelzbadtiefe
v_c	mm/s	Scangeschwindigkeit
$v_{Schutzgas}$	m/s	Strömungsgeschwindigkeit des Schutzgases
v_{zieh}	mm/s	Spannbacken-Ziehgeschwindigkeit
х, у, z	-	kartesische Koordinatenrichtungen

Griechische Buchstaben

Symbol	Einheit	Bedeutung
α	1/K	thermischer Längenausdehnungskoeffizient
$\alpha_{Oberseite}$	$W/(m^2 \cdot K)$	Wärmeübergangskoeffizient an der Oberseite einer Pulverschicht
β_i	0	Steigungswinkel einer Geraden i
γ	0	Inkrementwinkel bei der Streifenbelichtung
δ	0	Winkel zur x-y-Ebene
Δ	$^{\circ} \mid J \mid K \mid s$	Differenz, z. B. Temperaturdifferenz in K
ε	-	Dehnung
\mathcal{E}_{long}	_	Längsdehnung
Ė _{long,i}	1/s	Längsdehnrate für <i>i</i> °C
$\varepsilon_{Prozess}$	_	im Prozess auftretende Dehnung
έ _{Prozess,i}	1/s	im Prozess auftretende Dehnrate für i°C
€ _{trans}	_	Querdehnung

Ė _{trans,i}	1/s	Querdehnrate für <i>i</i> °C
λ	$W/(m \cdot K)$	Wärmeleitfähigkeit
v_{el}	-	Querkontraktionszahl im elastischen Bereich
$v_{i,j}$	_	Querkontraktionszahl bei einer Temperatur <i>i</i> in °C und einer Orientierung <i>j</i> zur x-y-Ebene in °
v_{pla}	_	Querkontraktionszahl im plastischen Bereich
ρ	kg/m ³	Dichte
σ	N/mm ² MPa	Spannung
σ_B	$W/(m^2 \cdot K^4)$	Stefan-Boltzmann-Konstante
σ_{max}	N/mm ²	maximal auftretende Biegespannung
$\sigma_{s,i}$	N/mm ²	Spannungsschwelle, Laufvariable i

Matrizen [.] und Vektoren {.}

Symbol	Einheit	Bedeutung
$[C_T]$	-	Wärmekapazitätsmatrix
$\{F_i\}$	-	beispielhafter Kraftvektor, Laufvariable <i>i</i>
$[K_T]$	-	Wärmeleitmatrix
$[K_{ij}]$	-	Steifigkeitsmatrix <i>i j</i>
$\{\dot{Q}\}$	-	Vektor der Knotenpunktswärmeleistungen
$\{T\}$	_	Vektor der Knotenpunktstemperatur
$\{\dot{T}\}$	_	Vektor der Ableitung der Knotenpunktstempe- ratur nach der Zeit
$\{u\}$	-	Vektor der Knotenpunktsverschiebungen
$\{\dot{u}\}$	_	Vektor der Knotenpunktsgeschwindigkeiten
{ü}	-	Vektor der Knotenpunktsbeschleunigungen
$\{X_i\}$	_	Freiheitsgrad einer FEA, Laufvariable i

1 Einleitung

1.1 Additive Fertigung und Laserstrahlschmelzen

Die additive Fertigung ist für zukünftige Produktionssysteme eine potenzialbehaftete Technologie, um individualisierte und komplexe Produkte wirtschaftlich zu fertigen (WOHLERS 2015, ROLAND BERGER STRATEGY CONSULTANTS GMBH 2013, MANYIKA ET AL. 2013, GEBHARDT 2012). Die häufig auch als dreidimensionales Drucken (3-D-Drucken) bezeichneten additiven Fertigungsverfahren (VDI-RICHTLINIE 3405) sind durch einen charakteristischen schichtweisen Aufbau von Bauteilen gekennzeichnet. Dadurch lassen sich geometrisch komplexe Merkmale herstellen (z. B. Hinterschnitte, Hohlräume, gekrümmte Bohrungen, Kugel in Kugel). Es existiert heute bereits eine Vielzahl an Verfahrensvarianten der additiven Fertigung am Markt, sodass Ausgangsmaterialien aus Kunststoff, Metall oder Keramik in verschiedenen Ausgangsformen verarbeitet werden können (WOHLERS 2014). In den 1990er-Jahren kam die erste metallverarbeitende additive Fertigungsanlage auf den Markt (ZAH 2006), welche es ermöglicht, schichtweise Bauteile aus metallischem Pulverwerkstoff zu generieren. Der zugrunde liegende Prozess ist heute als Laserstrahlschmelzen (LBM, aus dem Englischen Laser Beam Melting) definiert (VDI-RICHTLINIE 3405) und am Markt unter verschiedenen unternehmensspezifischen Bezeichnungen verfügbar. Diese sind bei Anwendern stellenweise bekannter als der genormte Begriff, weswegen nachfolgend einige Beispiele nach WOHLERS (2014) zur besseren Einordnung dieser Arbeit aufgeführt werden: Direct Metal Laser Sintering (DMLS, EOS GmbH), LaserCUSING (Concept Laser GmbH), Selective Laser Melting (Realizer GmbH, SLM Solutions AG).

Die mittels LBM hergestellten Bauteile besitzen typischerweise eine relative Dichte von nahezu 100 % in Relation zum konventionell hergestellten Grundmaterial und können heute aufgrund ihrer Eigenschaften auch für Hochtechnologieanwendungen eingesetzt werden (VDI-RICHTLINIE 3405). Aus diesem Grund wird LBM von Unternehmensvertretern (ROLAND BERGER STRATEGY CONSUL-TANTS GMBH 2013, MANYIKA ET AL. 2013) als eines der potenzialbehaftetsten additiven Fertigungsverfahren angesehen und hat in einigen Branchen den Paradigmenwechsel vom Prototyping-Verfahren zum Produktionsverfahren vollzogen (WOHLERS 2015). Das Verfahrensprinzip des LBM beruht darauf, dass ein pulverförmiges Ausgangsmaterial durch Absorption von Laserstrahlung entsprechend den digital vorliegenden Schichtinformationen lokal aufgeschmolzen wird. Eine Verfestigung durch den Laser erfolgt demnach lediglich in Bereichen, in denen nach Prozessende verfestigtes Material vorliegen soll. Ist eine Schicht vollständig belichtet, wird die Bauplattform um eine Schichtdicke abgesenkt und eine neue Pulverschicht aufgetragen. Dieser Zyklus aus *Pulverauftrag, Belichtung* und *Absenkung der Bauplattform* wird solange durchlaufen, bis das zu fertigende Bauteil vollständig generiert ist. Abbildung 1-1 zeigt einige Beispielbauteile, die mittels Laserstrahlschmelzen hergestellt wurden.

Abbildung 1-1: Beispielbauteile, hergestellt mittels Laserstrahlschmelzen

Aufgrund der erreichbaren Bauteileigenschaften hinsichtlich z. B. der Oberflächenrauheit, des Eigenspannungszustandes oder der Maßhaltigkeit stellt der additive Aufbauprozess meist lediglich einen Teil der Prozesskette zur Komplettbearbeitung eines Bauteils dar. Abbildung 1-2 zeigt daher das Laserstrahlschmelzen als Teil einer exemplarischen Kette mit typischen Pre- und Post-Prozessen. Die als CAD-Modell vorliegende Bauteilbeschreibung ist zunächst einer Datenvorbereitung zu unterziehen. Diese beinhaltet unter anderem das Zerlegen (sog. *Slicen*) der aufzubauenden Geometrie in Schichten und darauf aufbauend das Ableiten von Anlagensteuerungsdaten. Im Anschluss an den Aufbauprozess erfolgt beispielsweise eine Wärmebehandlung zur Reduzierung prozessbedingter Eigenspannungen oder eine spanende Nachbearbeitung.

Abbildung 1-2: Laserstrahlschmelzen als Teil einer typischen Prozesskette