

Universität Stuttgart Institut für Strahlwerkzeuge

LASER IN DER MATERIALBEARBEITUNG

Forschungsberichte des IFSW

Tom Dietrich

Gitterwellenleiterstrukturen zur Strahlformung in Hochleistungsscheibenlasern

Tom Dietrich

Gitterwellenleiterstrukturen zur Strahlformung in Hochleistungsscheibenlasern

utzverlag · München 2019

Laser in der Materialbearbeitung Band 94

Ebook (PDF)-Ausgabe: ISBN 978-3-8316-7453-4 Version: 1 vom 14.06.2019 Copyright© utzverlag 2019

Alternative Ausgabe: Softcover ISBN 978-3-8316-4785-9 Copyright© utzverlag 2019 Laser in der Materialbearbeitung Forschungsberichte des IFSW

T. Dietrich Gitterwellenleiterstrukturen zur Strahlformung in Hochleistungsscheibenlasern

Laser in der Materialbearbeitung Forschungsberichte des IFSW

Herausgegeben von Prof. Dr. phil. nat. Thomas Graf, Universität Stuttgart Institut für Strahlwerkzeuge (IFSW)

Das Strahlwerkzeug Laser gewinnt zunehmende Bedeutung für die industrielle Fertigung. Einhergehend mit seiner Akzeptanz und Verbreitung wachsen die Anforderungen bezüglich Effizienz und Qualität an die Geräte selbst wie auch an die Bearbeitungsprozesse. Gleichzeitig werden immer neue Anwendungsfelder erschlossen. In diesem Zusammenhang auftretende wissenschaftliche und technische Problemstellungen können nur in partnerschaftlicher Zusammenarbeit zwischen Industrie und Forschungsinstituten bewältigt werden.

Das 1986 gegründete Institut für Strahlwerkzeuge der Universität Stuttgart (IFSW) beschäftigt sich unter verschiedenen Aspekten und in vielfältiger Form mit dem Laser als einem Werkzeug. Wesentliche Schwerpunkte bilden die Weiterentwicklung von Strahlquellen, optischen Elementen zur Strahlführung und Strahlformung, Komponenten zur Prozessdurchführung und die Optimierung der Bearbeitungsverfahren. Die Arbeiten umfassen den Bereich von physikalischen Grundlagen über anwendungsorientierte Aufgabenstellungen bis hin zu praxisnaher Auftragsforschung.

Die Buchreihe "Laser in der Materialbearbeitung – Forschungsberichte des IFSW" soll einen in der Industrie wie in Forschungsinstituten tätigen Interessentenkreis über abgeschlossene Forschungsarbeiten, Themenschwerpunkte und Dissertationen informieren. Studenten soll die Möglichkeit der Wissensvertiefung gegeben werden.

Gitterwellenleiterstrukturen zur Strahlformung in Hochleistungsscheibenlasern

von Dr.-Ing. Tom Dietrich Universität Stuttgart

München

Als Dissertation genehmigt von der Fakultät für Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart

Hauptberichter: Prof. Prof. Dr. phil. nat. Thomas Graf Mitberichter: Prof. Prof. Dr. rer. nat. Alois Herkommer

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugleich: Dissertation, Stuttgart, Univ., 2019

D 93

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © utzverlag GmbH 2019

ISBN 978-3-8316-4785-9

Printed in Germany

utzverlag GmbH, München Tel.: 089-277791-00 · www.utzverlag.de

Inhaltsverzeichnis

In	Inhaltsverzeichnis 5					
Li	ste d	ler verwendeten Symbole	7			
K	urzfa	issung	10			
E	xtend	led Abstract	13			
1	Ein	leitung	16			
	1.1	Motivation und Ziel	16			
	1.2	Struktur der Arbeit	20			
2	Opt	ische Elemente zur Strahlformung in Hochleistungsscheiben-				
	lase	rn	21			
	2.1	Stabilisierung und Selektion der Wellenlänge und der Polarisation				
		im Scheibenlaser	21			
	2.2	Gitterwellenleiterspiegel	23			
		2.2.1 Resonant-Reflection GWS	25			
		2.2.2 Resonant-Diffraction GWS	29			
		2.2.3 Leaky-Mode GWS	32			
3	Res	onatorinterne Frequenzverdopplung	35			
	3.1	Überblick und Zielsetzung	35			
	3.2	Auslegung und optische Eigenschaften des eingesetzten GWS	37			
	3.3	Multimode betrieb des bei 940 nm gepumpten Lasers $\ \ldots\ \ldots\ \ldots$	42			
	3.4	Multimode betrieb des bei 969 nm gepumpten Lasers $\ \ldots\ \ldots\ \ldots$	54			
	3.5	Grundmode betrieb des bei 969 nm gepumpten Lasers $\ .\ .\ .\ .$	61			
	3.6	Zusammenfassung	73			
4	Res	onatorinterne Erzeugung radial polarisierter Laserstrahlung	74			
	4.1	Überblick und Zielsetzung	74			
	4.2	Auslegung und optische Eigenschaften des eingesetzten GWS	76			
	4.3	Experimenteller Aufbau	80			
	4.4	Betrieb des bei 969 nm gepumpten Lasers	83			

	4.5	GWS als Auskoppelspiegel	87	
	4.6	Zusammenfassung	91	
5	Stra	hllagestabilisierung im Scheibenlaser	92	
	5.1	Thermisch induzierte Wellenfrontstörungen im Scheibenlaser $\ . \ . \ .$	92	
	5.2	Thermisch induzierte Konvektion \hdots	94	
	5.3	Strahllagestabilisierung mittels resonatorintern eingesetztem GWS .	99	
	5.4	Auslegung und optische Eigenschaften des eingesetzten GWS	103	
	5.5	Experimenteller Aufbau	103	
	5.6	Betrieb des bei 969 nm gepumpten Lasers	105	
	5.7	Betrieb des bei 940 nm gepumpten Lasers	116	
	5.8	Zusammenfassung	126	
6	Zus	ammenfassung	128	
Literaturverzeichnis 13				
Danksagung 14				

Liste der verwendeten Symbole

Symbol Bedeutung

Wert Einheit

Lateinische Buchstaben

с	Vakuumlichtgeschwindigkeit	$2,998 \cdot 10^{8}$	m/s
d_{eff}	Effektiver nicht-linearer Koeffizient von LBO	$8,31 \cdot 10^{-13}$	m/V
d_n/d_T	Thermooptischer Koeffizient	-	1/K
f'_{LBO}	Brennweite der thermischen Linse in LBO	-	m
h	Planck'sches Wirkungsquantum	$6,626 \cdot 10^{-34}$	Js
h_v	Laterale Verschiebung	-	m
L_c	Propagationslänge im GWS	-	1/m
leff	Effektive Propagationsstrecke im LBO-Kristall	24	mm
l	Geometrische Länge des LBO-Kristalls	12	mm
M_h^2	Beugungsmaßzahl in der horizontalen Strahleben	e -	-
M_v^2	Beugungsmaßzahl in der vertikalen Strahlebene	-	-
m	Beugungsordnung	-	-
n_1	Brechungsindex Umgebung	-	-
n_2	Brechungsindex des optisches Keils	-	-
n _{LBO,ω}	Brechungsindex von LBO bei $\lambda = 1030$ nm	1,606	-
P _{Out}	Ausgangsleistung des Lasers	-	W
P _{Pump}	Pumpleistung	-	W
P _{Wärme}	Wärmeleistung	-	W
P_{ω}	Leistung der fundamentalen Strahlung	-	W
$P_{2\omega}$	Leistung der frequenzverdoppelten Strahlung	-	W
R	Krümmungsradius	-	m
R_{TE}	Reflektivität für TE-polarisierte Strahlung	-	-
R_{TM}	Reflektivität für TM-polarisierte Strahlung	-	-
R_{OC}	Reflektionsgrad des Auskoppelspiegels	-	-
Т	Temperatur	-	$^{\circ}C$
ΔT	Temperaturdifferenz	-	$^{\circ}C$
w	Strahlradius	-	m
WLBO	Strahlradius im LBO-Kristall	-	m

Symbol	Bedeutung	Wert	Einheit
Griechische Buchstaben			
α_1	Einfallswinkel	-	0
α_2	Ausfallswinkel	-	0
Δα	Änderung des Einfallswinkels	-	0
$\Delta \Theta_L$	Änderung des Littrow-Winkels	-	0
Δλ	Änderung der Wellenlänge	-	m
$\Delta\lambda_{FWHM}$	Spektrale Bandbreite (FWHM)	-	m
Δk	Phasenfehlanpassung	-	1/m
$\Delta \phi$	Änderung des krit. Schnittwinkels (LBO)	-	0
ΔR	$ R_{TE}-R_{TM} $	-	-
ε ₀	Dielektrizitätskonstante in Vakuum	$8,854 \cdot 10^{-12}$	As/Vm
η_{QD}	Quantendefekt bzw. Stokes-Wirkungsgrad	-	-
η_{SHG}	SHG-Konversionseffizienz	-	-
θ	Nicht-kritischer Schnittwinkel (LBO)	-	0
θ_i	Einfallswinkel am GWS	-	0
θ_L	Littrow-Winkel	-	0
θ_{L1}	Littrow-Winkel des ursprünglichen Strahls	-	0
θ_{L2}	Littrow-Winkel des verkippten Strahls	-	0
θ_m	Beugungswinkel	-	0
Λ	Gitterperiode	-	m
λ	Wellenlänge	-	m
λ_P	Pumpwellenlänge	-	m
λ_1	Laserwellenlänge vor Verkippung	-	m
λ_2	Laserwellenlänge nach Verkippung	-	m
λ_L	Laserwellenlänge	-	m
λ_P	Pumpwellenlänge	-	m
λ_{ω}	Wellenlänge der fundamentalen Strahlung	1030	nm
$\lambda_{2\omega}$	Wellenlänge der frequenzverdoppelten Strahlung	; 515	nm
σ	Gittertiefe	-	m
ø	Krititischer Schnittwinkel (LBO)	-	0

Abkürzungen

AFM	Engl.: Atomic Force Microscopy
AR	Engl.: Anti-Reflection
CHF_3	Trifluormethan
CW	Engl.: Continuous-Wave
DC	Engl.: Duty-Cycle
FS	Engl.: Fused Silica
FWHM	Engl.: Full-Width at Half-Maximum
GIRO	Engl.: Giant-Reflection to Zero-Order
GWS	Gitterwellenleiterspiegel
GWOC	Engl.: Grating-Waveguide Output Coupler
HR	Engl.: High-Reflection
IP	Engl.: Ion-Plating
LBO	Lithiumtriborat (LiB_3O_5)
$\mathrm{LG}_{01^{\ast}}$	Laguerre-Gauss'sche Ringmode
LM	Engl.: Leaky Mode
LuAG	Lutetium-Aluminium-Granat $(Lu_3Al_5O_{12})$
OC	Engl.: Output Coupler
PV	Engl.: Peak-to-Valley
REM	Raster Elektronen Mikroskopie
RCWA	Engl.: Rigorous Coupled-Wave Analysis
RD	Engl.: Resonant Diffraction
SBIL	Engl.: Scanning-Beam Interference Lithography
SHG	Engl.: Second-Harmonic Generation
SiO_2	Siliziumdioxid
SPP	Strahl-Parameter-Produkt
Ta_2O_5	Tantalpentoxid
TE	Transversal elektrisch
TEM	Transversale elektromagnetische Mode
TEM_{00}	Transversale Grundmode
TFP	Engl.: Thin-Film Polarizer
ТМ	Transversal magnetisch
YAG	$Yttrium-Aluminium-Granat$ ($Y_3Al_5O_{12}$)
Yb	Ytterbium

Kurzfassung

Die gezielte Anderung, Anpassung oder Beeinflussung der Eigenschaften eines Laserstrahls, die sogenannte *Strahlformung*, steht kontinuierlich im Fokus von Forschung und Entwicklung. Dabei werden mithilfe von optischen Komponenten die Eigenschaften eines Laserstrahls, sei es die spektrale Zusammensetzung oder die Polarisationsverteilung, gezielt verändert, angepasst und stabilisiert. Um die Verluste durch den Strahlformungsprozess gering zu halten, kann die Manipulation der Eigenschaften des Laserstrahls durch geeignete hochleistungsfähige und verlustarme Komponenten bereits bei seiner Entstehung innerhalb des Laserresonators vorgenommen werden. Gängige Komponenten, welche zur Stabilisierung und Beeinflussung der spektralen Zusammensetzung und der Polarisation des erzeugten Laserstrahls in den Resonator eingebracht werden können, leiden jedoch oftmals an niedrigen Zerstörschwellen oder unwirtschaftlicher Komplexität und führen im Laserbetrieb zu hohen optischen Verlusten sowie störenden thermo-optischen Effekten.

Die vorliegende Arbeit befasst sich daher mit der Untersuchung alternativer hochleistungstauglicher Komponenten zur resonatorinternen Strahlformung. Diesbezüglich wird das Konzept der *Gitterwellenleiterspiegel* (GWS) vorgestellt. Diese Komponenten bestehen aus einer Kombination aus Gitterstruktur und dielektrischem Schichtstapel und nutzen den Kopplungsmechanismus eines einfallenden elektromagnetischen Feldes an Moden in den durch den Schichtstapel gebildeten Wellenleiter. Dabei ist der Kopplungseffekt, je nach Auslegungsform der Gitterwellenleiterstruktur, abhängig von der Wellenlänge und der Polarisationsrichtung des einfallenden Feldes. Über die Kopplung an die Wellenleitermoden können gezielt Eigenschaften des oszillierenden Laserstrahls manipuliert und folglich resonatorintern Strahlformung betrieben werden. Ziel dieser Arbeit war es anhand unterschiedlicher Experimente die Hochleistungstauglichkeit bestehender und neuer GWS-Ansätze im Scheibenlaser zu untersuchen.

So wurde im ersten Experiment ein GWS in Littrow-Konfiguration zur Stabilisierung der Phasenanpassungsbedingung eines frequenzverdoppelnden Scheibenlasers eingesetzt. Im Multimode-Betrieb ($M^2 \approx 20$, SPP = 3,4 mm · mrad) konnte eine Ausgangsleistung von mehr als 1 kW bei einer Wellenlänge von 515 nm und einer optischen Effizienz von 51,6% (optische Anregung der Laserscheibe bei einer Pumpwellenlänge von 969 nm) sowie 46,0% (optische Anregung der Laserscheibe bei einer Pumpwellenlänge von 940 nm) demonstriert werden. Die maximale Leistungsdichte des oszillierenden Laserstrahls auf der Oberfläche des GWS betrug ca. 40 kW/cm^2 . Die Hochleistungstauglichkeit des GWS wurde zusätzlich anhand eines im Grundmode betriebenen resonatorintern frequenzverdoppelnden Scheibenlasers bestätigt. Hierbei wurde eine maximale Ausgangsleistung von 419 W bei einer Welenlänge von 515 nm und einer optischen Effizienz von 45,4% (optische Anregung der Laserscheibe bei einer Pumpwellenlänge von 969 nm) erreicht. Die gemessene Beugungsmaßzahl des erzeugten Laserstrahls betrug bei maximaler Ausgangsleistung $M^2 < 1,36$. Der eingesetzte GWS blieb trotz einer Leistungsdichte von bis zu 60 kW/cm^2 unbeschädigt.

In einem weiteren Experiment konnte die Erzeugung radial polarisierter Laserstrahlung mit Ausgangsleistungen im kW-Bereich anhand eines in den Resonator integrierten GWS demonstriert werden. Dazu wurde eine neue Generation von GWS auf Basis der Kopplung eines einfallenden Strahls an verlustbehaftete Wellenleitermoden entwickelt, welche sich durch eine hohe spektrale Bandbreite der Separation der Reflektivität für TE- und TM-polarisierte Strahlung (> 20%) von über 70 nm auszeichnet. Bei einer Wellenlänge von 1030 nm betrug der Unterschied der Reflektivität des GWS für einen TM- und TE-polarisierten Strahl ca. 45%, wobei eine Reflektivität für TM-polarisierte Strahlung von $(99.8 \pm 0.2)\%$ gemessen wurde. Der Durchmesser der Gitterstruktur betrug 16 mm. Integriert in einen cwbetriebenen Scheibenlaserresonator wurde ein radial polarisierter Laserstrahl mit einer maximalen Ausgangsleistung von 980 W erzeugt. Der optische Wirkungsgrad des Lasers betrug bei maximaler Ausgangsleistung 50,5%. Für den demonstrierten Leistungsbereich betrug der Polarisationsgrad des erzeugten radial polarisierten Laserstrahls durchgehend > 95%. In Bezug auf den Stand der Technik zum Zeitpunkt dieser Arbeit konnte die demonstrierbare Ausgangsleistung um einen Faktor von ca. 3,5 gesteigert werden.

Im dritten Experiment wurde ein GWS zur resonatorinternen Strahllagestabilisierung im Scheibenlaser eingesetzt. Dabei konnten die optischen Auswirkungen von Wellenfrontstörungen, welche aufgrund thermisch induzierter Konvektion an der ungekühlten Frontseite des Laserkristalls auftreten und die maximal erreichbare Ausgangsleistung eines im Grundmode betriebenen Scheibenlasers üblicherweise limitieren, effizient kompensiert werden. Die passive Strahllagestabilisierung wird in Littrow-Konfiguration erreicht, sofern die Gitterlinien senkrecht zur Richtung der auftretenden Konvektion orientiert werden. In dieser Orientierung bewirkt eine Verkippung des oszillierenden Strahls durch die auftretende Konvektion an der Laserscheibe, dass sich der Einfallswinkel auf dem GWS ändert. Dies hat zur Folge, dass der Laser spektral auf die Wellenlänge ausweicht, welche durch die Littrow-Bedingung bei geändertem Einfallswinkel vorgegeben wird und gleichzeitig die größte Verstärkung erfährt. Dieser passive Effekt bewirkt, dass die geometrische Lage des oszillierenden Laserstrahls auf dem optisch angeregten Bereich des Laserkristalls stabilisiert wird. Verglichen mit einem Referenzexperiment ohne passive Strahllagestabilisierung konnte in den durchgeführten Experimenten durch Integration des GWS in den Resonator die Ausgangsleistung eines im Grundmode betriebenen Scheibenlasers mehr als verdreifacht (optische Anregung der Laserscheibe bei einer Pumpwellenlänge von 969 nm), bzw. mehr als verdoppelt (optische Anregung der Laserscheibe bei einer Pumpwellenlänge von 940 nm) werden. Sowohl die Strahllagestabilität als auch die Langzeitstabilität der Ausgangsleistung des Lasers ließen sich durch den resonatorinternen Einsatz des GWS verbessern.

Die in dieser Arbeit vorgestellten Ergebnisse zeigen, dass durch Integration von Gitterwellenleiterspiegeln in Scheibenlaserresonatoren effizient Strahlformung betrieben werden kann. Da trotz resonatorinterner Leistungen im mehrstelligen kW-Bereich die Zerstörschwelle der Komponenten nicht erreicht wurde und keine störende thermo-optische Effekte auftraten, konnte die Hochleistungstauglichkeit dieser Elemente erfolgreich bestätigt werden.