





# FORSCHUNGSBERICHTE

335

Martin Schmid Kognitive Prozesssteuerung zur Steigerung der Ressourceneffizienz in der Druckindustrie

# Martin Schmid

# Kognitive Prozesssteuerung zur Steigerung der Ressourceneffizienz in der Druckindustrie

Forschungsberichte IWB Band 335

Ebook (PDF)-Ausgabe:

ISBN 978-3-8316-7367-4 Version: 1 vom 06.04.2018

Copyright© Herbert Utz Verlag 2018

Alternative Ausgabe: Softcover ISBN 978-3-8316-4139-0 Copyright© Herbert Utz Verlag 2018

#### Lehrstuhl für

# Betriebswissenschaften und Montagetechnik der Technischen Universität München

# Kognitive Prozesssteuerung zur Steigerung der Ressourceneffizienz in der Druckindustrie

Dipl.-Ing. (FH)

#### **Martin Schmid**

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Klaus Drechsler

Prüfer der Dissertation:

- 1. Prof. Dr.-Ing. Gunther Reinhart
- 2. Prof. Dr.-Ing. habil. Boris Lohmann

Die Dissertation wurde am 12.04.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 25.08.2017 angenommen.

# Martin Schmid

# Kognitive Prozesssteuerung zur Steigerung der Ressourceneffizienz in der Druckindustrie



Herbert Utz Verlag · München

#### Forschungsberichte IWB

Band 335

Zugl.: Diss., München, Techn. Univ., 2017

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH · 2018

ISBN 978-3-8316-4139-0

Printed in Germany Herbert Utz Verlag GmbH, München 089-277791-00 · www.utzverlag.de

# Kurzfassung

Ein effizienter Umgang mit allen Produktionsressourcen bildet nicht nur die Grundlage für eine nachhaltige Industriegesellschaft, sondern auch eine Voraussetzung für den wirtschaftlichen Erfolg von produzierenden Unternehmen. In der Druckindustrie beispielsweise stellen die Kosten für Papier und Farbe etwa 80 % der gesamten Produktionskosten dar. Die kritischste Phase hinsichtlich der Produktqualität erstreckt sich vom Produktionsstart bis zum eingeschwungenen Zustand des Druckprozesses. Die Hauptursache für eine mangelnde Produktqualität ist die visuelle Wirkung der bedruckten Fläche, die sich näherungsweise proportional zur Farbschichtdicke verhält.

Die Regelung der Farbschichtdicke steht beispielhaft für eine Vielzahl von Produktions- und Verarbeitungsprozessen, in denen die qualitätsbestimmenden Ausgangsgrößen nicht stetig gemessen werden können und zusätzlich von diversen Einflussgrößen in unbekannter Weise abhängen. Diese Einschränkungen erschweren die Prozessführung und haben eine ungenügende Produktqualität zur Folge. Um die Ressourceneffizienz zu steigern, stellt die vorliegende Untersuchung ein Konzept vor, mit dem die Prozessführung optimiert und infolgedessen die erforderliche Produktqualität deutlich schneller erreicht wird als bisher.

Aufbauend auf dem gegenwärtigen Stand der Technik werden bewährte Konzepte auf deren Eignung hin geprüft. Die vorhandenen Einschränkungen des realen Produktionsprozesses verhindern einen unmittelbaren Einsatz bestehender Regelungskonzepte oder lassen lediglich geringe Verbesserungen zu.

Aus diesem Grund wird ein Konzept vorgestellt, mit dem ein Prozess in optimaler Weise gesteuert werden kann. Hierbei wird explizit berücksichtigt, dass Einflussgrößen das Prozessverhalten verändern. Das Konzept besitzt einen hybriden Aufbau, bei dem modellbasierte Regelungsmethoden mit maschinellen Lernverfahren kombiniert werden. Die Basis bildet der ursprüngliche Regelkreis mit der teilweise unterbrochenen Rückführung der Ausgangsgrößen zu einem neu konzipierten Regler. Um dem Regler stets die Ausgangsgrößen zur Verfügung zu stellen, wird ein zusätzliches Simulationsmodell vorgeschlagen. Dieses bildet das reale Prozessverhalten totzeitfrei und unmittelbar ab, einschließlich aller Nichtlinearitäten und manuellen Eingriffe. Die Reglerparametrierung erfolgt adaptiv anhand der Parameter des Simulationsmodells, sodass stets ein stabiler Regelkreis sowie ein gutes Führungsverhalten gewährleistet sind.

Das Simulationsmodell muss eine hohe Vorhersagegenauigkeit gegenüber dem realen Produktionsprozess besitzen. Eine Vielzahl an Einflussgrößen bewirkt ein verändertes Prozessverhalten. Daher dient ein Bestandteil des Regelungskonzepts dazu, die Wirkung der Einflussgrößen durch eine Adaption der Parameter des Simulationsmodells zu berücksichtigen. Durch maschinelle Lernverfahren werden die Parameter vor jedem Produktionslauf an die vorhandenen Einflussgrößen ange-

#### Kurzfassung

passt. Dafür werden die vergangenen Produktionsläufe analysiert und die optimalen Modellparameter in Kombination mit den vorhandenen Einflussgrößen in einer Wissensbasis gespeichert. Vor jedem Produktionslauf ermittelt das selbstlernende System die optimalen Modellparameter anhand der Einflussgrößen. Neben der Berücksichtigung externer Einflussgrößen wird zusätzlich dargelegt, wie modellinterne, zeitvariante Parameter über eine statistische Analyse des Prozessverhaltens nachgeführt werden können, um die Genauigkeit des Simulationsmodells weiter zu erhöhen. Für die Parameteridentifikation ist es unabdingbar, dass die in der Wissensbasis gespeicherten Daten von hoher Aussagekraft sind. Aus diesem Grund wird ergänzend ein Vorgehen zur Auswahl der Messgrößen sowie deren Plausibilisierung vorgestellt, um den vollautonomen Betrieb des Regelungssystems zu ermöglichen.

Die Validierung des vorgestellten Regelungskonzepts an einer Offsetdruckmaschine in der Produktion zeigt das technische und wirtschaftliche Potenzial der verbesserten Prozessführung auf. Neben deutlichen Einsparungen hinsichtlich der Produktionsressourcen sowie der Produktionszeit werden zusätzlich die Maschinenbediener von einer monotoner Prozessüberwachung entlastet. Die Einsparungen der Produktionsressourcen übertreffen die Aufwände zur Optimierung und Implementierung des Systems in die Maschinensteuerung bei Weitem. Das vorgestellte Konzept bietet eine hochwirtschaftliche Möglichkeit, um selbst bei bestehenden Maschinen die Ressourceneffizienz zu steigern und somit auch die Wettbewerbsfähigkeit der Druckereien zu erhöhen.

# Inhaltverzeichnis

| 1 | Hera | ausforderungen für eine nachhaltige Produktion                     | 1  |
|---|------|--------------------------------------------------------------------|----|
|   | 1.1  | Ökonomische Rahmenbedingungen im industriellen Wettbewerb          | 1  |
|   | 1.2  | Marktumfeld in der Druckindustrie                                  | 2  |
|   | 1.3  | Bewertung der Qualität von Druckprodukten                          | 3  |
|   | 1.4  | Analyse der Regelung der optischen Dichte                          | 7  |
|   | 1.5  | Überblick zur vorliegenden Arbeit                                  |    |
|   |      | 1.5.2 Wissenschaftliche Zielsetzung                                | 9  |
|   |      | 1.5.3 Aufbau der vorliegenden Arbeit                               | 9  |
| 2 | Gru  | ndlagen des Offsetdrucks und der Farbregelung                      | 11 |
|   | 2.1  | Einordnung des Offsetdrucks in der grafischen Industrie            |    |
|   | 2.2  | Aufbau einer Rollenoffsetdruckmaschine                             | 12 |
|   | 2.3  | Grundlagen des Farbtransports im Druckwerk                         | 13 |
|   | 2.4  | Charakterisierung der Qualitätsgröße "optische Volltondichte"      | 15 |
| 3 | Star | nd der Wissenschaft und Technik                                    | 19 |
|   | 3.1  | Rahmenbedingungen und Anforderungen an die Farbdichteregelung .    | 20 |
|   | 3.2  | Konzepte zur Steuerung offener Regelkreise                         |    |
|   |      | 3.2.2 Steuerungskonzepte für Prozesse ohne Rückführung Regelgrößen |    |
|   | 3.3  | Berücksichtigung von Einflussgrößen                                |    |
|   |      | 3.3.2 Auswahl der Einflussgrößen                                   | 29 |
|   |      | 3.3.3 Robuste und adaptive Regelung                                | 31 |
|   | 3.4  | Modellbasierte Regelung in der Wissenschaft und Anwendung          | 33 |

|   |     | 3.4.1 Einordnung der modellbasierten Regelung                                                                  | 33 |
|---|-----|----------------------------------------------------------------------------------------------------------------|----|
|   |     | 3.4.2 Beschreibung der modellbasierten, prädiktiven Regelung                                                   | 34 |
|   | 3.5 | Modellierung des Druckprozesses                                                                                |    |
|   |     | 3.5.2 Kognitive Verfahren zur Prozessmodellierung                                                              | 37 |
|   |     | 3.5.3 Bekannte Farbwerksmodelle                                                                                | 38 |
|   | 3.6 | Bewertung des Stands der Wissenschaft und Technik                                                              | 43 |
| 4 | Kon | zept zur modellbasierten Steuerung parametervariabler Strecken                                                 | 45 |
| 5 | Rea | lisierung der kognitiven Prozesssteuerung in der Druckindustrie                                                | 53 |
|   | 5.1 | Durchführung einer Systemanalyse5.1.1 Aufnahme der realisierungsrelevanten Rahmenbedingungen                   |    |
|   |     | 5.1.2 Analyse des Adaptionsbedarfs                                                                             | 55 |
|   | 5.2 | Realisierung eines Simulationsmodells                                                                          |    |
|   |     | 5.2.2 Systemanalytische Abbildung des Farbwerks                                                                | 56 |
|   |     | 5.2.3 Umsetzung des Simulationsmodells                                                                         | 73 |
|   | 5.3 | Aufbau eines Reglers für adaptive Systeme                                                                      |    |
|   |     | 5.3.1 Möglichkeiten zur Realisierung des Reglers                                                               |    |
|   |     | 5.3.2 Realisierung und Parametrierung des Reglers                                                              | 74 |
|   |     | 5.3.3 Berücksichtigung mehrerer Stellgrößen                                                                    | 76 |
|   |     | 5.3.4 Simulative Validierung des Reglers                                                                       | 78 |
|   | 5.4 | Beschreibung des Maschinenverhaltens durch geeignete Kenngrößen 5.4.1 Beschreibung der Parameteridentifikation |    |
|   |     | 5.4.2 Methode zur gesteuerten Adaption der Prozessparameter                                                    | 81 |
|   |     | 5.4.3 Charakterisierung der Einflussgrößen                                                                     | 83 |
|   |     | 5.4.4 Auswahl der zu betrachtenden Einflussgrößen                                                              | 90 |
|   |     | 5.4.5 Erfassung der Daten                                                                                      | 91 |

|   |      | 5.4.6 Bildung prozessbeschreibender Kenngrößen                                                                           | 93  |
|---|------|--------------------------------------------------------------------------------------------------------------------------|-----|
|   |      | 5.4.7 Bestimmung der optimalen Modellparameter                                                                           | 93  |
|   |      | 5.4.8 Ergebnisse aus der Datenanalyse                                                                                    | 94  |
|   |      | 5.4.9 Übersicht der verschiedenen Adaptionsmöglichkeiten                                                                 | 96  |
|   | 5.5  | Berücksichtigung diverser Einflussfaktoren auf die Farbergiebigkeit 5.5.1 Methoden zur Abbildung komplexer Zusammenhänge |     |
|   |      | 5.5.2 Aufbau von neuronalen Netzen                                                                                       | 99  |
|   |      | 5.5.3 Datenanalyse und Filterung                                                                                         | 101 |
|   |      | 5.5.4 Clusterung der Daten                                                                                               | 101 |
|   |      | 5.5.5 Normierung der Daten                                                                                               | 104 |
|   |      | 5.5.6 Training des neuronalen Netzes                                                                                     | 105 |
|   |      | 5.5.7 Automatische Wahl der geeignetsten Netztopologie                                                                   | 107 |
|   |      | 5.5.8 Ergebnisse der Parameteridentifikation                                                                             | 108 |
|   | 5.6  | Berücksichtigung maschinenbedingter Einflussfaktoren                                                                     |     |
|   |      | 5.6.2 Grundüberlegung zur Ermittlung des ersten Farbübertrags                                                            | 113 |
|   |      | 5.6.3 Auswertung der stationären Betriebspunkte                                                                          | 114 |
|   |      | 5.6.4 Validierung der Kompensation maschinenbedingter Einflüsse                                                          | 116 |
|   |      | 5.6.5 Interpretation der Ergebnisse                                                                                      | 117 |
|   | 5.7  | Verknüpfungen zwischen den Teilsystemen                                                                                  | 118 |
| 6 | Vali | dierung des Konzepts                                                                                                     | 119 |
|   | 6.1  | Validierung unter definierten Versuchsbedingungen                                                                        | 119 |
|   | 6.2  | Rahmenbedingungen der Validierung in der Druckerei                                                                       |     |
|   | 6.3  | Leistungsfähigkeit der Regelung im Produktionsbetrieb                                                                    |     |
|   |      | 6.3.2 Analyse des Einsatzfalls "Fortdruck"                                                                               | 126 |

### Inhaltsverzeichnis

| 7  | Tecl | hnische und wirtschaftliche Bewertung12                             | 29        |
|----|------|---------------------------------------------------------------------|-----------|
|    | 7.1  | Rahmenbedingungen der Bewertung                                     | 29        |
|    | 7.2  | Technische Bewertung der kognitiven Farbdichteregelung13            | 30        |
|    | 7.3  | Wirtschaftliche Bewertung                                           |           |
|    |      | 7.3.2 Wirtschaftliches Potenzial aus Sicht der Druckerei            | 31        |
|    |      | 7.3.3 Wirtschaftliche Bewertung aus Sicht des Systemanbieters 13    | 36        |
|    | 7.4  | Zusammenfassung der technischen und wirtschaftlichen Bewertung 14   | 40        |
| 8  | Zus  | ammenfassung und Ausblick14                                         | <b>41</b> |
|    | 8.1  | Zusammenfassung der erzielten Ergebnisse                            | 41        |
|    | 8.2  | Weitere Einsatzfelder einer kognitiven, modellbasierten Regelung 14 | 42        |
| 9  | Lite | raturverzeichnis14                                                  | 45        |
| 10 | Anh  | ang17                                                               | 75        |
|    | 10.1 | Betreute Studienarbeiten                                            | 75        |
|    | 10.2 | ? Veröffentlichungen des Autors                                     | 76        |

# Abkürzungs- und Akronymverzeichnis

°C Grad Celsius
adaptiv sich anpassend

AfA Abschreibung für Abnutzung

Black-Box-Modell Modellierung eines Systems, ohne die zugrundelie-

genden Abhängigkeiten abzubilden

BS Betriebsstunden

d.h. dass heißt

DIN Deutsches Institut für Normung e.V.

DIN-A4 Formatgröße gemäß DIN mit der Spezifikation A4

e.V. Eingetragener Verein

Ex. Druckexemplar

IMC Internal Model Control

(Regelung mithilfe eines internen Referenzmodells)

ISO International Organization for Standardization

 $K_S$  Proportionalkonstante der Strecke  $K_R$  Proportionalkonstante des Reglers

FMEA Failure Mode and Effect Analysis

(Fehler-Möglichkeits- und Einfluss-Analyse)

Grey-Box-Modell Mischung zwischen Black-Box- und White-Box-

Modell, enthält Elemente beider Richtungen

mm Millimeter

MLP Multi-Layer-Perceptron

(mehrschichtige, vorwärtsgerichtete Netzstruktur)

MPC Model Predictive Control

(modellprädiktive Regelung)

MRAC Model Reference Adaptive Control (Regelung mithil-

fe eines sich anpassenden Referenzmodells)

#### Abkürzungs- und Akronymverzeichnis

Prozess-FMEA Failure Mode and Effect Analysis (Fehlermöglich-

keits- und Einflussanalyse), bezogen auf komplette

Prozesse

PI Beschreibung des dynamischen Verhaltens mittels

einem Proportional- und einem Integralanteils

PID Beschreibung des dynamischen Verhaltens mittels

einem Proportional-, Integral- und Differenzialanteils

PT<sub>1</sub>-Modell Modellierung eines Systems mit proportionalem

Verhalten und einer Verzögerungszeit T<sub>1</sub>

t Tonne

T<sub>R</sub> Zeitkonstante des Reglers

T<sub>S</sub> Zeitkonstante der Strecke

T<sub>t</sub> Totzeitanteil

s Sekunde

Singleton- Fuzzy-Set Möglichkeit zur Abbildung von Fuzzysets

mithilfe einzelner Singletons (Peaks)

Ug Untere Toleranzgrenze

U<sub>o</sub> Obere Toleranzgrenze

vgl. vergleiche

VK Verkaufspreis

White-Box-Modell Modellierung eines Verhaltens bei

vollständiger Kenntnis systeminterner Zustände

µm Mikrometer

# Verzeichnis der Formelzeichen

#### Große lateinische Buchstaben

| Symbol                 | Einheit | Bedeutung                                                                                                     |
|------------------------|---------|---------------------------------------------------------------------------------------------------------------|
| AfA                    | €       | Kosten aufgrund der Maschinenabschreibung                                                                     |
| $A_{(\eta,\;t)}$       | g/s     | Aus dem Referenzsystem ausgetragene Farbmasse in Abhängigkeit der Breite $\boldsymbol{\eta}$ und der Zeit $t$ |
| AB                     | -       | Adaptionsbedarf                                                                                               |
| $AB_{rel}$             | -       | Relativer Adaptionsbedarf                                                                                     |
| BS                     | h       | Betriebsstunden                                                                                               |
| СН                     | -       | Calinski-Harabasz-Index                                                                                       |
| $D_v$                  | -       | Optische Dichte                                                                                               |
| E <sub>Andruck</sub>   | €       | Einsparungen in Andruckfall                                                                                   |
| E <sub>Fortdruck</sub> | €       | Einsparungen in Fortdruckfall                                                                                 |
| E <sub>ges</sub>       | €       | Gesamte Einsparungen                                                                                          |
| E <sub>Rec</sub>       | €/t     | Recyclingerlös                                                                                                |
| $E_{(\eta,\;t)}$       | g/s     | In das Referenzsystem eingetragene Farbmasse in Abhängigkeit der Breite $\boldsymbol{\eta}$ und der Zeit t    |
| $F_{Ydyn}$             | -       | Dynamikfaktor der Stellgrößen                                                                                 |
| FD                     | %       | Flächendeckung                                                                                                |
| $FE_{eff}$             | g/m²    | Effektive Farbergiebigkeit                                                                                    |
| Glanz                  | GE      | Optische Messgröße für den Glanz                                                                              |
| $G_{Pap}$              | g/m²    | Durchschnittliche Grammatur                                                                                   |
| $I_{B}$                | Can.    | Lichtmenge des nicht bedruckten Papiers                                                                       |
| $I_V$                  |         | Lichtmenge des bedruckten Papiers                                                                             |
| K                      |         | Proportionalitätsfaktor der Verreibung                                                                        |
| $K_{En}$               | €/h     | Energiekosten je Stunde                                                                                       |
| $K_{Farb}$             | €/t     | Kosten für eine Tonne Druckfarbe                                                                              |
| $K_{HB}$               | €/a     | Jährliche Kosten für Hilfs- und Betriebsstoffe                                                                |

### Verzeichnis der Formelzeichen

| $K_{\text{Umlage}}$        | €/a  | Umlageposten der Gemeinkosten je Jahr                                                                                        |
|----------------------------|------|------------------------------------------------------------------------------------------------------------------------------|
| $K_Pap$                    | €/t  | Kosten je Tonne Papier                                                                                                       |
| K <sub>Personal</sub>      | €/a  | Jährliche Personalkosten                                                                                                     |
| $K_{\text{Raum}}$          | €/a  | Anteilige, jährliche Raumkosten                                                                                              |
| K <sub>Wartung</sub>       | €/a  | Jährliche Kosten für Wartung und Instandhaltung                                                                              |
| m <sub>(t)</sub>           | kg/s | Farbmassenstrom                                                                                                              |
| MSE                        | -    | Mittlerer quadratischer Fehler                                                                                               |
| $MSE_{Training}$           | -    | MSE des neuronalen Netzes bei einem vorliegenden Trainingsdatensatz                                                          |
| MSE <sub>Validierung</sub> | -    | MSE des neuronalen Netzes bei einem vorliegenden Validierungsdatensatz                                                       |
| N                          | -    | Anzahl der Elemente                                                                                                          |
| $Q_{(\eta,\;t)}$           | g/s  | In das Referenzsystem durch Verreibung zugeführte oder abgeführte Farbmasse in Abhängigkeit der Breite $\eta$ und der Zeit t |
| OD                         | -    | Optische Dichte                                                                                                              |
| R                          | mm   | Radius                                                                                                                       |
| $R_{i}$                    | mm   | Radius der Walze i                                                                                                           |
| S <sub>(t)</sub>           | g    | Im Referenzsystem gespeicherte Farbmenge in Abhängigkeit der Zeit t                                                          |
| T <sub>Einfluss</sub>      | s    | Zeitkonstante der Einflussgröße                                                                                              |
| $T_{End}$                  | s    | Endzeitpunkt                                                                                                                 |
| T <sub>Prozess</sub>       | s    | Zeitkonstante des zu regelnden Prozesses                                                                                     |
| T <sub>Start</sub>         | s    | Startzeitpunkt                                                                                                               |
| $V_{Farb}$                 | g/m² | Mittlerer spezifischer Farbverbrauch                                                                                         |
| $Y_{\text{vir}}$           | -    | Virtuelle Stellgröße                                                                                                         |
| ZOE                        | %    | Zonenöffnung                                                                                                                 |
| ZOE <sub>O</sub>           | %    | Zonenöffnung des ersten Farbübertrags (Offset)                                                                               |
| $ZOE_{eff}$                | %    | Effektive Zonenöffnung                                                                                                       |
| ZOE <sub>mech max</sub>    | μm   | Maximale lichte Öffnungsweite der Zonenschieber                                                                              |

#### Kleine lateinische Buchstaben

| Symbol                   | Einheit | Bedeutung                                                        |
|--------------------------|---------|------------------------------------------------------------------|
| b                        | mm      | Zonenbreite                                                      |
| $d_{\text{max}}$         | mm      | Maximale lichte Öffnungsweite der Farbschieber                   |
| е                        |         | Regelfehler                                                      |
| f <sub>ein</sub>         | -       | Einschnürfaktor am Farbduktor                                    |
| $f_{Farbzu}$             | -       | Proportionalitätsfaktor der Farbzufuhreinrichtung                |
| i                        | -       | Laufender Index                                                  |
| $\dot{m}_{effaxial}$     | g/s     | Axial verriebener Farbmassenstrom                                |
| $\dot{m}_{Papier}$       | g/s     | Der auf das Papier übertragene Farbmassenstrom                   |
| m <sub>(t)</sub>         | g/s     | Farbmassenstrom                                                  |
| n                        |         | Potenz zur Gewichtung des Prozesseinflusses                      |
| n <sub>Andruck</sub>     | -       | Anzahl der Andruckereignisse jährlich                            |
| n <sub>FD</sub>          | %       | Drehzahl des Farbduktors, bezogen auf die Maximal-<br>drehzahl   |
| n <sub>Fortdruck</sub>   | -       | Anzahl der Fortdruckereignisse jährlich                          |
| $s_D$                    | μm      | Schichtdicke der Farbe oder der Emulsion                         |
| SDA                      | μm      | Schichtdicke der Walze A                                         |
| S <sub>D A1</sub>        | μm      | Schichtdicke des Segments A 1                                    |
| SFarb                    | m       | Wegstrecke der Farbe                                             |
| S <sub>FD FW</sub>       | μm      | Abstand zwischen dem Farbduktor und der Filmwalze                |
| V <sub>mas</sub>         | m/s     | Oberflächengeschwindigkeit der Walzen                            |
| <b>y</b> Netz            | -       | Ausgabe des neuronalen Netzes                                    |
| <b>y</b> <sub>soll</sub> | -       | Vorgegebener, idealer Wert für die Ausgabe des neuronalen Netzes |