

308

Emin Genc

Frühwarnsystem für ein adaptives Störungsmanagement

Emin Genc

Frühwarnsystem für ein adaptives Störungsmanagement Forschungsberichte IWB Band 308

EBook-Ausgabe:

ISBN 978-3-8316-7179-3 Version: 1 vom 24.11.2015

Copyright© Herbert Utz Verlag 2015

Alternative Ausgabe: Softcover ISBN 978-3-8316-4525-1 Copyright© Herbert Utz Verlag 2015

Emin Genc

Frühwarnsystem für ein adaptives Störungsmanagement

Herbert Utz Verlag · München

Forschungsberichte IWB

Band 308

Zugl.: Diss., München, Techn. Univ., 2015

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH · 2015

ISBN 978-3-8316-4525-1

Printed in Germany Herbert Utz Verlag GmbH, München 089-277791-00 · www.utzverlag.de

Geleitwort der Herausgeber

Die Produktionstechnik ist für die Weiterentwicklung unserer Industriegesellschaft von zentraler Bedeutung, denn die Leistungsfähigkeit eines Industriebetriebes hängt entscheidend von den eingesetzten Produktionsmitteln, den angewandten Produktionsverfahren und der eingeführten Produktionsorganisation ab. Erst das optimale Zusammenspiel von Mensch, Organisation und Technik erlaubt es, alle Potentiale für den Unternehmenserfolg auszuschöpfen.

Um in dem Spannungsfeld Komplexität, Kosten, Zeit und Qualität bestehen zu können, müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt werden. Dabei ist es notwendig, die Komplexität von Produkten, Produktionsabläufen und -systemen einerseits zu verringern und andererseits besser zu beherrschen.

Ziel der Forschungsarbeiten des *iwb* ist die ständige Verbesserung von Produktentwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produktionsanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie Systeme zur Auftragsabwicklung werden unter besonderer Berücksichtigung mitarbeiterorientierter Anforderungen entwickelt. Die dabei notwendige Steigerung des Automatisierungsgrades darf jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. Fragen der optimalen Einbindung des Menschen in den Produktentstehungsprozess spielen deshalb eine sehr wichtige Rolle.

Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch aus den Forschungsbereichen des *iwb*. Diese reichen von der Entwicklung von Produktionssystemen über deren Planung bis hin zu den eingesetzten Technologien in den Bereichen Fertigung und Montage. Steuerung und Betrieb von Produktionssystemen, Qualitätssicherung, Verfügbarkeit und Autonomie sind Querschnittsthemen hierfür. In den *iwb* Forschungsberichten werden neue Ergebnisse und Erkenntnisse aus der praxisnahen Forschung des *iwb* veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissenstransfer zwischen dem Hochschulbereich und dem Anwender in der Praxis zu verbessern.

Gunther Reinhart Michael Zäh

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter an der Projektgruppe für Ressourceneffiziente mechatronische Verarbeitungsmaschinen (RMV) des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU in Augsburg sowie am Institut für Werkzeugmaschinen und Betriebswissenschaften (*iwb*) der Technischen Universität München.

Herrn Prof. Dr.-Ing. Gunther Reinhart und Herrn Prof. Dr.-Ing. Michael Zäh, den Leitern dieses Instituts, gilt mein besonderer Dank für die wohlwollende Förderung und großzügige Unterstützung meiner Arbeit.

Bei Herrn Prof. Dr.-Ing. Jan Aurich, dem Leiter des Lehrstuhls für Fertigungstechnik und Betriebsorganisation (FBK) der Technischen Universität Kaiserslautern, möchte ich mich für die Übernahme des Korreferates und die aufmerksame Durchsicht der Arbeit sehr herzlich bedanken. Herrn Prof. Dr.-Ing. Michael Zäh danke ich für die Übernahme des Prüfungsvorsitzes. Ferner danke ich Herrn Prof. Neil Duffie für die Einladung an die University of Wisconsin-Madison und die damit verbundene Möglichkeit, meine Ansätze und Ergebnisse in einem internationalen Umfeld zu diskutieren und zu vertiefen.

Darüber hinaus bedanke ich mich sehr herzlich bei allen Mitarbeiterinnen und Mitarbeitern des Instituts sowie bei allen Studentinnen und Studenten, die mich bei der Erstellung meiner Arbeit unterstützt haben. Mein besonderer Dank gilt Philipp Engelhardt, Tobias Philipp und Cedric Schultz für die kritische Durchsicht meiner Arbeit. Herrn Martin Ostgathe danke ich für die fachlichen Diskussionen und Anregungen zu dieser Arbeit.

Schließlich möchte ich mich im ganz besonderen Maße bei meinen Eltern sowie meiner Schwester bedanken. Sie haben mir meine Ausbildung ermöglicht und mich auf meinem Lebensweg jederzeit liebevoll unterstützt.

Inhaltsverzeichnis

Iı	Inhaltsverzeichnisi		
A	bkü	rzungsverzeichnis	ix
V	erze	ichnis der Formelzeichen	xiii
1	E	inleitung	1
	1.1	Ausgangssituation	1
	1.2	Problemstellung	2
	1.3	Zielsetzung	6
	1.4	Aufbau der Arbeit	7
2	G	Grundlagen	11
	2.1	Übersicht	11
	2.2	Wertschöpfung in Netzwerken	11
	2.	2.1 Allgemeines	11
	2.	.2.2 Supply Chain Management	12
		2.2.2.1 Begriffsdefinitionen	12
		2.2.2.2 Ebenen des Supply Chain Managements	13
		2.2.2.3 Supply Chain Event Management	14
	2.	.2.3 Einordnung und Eingrenzung der Arbeit	14
	2.3	Planung und Steuerung von Abläufen in Wertschöpfungsnetzwe	rken 18
	2.	3.1 Allgemeines	18
	2.	.3.2 Zielgrößen in Wertschöpfungsnetzwerken	19
	2	3.3 Grundlagen der Produktionsplanung und -steuerung	20

	2.4 Info	ormationsmanagement in Wertschöpfungsnetzwerken	. 23
	2.4.1	Begriffsdefinitionen	. 23
	2.4.2	Bedeutung für die Produktionsplanung und -steuerung	. 24
	2.4.3	Potenziale von Informations- und Kommunikationstechnologien	. 25
	2.4.4	Informationssysteme zur Produktionsplanung und -steuerung	. 27
	2.5 Zus	ammenfassung	. 29
3	Stano	l der Forschung und Technik	.31
	3.1 Übe	ersicht	. 31
	3.2 Ans	sätze zur unternehmensübergreifenden Wertschöpfung	. 31
	3.2.1	Gestaltungsstrategien und Einsatz von Technologien	. 31
	3.2.2	RFID-basierte Wertschöpfung in Netzwerken	. 33
	3.2	2.1 Schwerpunkt Standardisierung und Integration	. 33
	3.2	2.2 Schwerpunkt Optimierung	. 34
	3.3 Stö	rungsmanagement in Wertschöpfungsnetzwerken	. 36
	3.3.1	Zeitlicher Verlauf und Klassifizierung von Störungen	. 36
	3.3.2	Strategien des Störungsmanagements	. 38
	3.3.3	Ansätze zur Entstörung inner- und überbetrieblicher Abläufe	. 39
	3.3.4	Ansätze zur Frühwarnung	. 44
	3.4 Mo	dellierung von Produktions- und Logistikabläufen	. 47
	3.4.1	Allgemeines	. 47
	3.4.2	Darstellung von inner- und überbetrieblichen Prozessen	. 48
	3.4.3	Darstellung von objektbezogenen Informationen	. 50
	3.5 Zus	ammenfassung und Handlungsbedarf	. 51

4	A	inforderungen an ein ereignisbasiertes Frühwarnsystem	53
	4.1	Übersicht	53
	4.2	Unternehmensübergreifender Zugriff auf Informationen	53
	4.3	Identifikation kritischer Ereignisse	54
	4.4	Absicherung der innerbetrieblichen Produktion	55
	4.5	Technische und nutzerorientierte Anforderungen	55
5	R	eferenzmodell für die ereignisbasierte Frühwarnung	57
	5.1	Übersicht	57
	5.2	Modellierung der Wertschöpfung in Netzwerken	59
	5.	2.1 Konzeption einer Referenz-Lieferkette	59
	5.	2.2 Prozessuale Konkretisierung	60
		5.2.2.1 Baukasten für die Prozessbeschreibung	60
		5.2.2.2 Prozessbausteine im Bereich der Produktion	61
		5.2.2.3 Prozessbausteine im Bereich der Logistik	62
		5.2.2.4 Modellierung der Prozessbausteine	63
	5.3	Ereignisbasierte Abbildung von Auftragsmerkmalen	64
	5.	3.1 Entwicklung der Ereignisstruktur	64
	5.	3.2 Matrix zur prozessspezifischen Ereignisdetaillierung	65
	5.4	Referenzarchitektur für das Informationsmanagement	66
	5.	4.1 Konzeption der Referenzarchitektur	66
	5.	4.2 Innerbetriebliche Integration von Assistenzsystemen	67
	5.5	Zusammenfassung	68
6	E	reignisbasiertes System zur Frühwarnung	71
	6.1	Übersicht	71

6.2	Abla	auf c	der Frühwarnung	71
6.3	Kate	egor	isierung von kritischen Ereignissen	74
6	.3.1	Ein	führung von Frühwarnkategorien	74
6	.3.2	Kat	tegorie Produkt	75
6	.3.3	Kat	tegorie Prozess	76
6	.3.4	Kat	tegorie Lieferant	76
6.4	Iden	ntifik	sation von kritischen Ereignissen	77
6	.4.1	Üb	ersicht	77
6	.4.2	Mo	dellierung der Wissensbasis	78
6	.4.3	Vei	rfahren zur Analyse von Ereignisdaten	79
	6.4.	3.1	Allgemeines	79
	6.4.	3.2	Produktbezogene Verfahren	79
	6.4.	3.3	Prozessbezogene Verfahren	83
	6.4.	3.4	Lieferantenbezogene Verfahren	89
6	.4.4	Erv	veiterung der Wissensbasis	92
	6.4.	4.1	Allgemeines	92
	6.4.	4.2	Initialisierung der Wissenserweiterung	94
	6.4.	4.3	Mustererkennung	95
	6.4.	4.4	Spezifikation der Wissenseinheit	97
6.5	Frül	ıwaı	rnung	98
6	.5.1	All	gemeines	98
6	.5.2	For	malisierung der Situationsbeschreibung	98
6	.5.3	Reg	gelwerk zur Informationsverteilung	99
6.6	Zus	amn	nenfassung1	100

7	Adap	tives Störungsmanagement	101
	7.1 Übe	ersicht	101
	7.2 Ab	auf des Störungsmanagements	101
	7.3 Ein	flussgrößen	103
	7.3.1	Allgemeines	103
	7.3.2	Restriktionen	103
	7.3.3	Zielgrößen	104
	7.4 Stra	ategien zur Entstörung	111
	7.4.1	Allgemeines	111
	7.4.2	Produktbezogene Strategien	111
	7.4.3	Prozessbezogene Strategien	113
	7.4.4	Lieferantenbezogene Strategien	114
	7.4.5	Adaptive Bestimmung von Maßnahmen	116
	7.5 Zus	ammenfassung	117
8	Tech	nische Umsetzung und Validierung	119
	8.1 Übe	ersicht	119
	8.2 Tec	hnische Umsetzung	119
	8.2.1	Prototypische Implementierung in einer Versuchsumgebung	119
	8.2	1.1 Allgemeines	119
	8.2	1.2 Aufbau und eingesetzte Hardware	120
	8.2	1.3 Produktionsszenario	121
	8.2	1.4 Informationstechnische Vernetzung	123
	8.2	1.5 Frühwarnbasiertes Störungsmanagement	124
	8 2 2	Prototypische Implementierung in der Automobilindustrie	126

		8.2.2.1	Allgemeines	126
		8.2.2.2	Anwendungsszenario	127
		8.2.2.3	RFID-basiertes Informationsmanagement	128
	8.3	Simulat	tionstechnische Validierung	130
	8.	3.1 All	lgemeines	130
	8.		ühwarnsystem zur Absicherung r Wertschöpfung in der Lieferkette	131
		8.3.2.1	Simulationsmodell und Produktionsszenario	131
		8.3.2.2	Ergebnisse der Simulation	133
	8.		ühwarnsystem zur Absicherung r innerbetrieblichen Wertschöpfung	135
		8.3.3.1	Simulationsmodell und Produktionsszenario	135
		8.3.3.2	Ergebnisse der Simulation	138
	8.4	Bewert	ung	139
	8.	4.1 An	nforderungsbezogene Bewertung	139
	8.	4.2 Wi	irtschaftlichkeitsbetrachtung	141
		8.4.2.1	Allgemeines	141
		8.4.2.2	Beispielhaftes Produktionsszenario	143
	8.5	Zusamr	nenfassung	146
9	Z	usamm	enfassung und Ausblick	147
	9.1	Zusamr	nenfassung	147
	9.2	Ausblic	k	148

10	Literaturverzeichnis	151
11	Verzeichnis betreuter Studienarbeiten	175
12	Abbildungsverzeichnis	177
13	Tabellenverzeichnis	181
14	Anhang	183
1	4.1 Modellierung der Prozessbausteine	
1	4.2 Ereignismatrix	196
1	4.3 Genutzte Softwareprodukte	197

Abkürzungsverzeichnis

APS Advanced Planning and Scheduling

Auto-ID automatische Identifikation

BMWi Bundesministerium für Wirtschaft und Energie

bzw. beziehungsweise

d. h. das heißt

DFG Deutsche Forschungsgemeinschaft

DIN Deutsches Institut für Normung e. V.

DTW Dynamic Time Warping

e. V. eingetragener Verein

eEPK erweiterte Ereignisgesteuerte Prozesskette

engl. englisch

EPC Electronic Product Code (elektronischer Produktcode)

EPCIS Electronic Product Code Information Service

EPK Ereignisgesteuerte Prozesskette

ERP Enterprise Resource Planning

ES Ereignisspeicher

et al. et alii

EV Ereignisverwalter

Fraunhofer IPA Fraunhofer-Institut für Produktionstechnik und Auto-

matisierung

Fraunhofer IWU Fraunhofer-Institut für Werkzeugmaschinen und Um-

formtechnik

FTS Fahrerloses Transportsystem

HF high frequency

Hrsg. Herausgeber

ISO International Organization for Standardization

IuK-Technologie Informations- und Kommunikationstechnologie

iwb Institut für Werkzeugmaschinen und Betriebswissen-

schaften der Technischen Universität München

JIS Just-in-Sequence

JIT Just-in-Time

KMU Kleine und mittlere Unternehmen

LDL Logistikdienstleister

ME-System Manufacturing Execution System

MRP Material Requirements Planning

Nr. Nummer

OEM Original Equipment Manufacturer

OPP Order Penetration Point

PPS Produktionsplanung und -steuerung

REFA Verband für Arbeitsgestaltung, Betriebsorganisation

und Unternehmensentwicklung

RFID Radio Frequency Identification

S Seite

SAP ECC SAP ERP Central Component

SAP MII SAP Manufacturing Integration and Intelligence

SAP PCo SAP Plant Connectivity

SCC Supply Chain Council

SCM Supply Chain Management

SCEM Supply Chain Event Management

SCOR-Modell Supply Chain Operations Reference Modell

SFB Sonderforschungsbereich

SPC Statistical Process Control

TUM Technische Universität München

UHF ultra high frequency

VDA Verband der Automobilindustrie e. V.

VDI Verein Deutscher Ingenieure e. V.

vgl. vergleiche

z. B. zum Beispiel

Verzeichnis der Formelzeichen

 $A_{j'}^{ME}$ Anzahl der Aufträge der Planungsperiode P_j , die bei

Umsetzung der Maßnahme M_E eine Änderung erfah-

ren

 $|A_i^{EntM_E}|$ Anzahl der Aufträge, die bei Umsetzung der Maßnah-

me M_E in der Planungsperiode P_i im Gegensatz zur

originären Planung entfallen

 $|A_i^{M_E}|$ Anzahl der Aufträge, die bei Umsetzung der Maßnah-

me M_E in der Planungsperiode P_i bearbeitet werden

 $A_{ii'}^{M_E}$ Binärvariable zur Angabe, ob ein der Planungsperiode

 P_j zugeordneter Auftrag A_i bei Umsetzung der Maß-

nahme M_E eine Änderung erfährt

C_p Prozessfähigkeit

 C_{pk} Kritische Prozessfähigkeit

 $D(M_z, M_v)$ Distanzmaß zwischen Muster M_z und Muster M_v

 K_{ij} Gesamtkosten für Abwicklung von Auftrag A_i in der

Planungsperiode P_j

 K_{ij}^{Adapt} Adaptionskosten für Auftrag A_i in der Planungsperio-

 $de P_j$

 $K_{ii}^{FixAdapt}$ Fixe Adaptionskosten für Auftrag A_i in der Planungs-

periode P_j

 K_{ij}^{Log} Kosten der Logistikprozesse für Auftrag A_i in der

Planungsperiode P_j

 K_{ij}^{Opp} Opportunitätskosten für Auftrag A_i in der Planungspe-

riode P_j

 K_{ij}^{Prod} Kosten der Produktionsprozesse für Auftrag A_i in der

Planungsperiode P_j

 K_{ij}^{Proz} Prozessspezifische Kosten für Auftrag A_i in der Pla-

nungsperiode P_j

$K_{ij}^{St\"{o}r}$	Störkosten für Auftrag A_i in der Planungsperiode P_i
	·
$K_{ij}^{VarAdapt}$	Variable Adaptionskosten für Auftrag A_i in der Planungsperiode P_j
K_{ij}^{Verz}	Verzugskosten für Auftrag A_i in der Planungsperiode P_j
K_j^{Ges}	Gesamtkosten in der Planungsperiode P_j
$MA_{P_j}^{M_E}$	Menge der Aufträge, die in der Planungsperiode P_j bei Umsetzung der Maßnahme M_E bearbeitet werden
MA_{P_j}	Menge der Aufträge, die in der Planungsperiode P_j bearbeitet werden
OGW	Oberer Grenzwert
$PS_j^{M_E}$	Planungsstabilität in Bezug auf ein Arbeitssystem bei Umsetzung der Maßnahme M_E in der Planungsperiode P_j
t_{AZ}	Amortisationszeit
$te_{A_{ij}}^{M_E}$	Soll-Endtermin des Auftrages A_i in der Planungsperiode P_j bei Umsetzung der Maßnahme M_E
$te_{A_{ij}}$	Soll-Endtermin des Auftrages A_i in der Planungsperiode P_j
UGW	Unterer Grenzwert
\bar{x}	Mittelwert
$ar{ar{x}}$	Mittelwert der Mittelwerte der Stichproben
x_v	Merkmalsausprägung des Musters M_z an dem Punkt v
y_v	Merkmalsausprägung des Musters M_y an dem Punkt v
Z_{krit}	Minimaler Abstand des Mittelwertes zur Toleranz- grenze

Standardabweichung

σ