LASER IN DER MATERIALBEARBEITUNG

Thomas Kübler

Modellierung und Simulation des Halbleiterscheibenlasers Laser in der Materialbearbeitung Forschungsberichte des IFSW

T. Kübler Modellierung und Simulation des Halbleiterscheibenlasers

Laser in der Materialbearbeitung Forschungsberichte des IFSW

Herausgegeben von Prof. Dr. phil. nat. habil. Thomas Graf, Universität Stuttgart Institut für Strahlwerkzeuge (IFSW)

Das Strahlwerkzeug Laser gewinnt zunehmende Bedeutung für die industrielle Fertigung. Einhergehend mit seiner Akzeptanz und Verbreitung wachsen die Anforderungen bezüglich Effizienz und Qualität an die Geräte selbst wie auch an die Bearbeitungsprozesse. Gleichzeitig werden immer neue Anwendungsfelder erschlossen. In diesem Zusammenhang auftretende wissenschaftliche und technische Problemstellungen können nur in partnerschaftlicher Zusammenarbeit zwischen Industrie und Forschungsinstituten bewältigt werden.

Das 1986 gegründete Institut für Strahlwerkzeuge der Universität Stuttgart (IFSW) beschäftigt sich unter verschiedenen Aspekten und in vielfältiger Form mit dem Laser als einem Werkzeug. Wesentliche Schwerpunkte bilden die Weiterentwicklung von Strahlquellen, optischen Elementen zur Strahlführung und Strahlformung, Komponenten zur Prozessdurchführung und die Optimierung der Bearbeitungsverfahren. Die Arbeiten umfassen den Bereich von physikalischen Grundlagen über anwendungsorientierte Aufgabenstellungen bis hin zu praxisnaher Auftragsforschung.

Die Buchreihe "Laser in der Materialbearbeitung – Forschungsberichte des IFSW" soll einen in der Industrie wie in Forschungsinstituten tätigen Interessentenkreis über abgeschlossene Forschungsarbeiten, Themenschwerpunkte und Dissertationen informieren. Studenten soll die Möglichkeit der Wissensvertiefung gegeben werden.

Modellierung und Simulation des Halbleiterscheibenlasers

von Dr.-Ing. Thomas Kübler Universität Stuttgart

Herbert Utz Verlag · Wissenschaft München Als Dissertation genehmigt von der Fakultät für Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart

Hauptberichter: Prof. Dr. phil. nat. habil. Thomas Graf Mitberichter: Prof. Dr. rer. nat. habil. Ortwin Hess

(University of Surrey, United Kingdom)

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugleich: Dissertation, Stuttgart, Univ., 2009

D 93

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH 2009

ISBN 978-3-8316-0918-5

Printed in Germany

Herbert Utz Verlag GmbH, München Tel.: 089-277791-00 · www.utzverlag.de

Kurzfassung

Lasersysteme und deren Anwendungen sind aus dem heutigen Leben, ob im privaten, industriellen oder medizinischen Umfeld, nicht mehr wegzudenken. Infolge dieser breiten Anwendungsmöglichkeiten besteht der Wunsch nach kostengünstigen und effizienten Laserquellen mit guter Strahlqualität.

Für Bereiche wie z.B. die Spektroskopie oder Projektionssysteme scheint der Halbleiterscheibenlaser ein geeignetes System zu sein.

Wie beim Festkörper-Scheibenlaser besteht auch bei diesem System die aktive Zone aus einer dünnen Scheibe, welche jedoch aus periodisch angeordneten, durch Spacerschichten separierten Quantenfilmen, den eigentlich laseraktiven Zonen, aufgebaut ist. Auf der Rückseite dieser Scheibe ist ein Bragg-Spiegel epitaktisch aufgewachsen, welcher zusammen mit dem Auskoppelspiegel den Laserresonator bildet. Der Halbleiterscheibenlaser eignet sich hervorragend für die Frequenzverdopplung, da er durch die geringe Auskopplung eine hohe resonatorinterne Leistungsdichte hat. Im Zusammenspiel mit dem möglichen Wellenlängendesign über die Quantenfilme lassen sich somit frequenzverdorpelte Halbleitersysteme ersetzen.

Der Halbleiterscheibenlaser, als optisch angeregter Oberflächenemitter hat, gegenüber den herkömmlichen, über die Spacer gepumpten VECSEL den Vorteil, dass die Pumpstrahlung direkt in den Quantenfilmen absorbiert wird, wodurch sich der Wärmeeintrag in die aktive Zone infolge des deutlich reduzierten Quantendefekts verringern lässt. Dieser Vorteil wird mit einem höheren Aufwand bei Design und Prozessierung der Scheibe erkauft. Durch die deutliche Reduktion der Absorptionslängen sind auch für die Pumpstrahlung Resonanzeigenschaften zu berücksichtigen.

Im Rahmen dieser Arbeit werden Modelle zur Simulation des Lasersystems entwickelt. Insbesondere wird der Pumpvorgang genauer beleuchtet und die Resonanzeigenschaften der Scheibe durch eine weitere Ratengleichung berücksichtigt. Es wird gezeigt unter welchen Voraussetzungen es für nulldimensionale und radiale Betrachtungen ausreichend ist, die stationäre Lösung für die Pumpratengleichung zu verwenden.

Inhaltsverzeichnis

Kı	urzfas	ssung	5		
In	halts	verzeichnis	7		
Sy	mbol	e	11		
Ex	ktend	ed Abstract	17		
1	Einl	eitung	23		
	1.1	Anforderungen	23		
	1.2	Zielsetzung und Aufbau der Arbeit	25		
2	Das Konzept				
	2.1	Optisch gepumpte Oberflächenemitter	28		
	2.2	Halbleiterscheibenlaser	32		
3	Nulldimensionales Modell				
	3.1	Modellansatz	35		
	3.2	Gainfunktion	38		
	3.3	Iso-Dichten	39		
	3.4	Notwendige Erweiterungen	40		
4	Con	finementfaktoren	43		
	4.1	Definition der Γ -Faktoren	43		
	4.2	Confinement von Oberflächenemittern	44		
		4.2.1 Confinement eines VCSEL's	45		
			46		
		4.2.3 Die Bedeutung von Γ_{Δ}	50		
		4.2.4 Ankopplung einzelner Quantenfilme	51		
5	Tra	nsfermatrixmethode	53		
	5.1	Darstellung der Methode	53		
	5.2	Rechts- und linkslaufende Welle	54		
	5.3	Die Transfermatrix	54		

8 Inhaltsverzeichnis

	5.4	Die Propagationsmatrix			
	5.5	Die Anwendung			
	5.6	Die Verwendung der Methode für den Halbleiterscheibenlaser			
6	Mod	lelle		59	
	6.1	.1 Multimode - Nulldimensional			
	6.2	Longitu	dinale Erweiterung	60	
		6.2.1	Effektive Gainfunktion	62	
		6.2.2	Deutung der Erweiterung	64	
	6.3	Radiale	Erweiterung	65	
		6.3.1	Motivation des Ansatzes	66	
		6.3.2	Resonator quelle $\mathbf{S_r}$	68	
		6.3.3	Deutung der Resonatorquelle	69	
		6.3.4	Die Verteilungsfunktion $\mathbf{v_r}$	71	
	6.4	Kombin	nation der Erweiterungen	72	
7	Pun	pmodell	- Quantenfilmpumpen	75	
	7.1	Vorbetra	achtung	75	
	7.2	Das Mo	dell	76	
		7.2.1	Der Modellansatz	76	
		7.2.2	Ermittlung der Confinementfaktoren	77	
		7.2.3	Vorbetrachtungen zur Pumpphotonenlebensdauer	78	
		7.2.4	Berechnung der Pumpphotonenlebensdauer	81	
	7.3	Das lon	gitudinal aufgelöste Pumpmodell	82	
	7.4	Radiale	Auflösung des Pumpvorgangs	83	
	7.5			84	
	7.6	Verknüj	pfung mit den Ratengleichungen	85	
		7.6.1	Nulldimensional	85	
		7.6.2	Longitudinal	87	
	7.7			89	
		7.7.1	Motivation	89	
		7.7.2		90	
	7.8	Transfo	rmationsverhalten des k _p - Vektors	94	
8	Verg	gleich Sir	nulation - Experiment	99	
	8.1		_	99	
	8.2		nenteller Aufbau Quantenfilmpumpen	02	
		_	Confinementfaktoren der Proben		
			8.2.1.1 Ti: Δl ₀ Ω ₀ -genumnt 1		

Inhaltsverzeichnis 9

Da	nksa	gung			139
Ał	bildu	ingsver	zeichnis		137
Literaturverzeichnis 131					
9 Zusammenfassung und Ausblick			127		
	8.4	Ti:Al ₂	O ₃ -gepum _l	ot - radial aufgelöst	118
		8.3.2	Numeriso	che Auswertung - Longitudinal	114
		8.3.1	Confinen	nent	113
	8.3	Diode	ngepumpt -	· longitudinal aufgelöst	112
			8.2.2.2	Diodegepumpt	109
			8.2.2.1	$Ti:Al_2O_3$ -gepumpt	108
		8.2.2	Numeriso	che Auswertung	107
			8.2.1.2	Diodengepumpt	105

Lateinische Symbole

 A_m Lasermodenfläche

Ap Pumpfläche

 A_{τ} Störstellenrekombinationsrate

A Elektrisches Feld

 A_{amp} elektrische Feldamplitude

 A_{in} elektrische Feldamplitude der Pumpstrahlung

 $A_{0,a}$ Feldamplitude im Vakuumbereich A_0 Feldamplitude im Halbleiterbereich

 \vec{A} Feldvektor; elektrisches Feld \mathcal{A} Elektrisches Feld; komplex

 B_{τ} Koeffizient der strahlenden Übergänge

B rechtslaufende WelleC linkslaufende Welle

 C_{τ} Koeffizient für den Augerübergang c Vakuumlichtgeschwindigkeit c_{vh} Phasengeschwindigkeit; Licht

 d_{cav} Länge der Subkavität

 d_q Dicke des Halbleiterbereichs; i.d.R identisch zu d_{cav}

 d_{QW} Gesamtdicke aller Quantenfilme d_{QW_i} Dicke des Quantenfilms mit der Nr. i

 d_{res} effektive Resonatorlänge

D Transfermatrix

 E_{abs} absorbierte Leistungsdichte E_q Bandlücke des Halbleitermaterials

 E_p Pumpleistungsdichte

 $E_m^{(Phot)}$ Photonenenergie; Lasermode $E_p^{(Phot)}$ Photonenenergie; Pumpmode

q Gain

 \tilde{g} Gain für $e \cdot n_t$

G Gainfunktion im Zeitraum

G_i	Gain eines einzelnen Quantenfilms
G_s	Systemgain; longitudinales Modell
$ ilde{G}$	Korrekturrate; radiales Modell (Resonatorgain)
j	Stromdichte
$\vec{k}_{p,e}$	Wellenvektor; einfallend; Pumpwellenlänge
\vec{k}_p	Wellenvektor; im Material; Pumpwellenlänge
k_a	Wellenzahl; Vakuumbereich
k_i	Wellenzahl; Halbleiterbereich
k_x	Wellenzahl; x-Komponente
k_{xm}	Wellenzahl; x-Komponente; Lasermode
k_{xp}	Wellenzahl; x-Komponente; Pumpmode
$L^{'}$	Verluste durch Auskopplung in %
L_q	Gesamtverluste; Subkavität
L_m^p	Laguerre-Polynom
L_n	Anteil aus L_g , der zu Ladungsträgergeneration führt
L_d	dissipativer Anteil aus L_g
\bar{n}_d	gemittelter Brechungsindex der Subkavität
n	Ladungsträgerdichte
n_g	Anzahl der Ladungsträger in Wechselwirkung mit der Mode
n_t	Transparenz-Ladungsträgerdichte
N	Anzahl aller Schichten in der Halbleiterstruktur
N_g	Anzahl der radialen Modengruppen mit identischem Eigenwert
N_m	Anzahl der longitudinalen Moden
N_{QW}	Anzahl der Quantenfilme
p	Photonendichte; gespeicherte Energie im Resonator
p_p	Pumpphotonenzahl; Gespeicherte Energie in der Subkavität
$ ilde{p}_p$	Energiedichteverteilungsfunktion in der Subkavität
P_{abs}	absorbierte Pumpleistung
P_{out}	Ausgangsleistung
$P_{p,0}$	einfallende Pumpleistung
P_s	P_{abs} an der Schwelle
P	Propagationsmatrix
Q	Quellterm; allgemein
Q	Projektionsmatrix der GL-Moden
Q_n	Quellterm; Ladungsträger
R_m	Radius der Mode (auf Halbleiterscheibe)
R_p	Radius des Pumpfleck (auf Halbleiterscheibe)
D	

Rekombinationsrate der strahlende Übergänge

 R_{sp}

 $egin{array}{ll} R_c & {
m Auger-Rekombinations rate} \\ r & {
m Fresnel-Reflexions koeffizient} \\ R_p & {
m Radius \ des \ Pumpflecks} \\ \end{array}$

 R_s Spiegelradius

 S_r radiale Quellenfunktion

t Fresnel-Transmissionskoeffizient T Verluste durch Transmission in % T_{HL} Temperatur in K des Halbleiters

 $\Delta T_{
m abs}$ Temperaturerhöhung durch Verlustprozesse in K/W

 v_p Verteilungsfunktion der Pumpleistungsdichte

 v_r Verteilungsfunktion; radiale Mode

 V_w Wechselwirkungsvolumen

 V_a Gesamtvolumen

 w_e Volumenenergiedichte des elektrischen Feldes $w_{e,l}$ Längenenergiedichte des elektrischen Feldes $w_{e,A}$ Flächenenergiedichte des elektrischen Feldes

Griechische Symbole

 α effektive Absorptions funktion

 α_e Einfallswinkel Pumpstrahlung; Winkel zur Senkrechten der

Halbleiteroberfläche

 α_{int} interne Verluste

 α_m Verluste durch Auskopplung

β Anteil der spontanen Rekombinationen in die Lasermode

Γ Confinement Lasermode

 Γ_c Confinement-Faktor Subkavität Pumpmode

 Γ_{eu} Eulersches Integral zweiter Gattung

 Γ_f Füllfaktor

 Γ_{f_i} Füllfaktor des *i*-ten Quantenfilms

 $ar{\Gamma}_f$ gemittelter Füllfaktor Γ_l laterales Confinement Γ_r relatives Confinement

 Γ_{r293K} relatives Confinement bei 293K

 Γ_{Δ} Überhöhungsfaktor

 $\Gamma_{\Delta 293K}$ Überhöhungsfaktor bei 293K δ Proportionalitätskonstante

 $\begin{array}{lll} \Delta & & \text{Verhältnis der Amplitudenquadrate} \\ \varepsilon_0 & & \text{Dielektrizitätskonstante des Vakuums} \\ \varepsilon_r & & \text{relative Dielektrizitätskonstante} \end{array}$

 η_q Geometriefaktor des angepassten nulldimensionalen Modells

 $\eta_{g,n}$ Geometriefaktor entsprechend η_g im radialen Modell resultierender Geometriefaktor des radialen Modells

 η_p Effizienzfaktor Pumpabsorption

 $\Delta \lambda$ temperaturabhängige Verschiebung der Γ-Funktionen

 $\Delta \lambda_s$ Steigung der Verschiebung der Γ-Funktionen

 ψ_{mp} GL-Mode

Ψ Einhüllende; Wellenpropagation $τ_e$ Ladungsträgerlebensdauer

 τ_m Photonenlebensdauer; Anteil der Auskopplung

 τ_p Photonenlebensdauer

 τ_r Verallgemeinerte Photonenlebensdauer; radiales Modell

 τ_S radiale Photonenlebensdauerfunktion

 au_u Umlaufzeit im Resonator au_{up} Umlaufzeit in der Subkavität au_{pp} Lebensdauer der Pumpphotonen

Abkürzungen und Begriffe

AlAs Aluminium-Arsenid

AlGaAs Aluminium-Gallium-Arsenid

AlGaAsP Aluminium-Gallium-Arsenid-Phosphit
DBR Distributed Bragg Reflector; Bragg-Spiegel

GRIN Kontinuierliche Indexvariation innerhalb der Heterostruktur;

Graded Index

GL-Mode Gauß-Laguerre-Mode GaAs Gallium-Arsenid

Heterostruktur Schichtenfolge verschiedener Halbleitermaterialien