LASER IN DER MATERIALBEARBEITUNG

Jürgen Müller-Borhanian

Kamerabasierte In-Prozessüberwachung beim Laserstrahlschweißen

Laser in der Materialbearbeitung Forschungsberichte des IFSW

J. Müller-Borhanian Kamerabasierte In-Prozessüberwachung beim Laserstrahlschweißen

Laser in der Materialbearbeitung Forschungsberichte des IFSW

Herausgegeben von Prof. Dr. phil. nat. habil. Thomas Graf, Universität Stuttgart Institut für Strahlwerkzeuge (IFSW)

Das Strahlwerkzeug Laser gewinnt zunehmende Bedeutung für die industrielle Fertigung. Einhergehend mit seiner Akzeptanz und Verbreitung wachsen die Anforderungen bezüglich Effizienz und Qualität an die Geräte selbst wie auch an die Bearbeitungsprozesse. Gleichzeitig werden immer neue Anwendungsfelder erschlossen. In diesem Zusammenhang auftretende wissenschaftliche und technische Problemstellungen können nur in partnerschaftlicher Zusammenarbeit zwischen Industrie und Forschungsinstituten bewältigt werden.

Das 1986 gegründete Institut für Strahlwerkzeuge der Universität Stuttgart (IFSW) beschäftigt sich unter verschiedenen Aspekten und in vielfältiger Form mit dem Laser als einem Werkzeug. Wesentliche Schwerpunkte bilden die Weiterentwicklung von Strahlquellen, optischen Elementen zur Strahlführung und Strahlformung, Komponenten zur Prozessdurchführung und die Optimierung der Bearbeitungsverfahren. Die Arbeiten umfassen den Bereich von physikalischen Grundlagen über anwendungsorientierte Aufgabenstellungen bis hin zu praxisnaher Auftragsforschung.

Die Buchreihe "Laser in der Materialbearbeitung – Forschungsberichte des IFSW" soll einen in der Industrie wie in Forschungsinstituten tätigen Interessentenkreis über abgeschlossene Forschungsarbeiten, Themenschwerpunkte und Dissertationen informieren. Studenten soll die Möglichkeit der Wissensvertiefung gegeben werden.

Kamerabasierte In-Prozessüberwachung beim Laserstrahlschweißen

von Dr.-Ing. Jürgen Müller-Borhanian Universität Stuttgart

Herbert Utz Verlag · Wissenschaft München Als Dissertation genehmigt von der Fakultät für Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart

Hauptberichter: Prof. Dr.-Ing. habil. Helmut Hügel Mitberichter: Prof. Dr. sc. nat. Wolfgang Osten

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugleich: Dissertation, Stuttgart, Univ., 2008

D 93

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH 2009

ISBN 978-3-8316-0890-4

Printed in Germany

Herbert Utz Verlag GmbH, München Tel.: 089-277791-00 · www.utzverlag.de

Kurzfassung

Um die Fertigungsqualität beim Laserstrahlschweißen sicherzustellen, werden häufig In-Prozessüberwachungsmethoden eingesetzt. Hierbei wird die durch die Wechselwirkung zwischen Laserstrahl und Werkstück entstehende Sekundärstrahlung analysiert, da sie Informationen über die Dynamik und die Stabilität des Schweißprozesses in sich trägt. Die Detektion dieser Prozessstrahlung mit Einzeldetektoren wie Photodioden ist als Ver-

fahren robust und erprobt. Die Kombination mehrerer Einzeldetektoren, die die Prozessemissionen in unterschiedlichen Spektralbereichen oder an unterschiedlichen Messpositionen aufnehmen, soll die Zuverlässigkeit der Qualitätsaussage erhöhen, die dennoch, aufgrund der räumlich integrierenden Messung, begrenzt bleibt.

Wird statt der Einzeldetektoren eine Kamera für die Detektion der Prozessemissionen verwendet, bietet dies den Vorteil der ortsaufgelösten Messung. Die Kamerabilder liefern somit eine Fülle an Informationen über den Schweißprozess. Die softwaretechnische Verarbeitung der Kamerabilder ist jedoch verglichen mit der Auswertung der Signale der Einzeldetektoren sehr viel aufwendiger.

Insbesondere die Auswertung der Geometrie der Kapillaröffnung und des Schmelzbades stellt einen allgemeinen Ansatz zur kamerabasierten In-Prozessüberwachung dar. Die gleichzeitige Visualisierung von Schmelzbad und Kapillaröffnung ist jedoch nur unter bestimmten Voraussetzungen möglich und abhängig von den Kameraeigenschaften, von der Detektionswellenlänge, aber auch vom Bearbeitungsmaterial.

Basierend auf den in Vorversuchen durchgeführten spektroskopischen Untersuchungen und durch den Einsatz verschiedener Kameratypen und unterschiedlicher Detektionswellenlängen wird ein für die kamerabasierte In-Prozessüberwachung geeigneter Wellenlängenbereich gefunden. Weiter wird ein allgemeiner Bildverarbeitungsansatz zur Berechnung der Geometrie der Kapillaröffnung und des Schmelzbades aus den Kamerabildern vorgeschlagen und entsprechende Grundlagenversuche beim Laserstrahlschweißen werden durchgeführt.

Die gesammelten Erkenntnisse dienen der Modifikation eines bestehenden Echtzeit-Bildverarbeitungssystems. Der entwickelte Bildverarbeitungsansatz wird für dieses System umgesetzt, wobei durch optimierte Algorithmen und den Einsatz von DSP-Technik eine hohe Bildfolgefrequenz erreicht wird, um der Dynamik des Schweißprozesses gerecht zu werden. Das System wird bei Parameterstudien erprobt und seine Eignung für die Prozessüberwachung beim Laserstrahlschweißen untersucht und beurteilt.

Inhaltsverzeichnis

K	Kurzfassung 5					
In	haltsv	erzeich	nis		7	
Li	Liste der verwendeten Symbole					
E	ktende	ed Abst	ract		15	
1	Einl	eitung			19	
	1.1	Ausga	ngslage .		19	
	1.2	Zielset	zung		20	
	1.3	Gliede	rung der A	Arbeit	21	
2	Gru	ndlager	1		23	
	2.1	Lasers	trahltiefsc	hweißen	23	
		2.1.1	Prinzip o	les Laserstrahltiefschweißens	23	
		2.1.2	Schweiß	fehler und Fehlerindikatoren	25	
	2.2	Strahlu	ungsphysil	kalische Größen	27	
	2.3	Wärm	estrahlung	;	29	
	2.4	Bildve	rarbeitung	;	31	
		2.4.1	Optische	Abbildung	32	
			2.4.1.1	Absorption und Reflexion	32	
			2.4.1.2	Brechung	33	
			2.4.1.3	Abbildung mit Linsen	34	
			2.4.1.4	Optische Filter	34	
			2.4.1.5	Abbildungsfehler	36	
			2.4.1.6	Schärfentiefe	37	
			2.4.1.7	Wellenphänomene	37	
		2.4.2	Kameras	Grür die In-Prozessüberwachung	37	
			2.4.2.1	CCD-Kameras	39	
			2.4.2.2	CMOS-Kameras	40	
			2.4.2.3	IR-Kameras	42	
		2.4.3	Bilddigit	talisierung	44	

			2.4.3.1	Kontinuierliche Bilder	44
			2.4.3.2	Digitalisierte Bilder	44
			2.4.3.3	Bildspeicherung	46
		2.4.4	Bildvera	beitungsalgorithmen	47
			2.4.4.1	Binarisierung/Schwellwertbildung	47
			2.4.4.2	Mittelwerte	49
			2.4.4.3	Falschfarben- und Pseudofarbdarstellung	49
			2.4.4.4	Histogrammberechnung	50
			2.4.4.5	Kantendetektion	51
			2.4.4.6	Morphologische Operatoren	53
			2.4.4.7	Zufallsvariablen und Momente	54
			2.4.4.8	Formparameter	55
			2.4.4.9	Objektbeschreibung und Konturapproximation	57
			2.4.4.10	Objekterkennung	58
3	Proz	zessüber	wachung	beim Laserstrahlschweißen	59
	3.1	Offline	-Verfahrer	1	59
		3.1.1	Zerstörer	de Qualitätskontrolle	60
		3.1.2	Zerstöru	ngsfreie Qualitätskontrolle	61
			3.1.2.1	Röntgenverfahren	61
			3.1.2.2	Ultraschallverfahren	62
			3.1.2.3	Thermografieverfahren	62
			3.1.2.4	Lichtschnittverfahren	63
			3.1.2.5	Graubildauswertung	64
			3.1.2.6	Penetrationsverfahren	64
			3.1.2.7	Magnetpulverprüfung	64
	3.2	Online	-Verfahrer		64
		3.2.1	Pre- und	Postprozessüberwachung	65
			3.2.1.1	Lichtschnittverfahren	65
			3.2.1.2	Graubildauswertung	65
		3.2.2	In-Prozes	ssüberwachung	66
			3.2.2.1	Räumlich integrierende Verfahren	66
			3.2.2.2	Bildgebende Verfahren	68
4	Voru	intersu	chungen		71
	4.1	Unters	uchung de	r Leistungsstabilität von Festkörperlasern	72
		4.1.1	Versuchs	aufbau	72
			4.1.1.1	Messung der Laserleistung	72

			4.1.1.2 Messung der Leistung der reflektierten Laserstrahlung	73
			4.1.1.3 Optimierung des Versuchsaufbaus	74
			4.1.1.4 Signalverarbeitung	75
		4.1.2	Untersuchung der Leistungsstabilität	76
		4.1.3	Einflüsse der reflektierten Strahlung	78
		4.1.4	Zusammenfassung	78
	4.2	Spektr	oskopische Untersuchungen	79
		4.2.1	Versuchsaufbau und -durchführung	79
		4.2.2	Ergebnisse	81
		4.2.3	Zusammenfassung	83
	4.3	Prozes	ssvisualisierung mit Hilfe einer Hochgeschwindigkeits-IR-Kamera	83
		4.3.1	Versuchsaufbau und -durchführung	84
		4.3.2	Ergebnisse	86
		4.3.3	Zusammenfassung	89
	4.4	Unters	suchung der Leistungsdichteverteilung der reflektierten Laserstrah-	
		lung .		91
		4.4.1	Ergebnisse der Simulationsrechnung	91
		4.4.2	Versuchsaufbau	93
		4.4.3	Versuchsdurchführung und -auswertung	95
		4.4.4	Ergebnisse	97
			4.4.4.1 Kapillarneigung	97
			4.4.4.2 Unterschiedliche Schachtverhältnisse	101
			4.4.4.3 Auswürfe	102
		4.4.5	Zusammenfassung	103
5	Kan	nerabas	ierte In-Prozessüberwachung beim Laserstrahlschweißen	105
	5.1	Einleit	tung	105
	5.2	Analys	se der Schmelzbad- und Kapillargeometrie	106
		5.2.1	Kameraeigenschaften	106
		5.2.2	Versuchsaufbau	107
		5.2.3	Einfluss der Detektionswellenlänge	108
			5.2.3.1 Störung durch das Metalldampfleuchten	109
			5.2.3.2 Visualisierung des Schmelzbades	110
		5.2.4	Erfassung der Schmelzbad- und Kapillargeometrie	114
			5.2.4.1 Objekterkennung	116
			5.2.4.2 Bestimmung und Auswertung der Formparameter	118
	5.3	Zusam	menfassung	119

6	Real	isierun	g eines Echtzeit-Bildverarbeitungssystems	121	
	6.1	Einleit	ung	121	
	6.2	System	nhardware	121	
	6.3	Systen	nsoftware	122	
	6.4	System	nanpassung	124	
	6.5	Versuc	hsdurchführung	124	
	6.6	Detekt	ionsergebnisse	126	
		6.6.1	Variation der Laserleistung	127	
		6.6.2	Variation der Fokuslage	128	
		6.6.3	Spalt beim Überlappstoß	131	
		6.6.4	Kombination aus Lateralversatz und Spalt beim Stumpfstoß	136	
		6.6.5	Lateralversatz bei Stumpfstoß von Tailored Blanks	138	
		6.6.6	Lateralversatz bei Kehlnahtschweißungen	139	
		6.6.7	Schutzgaseinflüsse	141	
	6.7	Zusam	menfassung	142	
7	Zusa	ammen	fassung	146	
Li	Literaturverzeichnis				
Da	nksa	gung		153	

Liste der verwendeten Symbole

Symbol	Bezeichnung	Wert	Dimension		
Lateinische Buchstaben					
a_{ix}, a_{iy}	Richtungskomp. des Kettencodes	1	1		
A	Absorption	1	1		
A_D	Detektorfläche	1	m^2		
A_O	Objektfläche	1	Pixel		
b_W	Bildweite	1	m		
b	Wiensche Konstante	$2,8978 \cdot 10^{-3}$	m∙K		
b_B	Bildbreite	1	Pixel		
В	Bildgröße	1	m		
С	Lichtgeschwindigkeit	1	ms^{-1}		
С	Speicherbedarf	1	Bit		
d	Dicke des Dielektrikums	1	m		
d_f	Fokusduchmesser	1	m		
d_{kap}	Öffnungsdurchmesser der Kapillare	1	1		
D	Dicke der planparallelen Platte	1	m		
Ε	Extinktion	1	1		
E_S	Bestrahlungsstärke	1	Wm^{-2}		
f	Brennweite	1	m		
f_f	Formfaktor	1	1		
F	Farbtiefe	1	Bit		
g	Grauwert	1	1		
g_W	Gegenstandsweite	1	m		
G	Gegenstandsgröße	1	m		
h	Plancksche Konstante	$6,6262 \cdot 10^{-34}$	Js		
h	Laplace-Operator	1	1		
h_B	Bildhöhe	1	Pixel		
Н	Histogrammfunktion (rel. Häufigkeit)	1	1		
HW	Halbwertsbreite	1	m		
i	Wahrscheinlichkeit	1	1		

Symbol	Bezeichnung	Wert	Dimension
Ι	Intensität	1	Wm^{-2}
k	Boltzmann-Konstante	$1,3807 \cdot 10^{-23}$	JK^{-1}
L	Strahlungsdichte	1	$\mathrm{Wm^{-2}\ sr^{-1}}$
т	Ordnung	1	1
M,N	Quantisierungsschritte	1	1
M_S	Strahlungsflussdichte	1	Wm^{-2}
MW	Mittlerer Grauwert	1	1
п	Brechzahl	1	1
n_e, n_o	Schritte des Kettencodes	1	1
n_P	Pixelanzahl	1	1
Ν	Gesamtzahl der Pixel	1	1
N_q	Quantisierungsschritte	1	1
OD	Optische Dichte	1	1
P_L	Laserleistung	1	W
р	Pixelwert	1	1
q	Histogrammtransformationsfunktion	1	1
r	Radius	1	m
R	Reflexion	1	1
S	Abstand	1	m
s	Sobel-Operator	1	1
S	Fläche der Strahlungsquelle	1	m ²
SNR	Signal-Rausch-Verhältnis	1	1
t	Zeiteinheit	1	8
t_{kap}	Kapillartiefe	1	m
Т	Temperatur	1	Κ
T_G	Schwelle der morphologischen Operatoren	1	1
T_S	Transmission	1	1
T_{v}	Verdampfungstemperatur	1	Κ
U	Objektumfang	1	Pixel
v	Vorschubgeschwindigkeit	1	ms^{-1}
W	Strahlungsenergie	1	J
x	Bildbreite	1	m
\overline{x}	Arithmetischer Mittelwert	1	1
X	Intensitätsschwerpunkt	1	1

Symbol	Bezeichnung	Wert	Dimension
x_c, y_c	Intensitätsschwerpunkt, Komponenten	1	Pixel
x_D	Doppelbildabstand	1	m
x_k	Bildbreite	1	Pixel
у	Bildhöhe	1	m
Y	Vergrößerung	1	1
y_j	Bildhöhe	1	Pixel
Z	Fokuslage	1	m
Griechis	che Buchstaben		
α	Absorptionsgrad	1	1
β	Raumwinkel	1	Grad
γ	Winkel	1	Grad
δ	Deltafunktion	1	1
3	Emissionsgrad	1	1
ϵ_f	Exzentrizität	1	1
θ	Emissionswinkel	1	Grad
λ	Wellenlänge	1	m
λ_c	Kantenwellenlänge	1	m
λ_W	Wärmeleitfähigkeit des Werkstoffes	1	$\mathrm{Wm}^{-1}\mathrm{K}^{-1}$
μ	Mittelwert	1	1
$\mu_n, \mu_{p,q}$	Momente des Bildes	1	1
ν	Messfrequenz	1	s^{-1}
ξ	Objektorientierung	1	Grad
σ	Standardabweichung	1	1
σ_B	Stefan-Boltzmann-Konstante	$5,6703 \cdot 10^{-8}$	$Wm^{-2}K^{-4}$
σ^2	Varianz	1	1
τ	Transmissionsgrad	1	1
φ	Gradient des Sobel-Operators	1	1
φ	Strahlungsfluss	1	W
Ω	Raumwinkel	1	Grad