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Preface

Appropriately assessing and effectively managing credit risk have

challenged banks for a long time. The scale of this challenge was high-

lighted by the financial crisis of 2008 and has become even more crucial

due to the increasing introduction of restrictive banking supervisory reg-

ulations. In the meanwhile, common quantitative methods addressing

this challenge have become an industry standard.

Even though finance commands sophisticated quantitative tools in

order to asses credit risk, these instruments can only be as beneficial as

the quality of the data they rely on. Therefore, ample and reliable data

are an important precondition for the effective use of these methods.

However, these conditions are rarely met in reality. Particularly, missing

data are a common cause of tainting data quality known to many fields

beyond credit risk assessment.

Besides transferring established means of properly dealing with miss-

ing data from statistics literature to the field of credit risk assessment,

Galler evaluates various methodological procedures and, thus, con-

tributes to the current research on credit risk models.

His analysis is based on a large database of high quality, comprising

balance sheets that differ in terms of their proportion of missing data.

The present study includes various methodological procedures for han-

dling and evaluating databases with missing data, ranging from basic

procedures to advanced techniques. Each of the resulting credit risk

models is evaluated in terms of quality and output, while corresponding

benchmarks derive from completely observed data.

Galler’s study reveals that the choice of missing data method influ-

ences the output of credit risk models. More specifically, it demonstrates

that the success of mitigating the observed data quality problem depends

on the applied missing data method. Moreover, the study shows that

the examined statistical procedures are differently sensitive to the exist-

ing proportion of missing data. Taken together, Galler’s study provides

clear evidence that the alleged minor problem of missing data deserves



an increased amount of consideration when building quantitative credit

risk models.

Prof. Dr. Jens Leker, May 2014
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1 Introduction

In the last few years, we have seen dramatic developments in economic

fluctuation. In the middle of the last decade, when real estate prices

in the United States started to decline, mortgages became increasingly

harder to repay for individuals as rising house prices were previously

used to avoid defaults. This worked either by refinancing or sale of

the respective property.1 Subprime lenders, that is to say debtors with

particularly low creditworthiness, were especially affected.2 In 2007

many lenders could not meet their obligation to pay anymore and the

bubble in the housing market finally burst as banks’ claims resulting from

their mortgage activities were rendered worthless. As mortgages were

securitized in Asset Back Securities (ABS), such as Mortgage Backed

Securities (MBS), formerly illiquid loans were transferred into liquid

assets and could thus be easily traded between investors.3 Risk inherent

in these mortgages, which was formerly allocated to few investors, was

therefore easily distributed around the globe. Therefore, the US real

estate market collapse, the so called Subprime Crisis, triggered a global

shock wave.4

On September 15, 2008 the fourth largest investment bank, Lehman

Brothers, which was heavily invested in the respective securities, col-

lapsed as a result.5 This event amounted to the largest bankruptcy

filing ever recorded for the US. AIG had issued insurance for a vol-

ume $400 billion against defaults of subprime mortgages in the form of

Credit Default Swaps (CDS).6 One day later, the breakdown of AIG fol-

lowed.7 As investors’ risk awareness grew, credit spreads began to rise.8

Banks lost their trust in each other as institutions were not able to assess

how much of the contaminated assets were held by other institutions

and hence whether the solvency of a potential obligor was seriously

impaired. Thus, the inter-bank loan market was crippled. Therefore,

1 Bhardwaj and Sengupta (2012), p.1504-1505.
2 Bhardwaj and Sengupta (2012), p.1503; El Gaied et al. (2012), p.83; Reinhart and Rogoff (2008), p.340.
3 Bhardwaj and Sengupta (2012), p.1505; El Gaied et al. (2012), p.83.
4 Mishkin (2011), p.50-52.
5 Mishkin (2011), p.52-53.
6 Mishkin (2011), p.53-54.
7 Mishkin (2011), p.52.
8 Eichengreen et al. (2012), p.1313; Mishkin (2011), p.55-56.
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the Subprime Crisis was joined by a liquidity crisis which caused central

banks to intervene. As many bank institutions suffered severe losses due

to the declines in value of their assets, governments and central banks

assisted these institutions in order to avoid a collapse of the banking

sector.9 The world had arrived at the latest financial crisis.

The financial crisis soon began to spread to the real economy as tight-

ened bank liquidity caused borrowing costs for companies to rise sharply,

business and consumer confidence eroded and assets devalued. As a

consequence, global economic activity contracted considerably.10 The

global contraction, which lasted until 2009, was labeled “the Great Re-

cession”. Due to great public efforts to moderate the consequences of the

crisis, public households were strained considerably which confronted

numerous countries with refinancing problems.11 A phenomenon prior

labeled highly improbable suddenly reached the attention of investors:

sovereign default. As investors started to estimate the probabilities of

sovereign default higher than before, sovereign bond spreads began to

rise for numerous countries, especially in the Eurozone.12 Several coun-

tries using the common currency experienced serious liquidity problems.

Since then sovereign liquidity problems have been remaining and the Eu-

rozone members have implemented several rounds of public safety nets

in order to challenge impending defaults of membership countries.

In short, in the last few years we have been confronted with an

increasingly uncertain environment. As uncertainty rises, so does the

significance of an individual company’s risk management.

1.1 Problem

This is especially true for the credit risk management of banks, since they

are not only faced with an uncertain environment, but also with rigorous

regulations which have been intensified as a consequence of the crisis

and which demand the implementation of rigorous risk management

frameworks.13 The Basel regulations especially require banks to provide

9 European Central Bank (2009), p.22; Mishkin (2011), p.63.
10 European Central Bank (2009), p.22; El Gaied et al. (2012), p.86; Mishkin (2011), p.57.
11 Reinhart et al. (2012), p.73.
12 European Central Bank (2011), p.38.
13 Walker (2011), p.95; Basel Committee on Banking Supervision (BCBS) (2011).
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their risk weighted assets with an adequately large base of regulatory

capital. The youngest reforms of these regulations, known as Basel

III, the implementation of which started at the January 1, 2013 and is

planned to be completed by January 1, 2019, demand a higher quality and

quantity of regulatory capital.14 This puts particular pressure on banks

in procuring sufficient regulatory capital. Since the Internal Ratings-

Based Approach (IRB) of determining regulatory capital requirement

tends to lower the regulatory capital requirements under the current

Basel regulatory framework, banks have a great incentive for using this

approach, rather than the Standardised Approach.15 While the latter

requires banks to rely on external assessments of their credit risk by

credit rating agencies (CRA), the IRB-approach allows them to internally

estimate their credit risk in order to determine their regulatory capital

requirement for every credit exposure.16 In order to estimate credit risk,

banks typically rely on internal models.17 In doing so, they consider

multiple risk components, the most important of which is the parameter

of Probability of Default (PD). It is labeled as such in this thesis as it is

the only risk parameter which has to be internally estimated by banks

using IRB in all cases.18 Others might be externally provided by the

supervisory body under certain conditions.19 In addition, Probabilities

of Default are an integral part of adequate credit pricing. The PD is used

to determine Standard Risk-Costs and therefore influences the price for

a granted loan. This component fulfills an important part in absorbing

incurred losses.20

In light of the above, estimating PD as accurately as possible is a

vitally important challenge within a bank’s credit risk assessment. In

order to build proper models for PD estimation, i.e. models which allow

14 Basel Committee on Banking Supervision (BCBS) (2011), paragraph 7; Basel Committee on Banking
Supervision (BCBS) (2012), p.8.

15 Haves (2012), p.33-34.
16 Basel Committee on Banking Supervision (BCBS) (2004), paragraph 211.
17 Basel Committee on Banking Supervision (BCBS) (2004), paragraph 346.
18 Florez-Lopez (2010), p.487; Haves (2012), p.34.
19 Basel Committee on Banking Supervision (BCBS) (2004), paragraph 391.
20 Heidorn (2012), p.384.
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to deduce statistically valid inferences, banks have to rely on an ade-

quately large database.21 However, in banking practice, data records of

obligors are often quite limited which makes modeling challenging and

available obligor data precious.22 In addition to the limited nature of

obligor databases, the existing data are usually impaired by incomplete

records which increases the risk of biased inferences.23 If this condition

occurs, we speak of missing data. The nonavailability of these records

particularly amplifies the problem of scarce data. Moreover, many stan-

dard statistical procedures require complete data. This is for example

the case with Logistic Regression (LR) which is widely applied by banks

for PD estimation.24 Therefore, in order to build a proper model for PD

estimation which renders valid inferences, the challenge of missing data

has to be appropriately tackled.

In statistics, there are numerous approaches to deal with the problem

of missing data which are employed in a wide range of social sciences.

These so called missing data methods (MDMs) vary from simple, basic

procedures to statistically more elaborate methods, each one featuring

individual properties. Observations containing missings can for exam-

ple simply be deleted or a plausible value can be substituted for the

missing value.25 A framework for missing data handling, which is still

applied, was provided by Rubin.26 In 1977 Dempster, Laird and Rubin

introduced the EM algorithm.27 This approach makes it possible to de-

rive Maximum Likelihood (ML) estimates. Instead of deleting or filling in

observations, ML handles the missing data as random variables which

are integrated out of the likelihood function.28 In 1987 Rubin presented

the concept of Multiple Imputation (MI).29 When applying this method,

every missing value is substituted with a number of M simulated values,

where M > 1. The advancing development of computer technology by

21 Basel Committee on Banking Supervision (BCBS) (2004), paragraph 417; Oesterreichische National-
bank (OeNB) and Finanzmarktaufsicht (FMA) (2004a), p.64; Schewe and Leker (2000), p.171.

22 Basel Committee on Banking Supervision (BCBS) (2005), p.2.
23 Kaltofen et al. (2007), p.7.
24 Basel Committee on Banking Supervision (BCBS) (2000), p.6.
25 Schafer and Graham (2002), p.155-162.
26 Rubin (1976), Schafer and Graham (2002), p.148.
27 Dempster et al. (1977).
28 Schafer and Graham (2002), p.148.
29 Rubin (1987).
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the late eighties of the last century alleviated the implementation of these

techniques considerably and stimulated their application. 30 They were

later joined by Markov Chain Monte Carlo (MCMC) techniques. In the

1990s Ibrahim presented ways of applying the EM algorithm to Gener-

alized Linear Models (GLM) for discrete data.31 Later in the decade, the

method was expanded to continuous variables by the help of an MCMC

via the Gibbs Sampler.32 The application of the EM algorithm to GLMs is

especially interesting for credit risk assessment since many models are

based on logistic regression.

However, in spite of the ample number of dealing with missing data,

statistical theory does not recommend one superior approach which is

universally best suited in every situation and for every field of science.

So, a proper way of missing data treatment in a certain setting outside

of credit risk might yield suboptimal results when employed therein, let

alone on a specific problem such as PD estimation under IRB. Rather,

the best approach highly depends on the properties of the missing data,

such as their underlying distribution. Credit risk literature addresses

the problem of missing data only superficially as it often recommends

basic procedures, but neglects to evaluate newer approaches for credit

risk already known to statistical literature. However, the former are

not necessarily always adequate for credit risk problems nor efficient

in their use of available data. In addition, many studies in credit risk

employ methods which emerged by convention of the field, rather than

on the basis of theoretic considerations or empiric evidence.33 Galler

and Kehrel showed that varying missing data methods can have differ-

ent influences on the distribution of financial ratios which often serve as

predictor variables in credit risk models.34 Florez-Lopez conducted an

investigation of using different missing data methods in credit modeling

for retail customers based on a mixture of categorical and continuous

data.35 However, the assets of an average European bank largely consist

30 Schafer and Graham (2002), p.148.
31 Ibrahim (1990).
32 Ibrahim et al. (1999a).
33 Collins et al. (2001), p.330; Florez-Lopez (2010), p.486; Oesterreichische Nationalbank (OeNB) and

Finanzmarktaufsicht (FMA) (2004a), p.80-82.
34 Galler and Kehrel (2011).
35 Florez-Lopez (2010).
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of claims on corporates, rather than retail exposures. In addition, credit

risk models for corporate exposures typically rely on financial statement

information, i.e., financial ratios, as variables serving as predictors of de-

fault. That is to say, when assessing credit risk for corporate obligors, we

use continuous attributes in the respective model, rather than a mixture

of categorical and continuous variables as in the case of models for retail

exposures. Thus, we lack the knowledge of how different missing data

methods perform in a credit risk modeling framework which would be

applied by most banks.36

Therefore, the goal of this thesis is to evaluate a range of statistical

methods of dealing with missing data, varying in their complexity as

well as in their efficiency of handling available data, under a credit

risk framework designed for estimating the PD for corporate exposures.

Particularly, I am interested in how banks can on the one hand efficiently

use their available customer records and on the other draw inferences,

i.e., calculate the risk parameter PD, as precisely as possible in spite of

missing data records. Ergo, the central research questions of this thesis

are:

• RQ 1: Do missing data methods exert influence on the assessment

of credit risk?

• RQ 2: Do specific missing data methods use existing data more

efficiently than others?

• RQ 3a: Do specific missing data methods yield potential gains for

credit risk assessment?

• RQ 3b: If RQ 3a is correct, is the performance of particular missing

data methods sensitive to varying ratios of missing data?

For this investigation, I want to rely on a typical framework which could

be employed by banks in order to estimate this risk parameter in a Basel

environment. As Logistic Regression asserted itself as the method of

choice in credit modeling in most banks, I will use it in order to construct

a corporate credit rating model. Usually, credit risk models for corporate

exposures are based on financial statement information which is why I

36 Kretzschmar et al. (2010), p.2840.
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