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Preface xi

Preface

The bi-annual conferences of the German Society for Computational Linguistics and Language

Technology (GSCL) traditionally designate a main conference theme, for which submissions are

particularly encouraged. For the 2009 conference, we chose text processing as the main theme,

encompassing both the theoretical aspects of ascribing structure to text and the practical issues of

computational applications targeting textual information. This choice reflects the research focus

of the team that is in charge of organizing the conference this year: the Applied Computational
Linguistics Group at Potsdam University. We are very happy to host the conference on our campus

‘Neues Palais’, right beside some of the major historical attractions offered by this beautiful city.

For automatic text processing, inter-operability and standardization are of great importance, and

recent years have seen a steadily growing interest in UIMA, an architecture for flexibly creating

analysis systems capable of dealing with documents representing unstructured information – of

which text is a very prominent type. Therefore, this volume also contains the proceedings of the 2nd

UIMA@GSCL workshop (one of the seven workshops held at the conference).

We are particularly happy to present three invited talks treating different aspects of the conference

theme. Johan Bos presents his work on Boxer, a system that demonstrates how formal semantic

analysis – which for a long time had often been seen as a laboratory exercise involving selected

“example sentences” – can scale up to the robust analysis of text, building on the output of a state-

of-the-art syntactic parser. Graeme Hirst discusses the different perspectives that can (or should) be

taken on text meaning and its computation. Finally, Simone Teufel describes an interesting practical

application of text meaning analysis: She gives an overview of her work on analyzing scientific pa-

pers, focusing on the problems of named-entity recognition and computation of rhetorical document

structure. Again, a robust semantic representation plays a central role for both tasks.

Furthermore, this volume includes three short versions of recent student’s theses. These are the

finalists of the GSCL Award, which is given every two years to the best student’s thesis. Students or
their supervisors can nominate entrants, and a group of referees from the conference’s programme

committee decides on the best three. These are invited to the conference to present their work, and

then the winner is chosen based on both the written text and the oral presentation. While at the time

of printing the winner is yet unknown, we hereby wish to extend our warm congratulations to all

three finalists who have their work presented in this book.

As a last word, we wish to acknowledge the generous support given by the Sonderforschungs-
bereich 632 Information Structure in terms of funding and helping with the overall organization.

For their work in planning and administering the conference, we thank the members of our orga-

nizing committee: Annett Esslinger, Peter Kolb and Florian Kuhn. Regarding the production of

this proceedings volume in particular, we thank the members of both programme committees for

their help with reviewing the submissions; Georg Rehm for providing us with the Latex framework;

and Andreas Peldszus for patiently proofreading chapters and helping with harmonizing their pre-

sentation styles. The editors, however, are responsible for any errors and oversights that may be

remaining.

The editors, Potsdam, August 2009
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Towards a Large-Scale Formal Semantic Lexicon for Text

Processing*

Johan Bos

Department of Computer Science
University of Rome “La Sapienza”, Italy

bos@di.uniroma1.it

Abstract

We define a first-order fragment of Discourse Representation Theory (DRT) and present a

syntax-semantics interface based on Combinatory Categorial Grammar (CCG) (with five ba-

sic categories N, NP, S, PP and T) for a large fragment of English. In order to incorporate a

neo-Davidsonian view of event semantics in a compositional DRT framework we argue that the

method of continuation is the best approach to deal with event modifiers. Within this theoret-

ical framework, the lexical categories of CCGbank were associated with the formal semantic

representations of our DRT variant, reaching high coverage of which practical text processing

systems can benifit.

1 Introduction

Formal approaches in semantics have long been restricted to small or medium-sized fragments of nat-

ural language grammars. In this article we present a large-scale, formally specified lexicon backed

up by a model-theoretic semantics. The aim of the lexicon is to provide wide-coverage parsers with

the possibility to produce interpretable structures in a robust yet principled way.

The semantic lexicon that we present is situated in Discourse Representation Theory (Kamp &

Reyle, 1993), and it follows to a great extent the theory as formulated by its orginator Hans Kamp

and colleagues. However, it deviates on certain points, as it comprises:

• a neo-Davidsonian view on representing event structures;

• a syntax-semantics interface based on categorial grammar and type-theory;

• a DRS language compatible with first-order logic.

In a neo-Davidsonian take on event semantics events are first-order entities and characterised by

one-place predicate symbols. An inventory of thematic roles encoded as two-place relations between

the events and the subcategorised arguments or modifiers completes this picture. We choose this way

* Published in: C. Chiarcos, R. Eckart de Castilho, M. Stede (eds.), Von der Form zur Bedeutung: Texte automatisch
verarbeiten / From Form to Meaning: Processing Texts Automatically. Tübingen: Narr, 2009, pages 3–14.
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of representing events because it yields a more consistent analysis of event structure. As inventory

of thematic roles we take VerbNet (Kipper et al., 2008).
As a preliminary to semantics, we need syntax. The syntax-semantics interface illustrated here is

based on a categorial grammar, namely Combinatory Categorial Grammar, or CCG for short (Steed-

man, 2001). A categorial grammar lends itself extremely well for this task because it is lexically

driven and has only few “grammar” rules, and not less because of its type-transparency princi-

ple, which says that each syntactic type (a grammar category) corresponds to a unique semantic

type. The existence of CCGbank (Hockenmaier, 2003), a large collection of CCG derivations for a

newswire corpus, and the availability of robust parsers trained on it (Clark & Curran, 2004), make

CCG further a practically motivated choice.

The choice of first-order logic for the semantic interpretation of text is a restriction in terms of

expressiveness. However, it opens the way to implement logical reasoning in practical systems by

including automated deduction tools such as theorem provers and finite model builders for inference

tasks such as consistency and informativeness checking (Blackburn & Bos, 2005).

In the scope of this article we are primarily interested in defining proper semantic representations

for lexical categories. Hence resolving scope ambiguities, word sense disambiguation, thematic

role labelling, and anaphora resolution are tasks outside the scope of this article. They are, of

course, essential in a complete system for computational semantics, but these are tasks orthogonal

to the objectives of producing a formally grounded semantic lexicon. Instead, the challenges in

the context of this article are providing well-formed, interpretable, lexical semantic representations

for a broad variety of linguistic phenomena, and doing this on a large-scale, producing a lexicon

suited for wide-coverage, high precision natural language processing grammars for open-domain

text analysis.

2 Discourse Representation Theory (DRT)

DRT is a theory of natural language meaning, and was originally designed by Kamp to study the

relationship between indefinite noun phrases and anaphoric pronouns as well as temporal relations

(Kamp, 1981). Since its publication in the early 1980s, DRT has grown in depth and coverage,

establishing itself as a well-documented formal theory of meaning, dealing with a stunning number

of semantic phenomena ranging from pronouns, abstract anaphora, presupposition, tense and aspect,

propositional attitudes, ellipsis, to plurals (Kamp & Reyle, 1993; Klein, 1987; van der Sandt, 1992;

Asher, 1993; van Eijck & Kamp, 1997; Geurts, 1999; Kadmon, 2001).

DRT can be divided into three components. The central component is a formal language defining

Discourse Representation Structures (DRSs), the meaning representations for texts. The second

component deals with the semantic interpretation of DRSs. The third component constitutes an al-

gorithm that systematically maps natural language text into DRSs, the syntax-semantics interface.
Let’s consider these components in more detail in our version of DRT.

One of the main principles of the theory is that a DRS can play both the role of semantic content,
and the role of discourse context (van Eijck & Kamp, 1997). The content gives us the precise

model-theoretic meaning of a natural language expression, and the context it sets up aids in the

interpretation of subsequent anaphoric expressions occuring in the discourse. A key ingredient of

a DRS is the discourse referent, a concept going back to at least the work of Karttunen (1976). A

discourse referent is an explicit formal object storing individuals introduced by the discourse, along
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with its properties, for future reference. The recursive structure of DRSs determines which discourse

referents are available for anaphoric binding.

Semantic interpretation of DRSs is carried out by translation to first-order logic. The DRS lan-

guage employed in our large-scale lexicon is nearly identical to that formulated in Kamp & Reyle

(1993). It is, on the one hand, more restrictive, leaving out the so-called duplex conditions because

they do not all permit a translation to first-order logic. Our DRS language forms, on the other hand,

an extension, as it includes a number of modal operators on DRSs not found in Kamp & Reyle

(1993) nor van Eijck & Kamp (1997). This DRS language is known to have a translation to ordinary

first-order formulas. Examples of such translations are given in Kamp & Reyle (1993), Muskens

(1996), and Blackburn et al. (2001), disregarding the modal operators. A translation incorporating

the modal operators is given by Bos (2004). We won’t give the translation in all its detail here, as it

is not the major concern of this article, and interested readers are referred to the articles cited above.

Various techniques have been proposed to map natural language text into DRS: the top-down

algorithm (Kamp & Reyle, 1993), DRS-threading (Johnson & Klein, 1986), or compositional meth-

ods (Zeevat, 1991; Muskens, 1996; Kuschert, 1999; van Eijck & Kamp, 1997; de Groote, 2006). We

will follow the latter tradition, because it enables a principle way of constructing meaning permitting

broad coverage — it also fits very well with the grammar formalism of our choice, CCG. Hence, in

addition to the formal language of DRSs, we need a “glue language” for partial DRSs — we will

define one using machinery borrowed from type theory. This will give us a formal handle on the

construction of DRSs in a bottom-up fashion, using function application and β-conversion to reduce
complex expressions into simpler ones.

Let’s turn to the definition of partial DRSs.1 The basic semantic types in our inventory are e
(individuals) and t (truth value)2. The set of all types is recursively defined in the usual way: if τ1

and τ2 are types, then so is 〈τ1, τ2〉, and nothing except the basic types or what can be constructed

via the recursive rule are types. Expressions of type e are either discourse referents, or variables.

Expressions of type t are either basic DRSs, DRSs composed with the merge (;), or DRSs formed

by function application (@):

<expe> ::= <ref> | <vare>

<expt> ::=
<ref>∗

<condition>∗
|(<expt>;<expt>)|(<exp〈α,t〉> @ <expα>)

Following the conventions in the DRT literature, we will visualise DRSs in their usual box-like

format. As the definition above shows, basic DRSs consist of two parts: a set of discourse referents,

and a set of conditions. The discourse referents can be seen as a record of topics mentioned in

a sentence or text. The conditions tell us how the discourse referents relate to each other, and

put further semantic constraints on their interpretation. We distinguish between basic and complex

conditions. The basic conditions express properties of discourse referents or relations between them:

<condition> ::= <basic> | <complex>

<basic> ::= <sym1>(<expe>) | <sym2>(<expe>,<expe>) | <expe>=<expe>
| card(<expe>)=<num> | named(<expe>,<sym0>)

1 We employ Backus-Naur form in the definitions following. In using this notation, non-terminal symbols are enclosed

in angle brackets, choices are marked by vertical bars, and the asterix suffix denotes zero or more repeating items.
2 Type t corresponds to truth value in static logic, however in a dynamic logic like DRT one might want to read it as a

state transition, following van Eijck & Kamp (1997).
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Here <symn> denotes an n-place predicate symbol, and <num> a cardinal number. Most nouns

and adjectives introduce a one-place relation; prepositions, modifiers, and thematic roles introduce

two-place relations. (In our neo-Davidsonian DRS language we don’t need ternary or higher-place

relations.) The cardinality condition is used for counting quantifiers, the naming condition for proper

names. The equality condition explicitly states that two discourse referent denote the same individ-

ual.

Now we turn to complex conditions. For convenience, we split them into unary and binary com-

plex conditions. The unary complex conditions have one DRS as argument and cover negation,

the modal operators expressing possibility and necessity, and a “hybrid” condition connecting a

discourse referent with a DRS. The binary conditions have two DRSs as arguments and form impli-

cational, disjunctive, and interrogative conditions:

<complex> ::= <unary> | <binary>

<unary> ::= ¬<expt> | �<expt> | �<expt> | <ref>:<expt>

<binary> ::= <expt>⇒<expt> | <expt>∨<expt> | <expt> ? <expt>

The unary complex conditions are mostly activated by negation particles or modal adverbs. The

hybrid condition is used for the interpretation of verbs expressing propositional content. The binary

complex conditions are triggered by conditional statements, certain determiners, coordination, and

questions.

Finally, we turn to expressions with complex types. Here we have three possibilities: variables,

λ-abstraction, and function application:

<exp〈α,β〉> ::= <var〈α,β〉> | λ<varα>.<expβ> | (<exp〈γ,〈α,β〉〉>@<expγ>)

To graphically distinguish between the various types of variables we will make use of different

(indexed) letters denoting different types (Table 1). This table also illustrates the language of partial

DRSs with some first examples.

Note that variables can range over all possibly types, except type t. This restriction permits us to

use the standard definition of β-conversion to avoid accidental capturing of free variables by forcing
the functor to undergo the process of α-conversion. Applying a functor expression to an argument

expression of type t could result in breaking existing bindings, because DRSs can bind variables

outside their syntactic scope. Since we don’t have variables ranging over type t in our language of

partial DRSs, this can and will never happen. In practical terms, the syntax-semantics interface is

not affected by this limitation, and therefore the price to pay for this restriction of expressiveness is

low.

3 Combinatory Categorial Grammar (CCG)

Every semantic analysis presupposes a syntactic analysis that tells us how meaning representations

of smaller expressions can be combined into meaning representations of larger expressions. The

theory of syntax that we adopt is CCG, a member of the family of categorial grammars (Steedman,

2001). In a categorial grammar, all constituents, both lexical and composed ones, are associated with

a syntactic category. Categories are either basic categories or functor categories. Functor categories
indicate the nature of their arguments and their directionality: whether they appear on the left or on

the right. In CCG, directionality of arguments is indicated within the functor category by slashes: a
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Table 1: Examples of (partial) DRSs

Type Variable Expression Example
e x, x1, x2, . . .

e, e1, e2, . . .

t

x e

manager(x)

smoke(e)

theme(e,x)

a manager smoked

〈e, t〉 p, p1, p2, . . . λx.
company(x)

company

〈〈e, t〉, t〉 n, n1, n2, . . . λp.(
x

bank(x)
;(p@x)) a bank

forward slash / tells us that an argument is to be found on its immediate right; a backward slash \
that it is to be found on its immediate left.

The inventory of basic categories in a CCG grammar usually comprises S, N, PP, and NP, denoting

categories of type sentence, noun, prepositional phrase, and noun phrase, respectively (Steedman,

2001). Functor categories are recursively defined over categories: If α is a category and β is a

category, then so are (α/β) and (α\β).3 Note that, in theory, there is no limit to the number of

categories that we are able to generate. In practice however, given the way natural language works,

the number of arguments in a functor category rarely succeeds four.

Consider for instance S\NP, a functor category looking for a category of type NP on its immediate

left, yielding a category of type S. This category, of course, corresponds to what traditionally would

be called an intransitive verb or verb phrase in a grammar for English. Other examples of functor

categories are N/N, a pre-nominative adjective, and (S\NP)/NP, a transitive verb.
These simple examples demonstrate a crucial concept of a categorial grammar: functor categories

encode the subcategorisation information directly and straightforwardly. All such syntactic depen-

dencies, local as well as long-range, are specified in the categories corresponding to lexical phrases.

This process of “lexicalisation” is a trademark property of categorial grammars and manifests itself

in a lexicon exhibiting a large variety of categories complemented with a small set of grammar rules

— the essence of a categorial grammar.

The most simplest of categorial grammar, pure categorial grammar, has just two combinatory

rules: forward and backward application. CCG can be viewed as a generalisation of categorial

grammar, and the initial C it is blessed with is due to the variety of combinatory rules that it adds

to the grammar of pure categorial grammar. The complete collection of binary combinatory rules

in CCG consists of the application rules, the rules for composition and their crossing variants (in-

cluding the generalised versions), and the substitution rules (not covered in this article). In addition,

CCG comes with rules for type raising. Some variations of CCG have special rules for dealing with

coordination.

3 Outermost brackets of a functor category are usually suppressed.
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3.1 The Application Rules

Forward application (> in Steedman’s notation), and backward application (<), are the two basic

combinatory rules of classic categorial grammar. Below we will give the schemata of these rules,

and make use of the colon to associate the category with its semantic interpretation. Following the

partial-DRS language defined in the previous section, we use @ to denote function application.

X/Y: φ Y: ψ
>

X: (φ@ψ)

Y: φ X\Y: ψ
<

X: (ψ@φ)

Here X and Y are variables ranging over CCG categories, φ and ψ are partial DRSs. The > rule

can be read as follows: given an expression of category X/Y with interpretation φ, followed by an

expression of category Y with interpretation ψ, we can deduce a new category X, with interpretation

φ applied to ψ. Along the same lines, the < rule cam be paraphrased as follows: given the category

X\Y with interpretation ψ, preceeded by a category Y with interpretation ψ, we can deduce a new

category X, with interpretation ψ applied to φ.

3.2 The Composition Rules

Here we have forward and backward composition, rules that were originally introduced to deal with

various cases of natural language coordination. Steedman refers to these rules by >B and <B,
blessed after the Bluebird from Raymond Smullyan’s tale of the “logical forest” and its feathered

friends.

X/Y: φ Y/Z: ψ
>B

X/Z: λx.(φ@(ψ@x))

Y\Z: φ X\Y: ψ
<B

X\Z: λx.(ψ@(φ@x))

The >B rule can be paraphrased as follows: given an expression of category X/Y, we’re looking

for an expression of category Y on our right, but find an expression of category Y/Z instead, then

we can deduce X/Z (because, after all, we did encounter Y, if we can promise to find a Z later as

well). A similar explanation can be given for the <B rule, reversing the direction of subcategorisa-

tion. Semantically, something interesting is happening here. Since we haven’t find Z yet, we need

to postpone its semantic application. What we do is introduce the variable x and apply it to the

interpretation of Y/Z (or Y\Z in the <B rule), and then abstract over it again using the λ-operator.

Both composition rules have so-called “crossing” variants: backward crossing composition (<Bx)

and forward crossing composition (>Bx). Backward crossing occurs in cases of adjunctal modifi-

cation in English. Forward crossing is not needed for an English grammar, but supports languages

with freer word order such as Italian. The crossing rules are specified as follows:

X/Y: φ Y\Z: ψ
>Bx

X\Z: λx.(φ@(ψ@x))

Y/Z: φ X\Y: ψ
<Bx

X/Z: λx.(ψ@(φ@x))

3.3 The Generalised Composition Rules

The composition rules also have generalised variants, in order to guarantee a larger variety of modifi-

cation types. Steedman introduces a technical device to abstract over categories, the $, a placeholder

for a bounded number of directional arguments (Steedman, 2001).
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X/Y: φ (Y/Z)$: ψ >B$
(X/Z)$: λ�x.(φ@(ψ@�x))

(Y\Z)$: φ X\Y: ψ <B$
(X\Z)$: λ�x.(ψ@(φ@�x))

X/Y: φ (Y\Z)$: ψ >Bx$

(X\Z)$: λ�x.(φ@(ψ@�x))

(Y/Z)$: φ X\Y: ψ <Bx$

(X/Z)$: λ�x.(ψ@(φ@�x))

Here we introduce a vectorised variable as short-hand notation for the number of abstractions and

applications respectively required. This number, of course, depends on the number of arguments of

the functor category that is involved.

3.4 Type Raising

CCG also comes with two type raising rules, forward and backward type raising. Steedman calls

these >T and <T, respectively, after Smullyan’s Thrush. They are unary rules, and effectively

what they do is change an argument category into a functor category. The standard CCG example

illustrating the need for type raising is non-constituent coordination such as right-node raising, a

phenomenon that can be accounted for in CCG by combining type raising with forward composition.

The type raising rules are defined as follows:

X: φ
>T

Y/(Y\X): λx.(x@φ)

X: φ
<T

Y\(Y/X): λx.(x@φ)

Type-raising is an extremely powerful mechanism, because it can generate an infinitely large number

of new categories. Usually, in practical grammars, restrictions are put on the use of this rule and the

categories it can apply to.

4 Building a Formal Semantic Lexicon

The method we follow to construct a large-scale semantic lexicon has two parts: a theoretical part,

defining a mapping between the base categories of CCG and semantic types; and a practical part, as-

signing to each lexical category a suitable partial DRS of the right type, guided by CCG’s type trans-

parency principle (Steedman, 2001). As we have seen from the previous section, the combinatory

rules of CCG are equipped with a direct semantic interpretation, completing the syntax-semantics in-

terface. Recall that the main basic categories in CCG are N (noun), S (sentence), NP (noun phrase)

and PP (prepositional phrase). In addition we will take on board the basic category T (text) and

motivate this addition below. Our main task here is to map these basic categories to the two basic

semantic types we have at our disposal: e (entities), and t (truth value).

4.1 The Category N

The CCG category N is assigned a semantic type 〈e, t〉, a type corresponding to properties. This

makes sense, as what nouns are essentially doing is expressing kinds of properties. This decision

allows us to view some first examples of associating lexical items with λ-DRS. So let’s consider the
word squirrel of category N, and the adjective red of category N/N and their semantic representa-

tions:

N: 〈e, t〉: λx.
squirrel(x)

N/N: 〈〈e, t〉, 〈e, t〉〉: λp.λx.(
red(x)

;(p@x))
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4.2 The Category PP

We also assign the type 〈e, t〉 to the category PP. It is perhaps confusing and misleading to connect

two different syntactic categories with the same semantic type (because it seems to obscure CCG’s

principle of type transparancy (Steedman, 2001)). However, from a semantic perspective, both N

and PP denote properties, and it seems just to assign them both 〈e, t〉 (see the example for at a table
below). One could attempt to make a semantic distinction by sorting entities into individuals and

eventualities, because in CCG a PP usually plays the role of a subcategorised argument of a verb.

But this wouldn’t lead us anywhere, as the PP could, in principle, also be an argument of a relational

noun as illustrated below for wife:

PP: 〈e, t〉: λx1.

x2

table(x2)

at(x1,x2)

N/PP: 〈〈e, t〉, 〈e, t〉〉: λp.λx1.(

x2

person(x1)

wife(x2)

role(x1,x2)

;(p@x2))

4.3 The Category NP

At first thought it seems to make sense to associate the type e with the category NP, as for example

Steedman (2001) does. After all, a noun phrase denotes an entity. However, this is not what we

propose, because it would require a type-raised analysis in the lexicon for determiners to get proper

meaning representations for quantifiers. In CCGBank (Hockenmaier, 2003), on which our practical

implementation is based, determiners such as every are categorised as NP/N rather than their type-

raised variants (T/(T\NP))/N and (T\(T/NP))/N, which would permit us to assign the type e to

NP and still give a proper generalised quantifier interpretation. The motivation of CCGBank to

refrain from doing this is obviously of practical nature: it would increase the number of categories

drastically. Nevertheless, by associating the category NP with the type 〈〈e, t〉, t〉 we are able to yield
the required interpretation for determiners.

Essentially, what we are proposing is a uniform type-raised analysis for NPs, denoting functions

from properties to truth values. This is, of course, an idea that goes back toMontague’s formalisation

for a fragment of English grammar (Montague, 1973), illustrated by the following example for

someone:

NP: 〈〈e, t〉, t〉: λp.(
x

person(x)
;(p@x))

4.4 The Category S

Now we turn to the category for sentences, S. Normally, one would associate the type t to S: after all,
sentences correspond to propositions and therefore denote truth values. Yet, the semantics of events

that we will assign to verbal structures, following Davidson, requires us to connect the category S

with the type 〈〈e, t〉, t〉. As this is slightly unconventional, we will motivate this choice in what

follows.

The neo-Davidsonian approach that we are following yields DRSs with discourse referents de-

noting event-like entities. For instance, the DRS for the sentence a manager smoked would be one

similar as the one shown in Table 1. This would be a fine DRS. But what if we continue the sentence,

with a modifier, as in a manager smoked in a bar, or with a sequence of modifiers, as in a manager
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smoked in a bar yesterday? As we wouldn’t have any λ-bound variables at our disposal, it is impos-

sible to connect the modifiers in a bar and yesterday to the correct discourse referent for the event

(e). In CCG, such modifiers would typically be of category S\S or S/S (i.e. sentence modifiers) and

(S\NP)\(S\NP) or (S\NP)/(S\NP) (i.e. verb phrase modifiers). It is not difficult to see that associat-

ing a DRS to category S would lead us astray from the principles of compositional semantics, when

trying to maintain a neo-Davidsonian first-order modelling of event structures. We would need an

ad-hoc mechanism to ensure the correct binding of the event discourse referent. Several “tricks”

could be performed here. Event discourse referents could always have the same name (say e0), and

modifiers would be represented with a free variable of the same name. This would require a modifi-

cation of the definition of closed expressions and variable renaming — it would also exclude a DRS

with two different events discourse referents. Another possibility is to treat modifiers as anaphoric,

linking to the event discourse referent closest in proximity. This would establish a dichotomy in the

analysis of modifiers, and would moreover require modification of the β-conversion procedure too,

as variables ranging over type t would be introduced. No further comments needed — such ad-hoc

methods aren’t welcome in any systematic syntax-semantic interface.

There are two basic directions to surmount this problem, while maintaining a compositional sys-

tem. The first is to abstract over the event variable, and introduce the discourse referent when the

parse of the sentence is completed. We call this themethod of delay and it would yield the type 〈e, t〉
for the S category. The second approach is to introduce the discourse referent for the event in the

lexicon, but reserve a place for any modifier that comes along later in the parse. This option, which

we dub the method of continuation, would yield the type 〈〈e, t〉, t〉 for S. We show the partial DRSs

for both options:

λe.

x

manager(x)

smoke(e)

agent(e,x)

λp.(

x e

manager(x)

smoke(e)

agent(e,x)

;(p@e))

Is there a practical difference between the two options? Yes, there is. The delayed approach (shown

on the left) will always introduce the discourse referent on the outermost level of DRS. This will give

the incorrect prediction for sentences with scopal operators such as quantifiers in subject position.

The continuation approach (shown on the right) doesn’t suffer from this limitation, as the discourse

referent is already introduced. Moreover, the continuation approach also gives us control over where

in the DRS modifiers are situated which the delay approach doesn’t. This motivates us to favour

the continuation approach. To illustrate the impact of the method of continuation on the lexical

categories, consider the partial DRS for the intransitive verb smoked:

(S[dcl]\NP): 〈〈〈e, t〉, t〉, 〈〈e, t〉, t〉〉: λn1.λp2.(n1@λx3.(

e4

smoke(e4)

agent(e4,x3)

;(p2@e4)))

4.5 The Category T

The category T (for text) corresponds to the semantic type t and as a consequence to an ordinary

DRS (or an expression that can be reduced to a DRS) which can be translated to first-order logic.

It is not usually a lexical category, but typically introduced by punctuation symbols that signal the
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end of the sentence. For instance, the full stop maps to a CCG category that turns a sentence into a

text: T\S. This makes sense from a linguistic point of view, because a full stop (or other punctuation

symbols such as exclamation and question marks) signals that the sentence is finished and no more

sentence of verb phrase modifiers will be encountered.

5 Practical Results

Our inventory of lexical categories is based on those found in CCGbank (Hockenmaier, 2003) and

used by the C&C parser for CCG (Clark & Curran, 2004). CCGbank is a version of the Penn

Treebank (Marcus et al., 1993) and consists of a set of CCG derivations covering 25 sections of texts

taken from the Wall Street Journal, comprising a total of over one million tagged words. CCGBank

contains nearly 49,000 sentences annotated with a total of 1,286 different CCG categories, of which

847 appear more than once.

Given the theoretical foundations presented in the previous sections, we manually encoded the

majority of the lexical categories found in CCGbank with partial DRSs (categories not used by

the C&C parser, and some extremely rare categories, were not taken into account). Even though

there is a one-to-one mapping between the CCG categories and semantic types — and this must

be the case to ensure the semantic composition process proceeds without type clashes — the actual

ingredients of a partial DRSs can differ even within the scope of a single CCG category. A case in

point is the lexical category N/N can correspond to an adjective, a superlative, a cardinal expression,

or even common nouns and proper names (in compound expressions). In the latter two cases the

lexical entry introduces a new discourse referent, in the former cases it does not. To deal with these

differences we also took into account the part of speech assigned by the C&C parser to a token to

determine an appropriate partial DRS.

This system for semantic interpretation was implemented and when used in combination with

the C&C parser achieves a coverage of more than 99% on re-parsed Wall Street Journal texts, and

similar figures on newswire text. With coveragewe mean here the percentage of sentences for which

a well-formed DRS could be produced (not necessarily a DRS that is semantically adequate). The

robustness of the overall framework for deep text processing is good enough to make it possible for

practical tasks with non-restricted domains, such as open-domain question answering (Bos et al.,
2007) and recognising textual entailment (Bos & Markert, 2005).

Summing up: formal semantics isn’t a paper-and-pencil game anymore, nor is it limited to im-

plementations of toy fragments of natural language. It has genuinely matured to a level useful for

applications in the real world.
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