Berliner ökophysiologische und phytomedizinische Schriften

Luise Dierker

Interaktion des RNA2-kodierten Transportproteins (MP) des Cherry leaf roll virus (CLRV) mit dem viralen Hüllprotein (CP) und pflanzlichen Wirtsfaktoren

Band 42

Cuvillier Verlag Göttingen Internationaler wissenschaftlicher Fachverlag

Hrsg. von Christian Ulrichs und Carmen Büttner

Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin

Band 42

Hrsg. von

Dr. Susanne von Bargen Humboldt-Universität zu Berlin

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Interaktion des RNA2-kodierten Transportproteins (MP) des *Cherry leaf roll virus* (CLRV) mit dem viralen Hüllprotein (CP) und pflanzlichen Wirtsfaktoren

DISSERTATION

zur Erlangung des akademischen Grades Doctor rerum agriculturarum

(Dr. rer. agr.)

eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin

von

Diplom-Biologin Luise Dierker geboren am 30.09.1984 in Berlin

Präsidentin der Humboldt-Universität zu Berlin

Frau Prof. Dr. Dr. Sabine Kunst

Dekan der Humboldt-Universität zu Berlin

Herr Prof. Dr. Bernhard Grimm

Gutachterin/Gutachter

- 1. Prof. Dr. Carmen Büttner
- 2. Dr. Thierry Wetzel
- 3. Dr. Susanne von Bargen

Tag der mündlichen Prüfung: 08.02.2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2017

Zugl.: Berlin, Humboldt-Universität, Diss., 2017

© CUVILLIER VERLAG, Göttingen 2017 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2017

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-9670-0 eISBN 978-3-7369-8670-1 Man kann Kopfschmerzen nicht dadurch heilen, dass man den Kranken enthauptet.

(Mario Vargas Llosa)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Inhaltsverzeichnis

AbkürzungsverzeichnisVI				
A	AbbildungsverzeichnisVIII			
Т	TabellenverzeichnisX			
1		Einl	eitung1	
	1.1	Viru	s-Wirt-Beziehungen1	
	1.2	Iden	tifizierung von Virus-Virus-/ und Virus-Wirt-Interaktionen mit dem YTHS2)
	1.2.	1	Grundlagen der systemischen Infektion einer Wirtspflanze2)
	1.2.	2	Prinzip des YTHS5	;
	1.2.	3	Anwendungsmöglichkeiten des YTHS6	;
	1.3	Das	Modellsystem Cherry leaf roll virus Arabidopsis thaliana7	,
	1.3.	1	Cherry leaf roll virus	;
	1.3.	2	Genomorganisation des CLRV	;
	1.3.3		Aus- und Verbreitung des CLRV)
2		Mate	erial und Methoden12	2
	2.1	Che	mikalien12	2
	2.2	Star	ndardpuffer und Lösungen12	2
	2.3	Gröl	Benstandards12)
	2.4	Enz	yme und Proteine	}
	2.5	Olig	onukleotide	3
	2.6	Vire	n und Organismen15	5
	2.6.	1	CLRV-Isolate und Virusvermehrung15	,
	2.6.	2	Escherichia coli (E. coli)-Stämme16	;
	2.6.	3	Saccharomyces cerevisiae (S. cerevisiae)16	;
	2.6.	4	Pflanzenmaterial und Untersuchungsstandorte16	;
	2.7	cDN	IA-Bibliothek, Vektoren und Konstrukte17	,
	2.7.	1	cDNA-Bibliothek von <i>A. thaliana</i> 17	,
	2.7.	2	Vektoren und Konstrukte17	,
	2.8	Arbe	eit mit <i>E. coli</i> 18	}
	2.8.	1	Kultivierung von <i>E. coli</i>	;

	2.10.7	Transformation von Plasmiden aus S. cerevisiae in E. coli	3
	2.11 Pro	teinchemische Methoden	3
	2.11.1	Heterologe Proteinexpression in <i>E. coli</i>	3
	2.11.2	Reinigung (His)6 fusionierter Proteine	3
	2.11.3	Aufreinigung von bakteriellen Einschlusskörpern aus E. coli	3
	2.11.4	Colorimetrische Proteinbestimmung	3
	2.11.5	SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)	3
	2.11.5	.1 Probenvorbereitung	3
	2.11.5	.2 Analytische SDS-PAGE	3
	2.11.5	.3 Coomassie-Färbung	34
	2.12 Ser	ologische Methoden	3
	2.12.1	Verwendete Antikörper	3
	2.12.2	Elektroblot-Immunoassay (EBIA)	3
	2.12.3	Tissue Print	3
	2.12.4	Antigen-Coated-Plate-Enzyme-Linked-Immunosorbent Assay (ACP-ELISA)	3
	2.12.5	Protein-Overlay Blot	3
	2.12.6	Nachweis mit CDP-Star	3
	2.12.7	Colorimetrischer Proteinnachweis auf Nitrocellulose-Membranen	3
	2.13 Sek	undärstrukturanalyse	3
3	Erg	ebnisse	3
	3.1 Cha	arakterisierung der MP-kodierenden Region des CLRV	3
	3.1.1	Strukturanalyse der MP-kodierenden Region des CLRV-Isolats E395	3
	3.1.2	Konstruktion von MP-Deletionsmutanten	4;
	3.1.3	Generierung von Gal4-AD-/BD-Konstrukten der CLRV-Proteine MP und CP fü	ır
		YTH-Analysen	44
	3.1.3.1	Kontrolle der Fusionsproteine auf direkte Transkriptionsaktivierung	4
	3.1.3.2	2 Etablierung der Positiv- und Negativkontrollen	4
	3.1.4	Interaktionsstudie mit den MP-Deletionsmutanten	4
	3.2 Hor	no- und Heterodimerisierung CLRV-Proteine MP und CP	50
	3.2.1	Homo- und Heterodimerisierung der Volllängenproteine MP und CP des Isolate	S
		E395	50
	3.2.2	Interaktionsstudie mit den Volllängen-MP verschiedener CLRV-Isolate	5
			IJ

IV

3.	.3	Inte	raktion des CLRV-MP E395 mit anderen MP der 30 K Familie	52
3	.4	Ider	ntifikation potentieller pflanzlicher Interaktionspartner aus A. thaliana Co	ol-1.54
	3.4.	1	Überprüfung der spezifischen Interaktion der GAL4-BD-Fusionsproteine	54
	3.4.2	2	Durchmusterung der cDNA-Bibliothek von A. thaliana Col-1 mit CLRV-	
			Volllängenproteinen	55
	3.4.3	3	Durchmusterung der cDNA-Bibliothek von <i>A. thaliana</i> Col-1 mit den MP- Deletionsmutanten Δ N1 und Δ C2	56
	3.4.4	4	Sequenzanalyse der identifizierten pACT2-AD-Plasmide	58
	3.4.	5	Interaktion des CLRV-MP mit dem Protein At-4/1 aus A. thaliana	61
3	.5	Hete	erologe Expression und Aufreinigung des MP von CLRV- E395	62
	3.5.	1	Klonierung des CLRV-MP	62
	3.5.2	2	Heterologe Expression in <i>E. coli</i> und Aufreinigung von rekombinanten CLRV- durch Affinitätschromatographie	MP 63
	3.	.5.2.1	Native Aufreinigung über Ni-NTA-Agarose	63
	3.	.5.2.2	Denaturierende Aufreinigung über Ni-NTA-Agarose	66
	3.	.5.2.3	Isolierung bakterieller Einschlusskörper und Renaturierung des MP	67
	3.5.3	3	Bestätigung der MP-CP-Interaktion mittels Protein-Overlay-Blot	69
3	.6	Her	stellung eines Anti-Peptid Antikörpers gegen das CLRV-MP	70
	3.6.	1	Reaktion des Peptidantikörpers gegen Proteine im ACP-ELISA	71
	3.6.2	2	SDS-PAGE und EBIA	75
	3.6.3	3	Tissue Print	76
3.	.7	Nac	hweis von 4/1-Orthologen in Wirtspflanzen von CLRV	77
	3.7.	1	Nachweis mittels degenerierter Oligonukleotide	77
	3.7.2	2	Nachweis mittels At-4/1-spezifischer Antikörper	81
3	.8	Lok	alisation von CLRV-Partikeln und dem viralen Transportprotein in	
		mär	nnlichen und weiblichen Blütenständen von Betula pendula	83
	3.8.	1	Detektion und Lokalisation von CLRV in Blütenständen im Jahresverlauf	83
	3.	.8.1.1	Symptomentwicklung	84
	3.	.8.1.2	Molekularer Nachweis von CLRV	85
	3.	.8.1.3	Lokalisation von CLRV-Partikeln mittels Tissue Print	86
	3.8.2	2	Detektion des CLRV-MP in Blütenständen von Betula pendula	89
4		Dis	kussion	91

5	Zusammenfassung	108
6	Summary	110
7	Literaturverzeichnis	112
8	Anhang	122

Abkürzungsverzeichnis

3-AT	3-Amino-1,2,4-triazol
ACP-ELISA	Antigen-coated-plate ELISA
AD	DNA-Aktivierungsdomäne
AK	Antikörper
AP	Alkalische Phosphatase
AS	Aminosäure
<i>A. thaliana</i>	Arabidopsis thaliana
BD	DNA-Bindedomäne
BiFC	Bimolekulare Fluoreszenzkomplementation
<i>B. pendula</i>	Betula pendula
BMV	Brome mosaic virus
BSA	Bovine serum albumin (Rinderserumalbumin)
CaMV CC cDNA CDP-Star CMV	Cauliflower mosaic virus coiled-coil Domäne copy DNA Disodium-2-chloro-5-(4-methoxyspirol[1,2-dioxetan-3,2´-5-chlorotricyclo [3.3.1.13.7] decan])-4-yl]-1-phenylphosphat Cucumber mosaic virus
cds	coding sequence (kodierende Region)
CLRV	Cherry leaf roll virus
CP	coat protein (Hüllprotein)
CPMV	Cowpea mosaic virus
<i>C. quinoa</i>	Chenopodium quinoa
DD	Disordered domain
DNA	Desoxyribonukleinsäure
DO	Dropout
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DTT	Dithiotreitol
E. coli	Escherichia coli
ELISA	Enzyme-linked Immunosorbent Assay
ER	Endoplasmatisches Retikulum
Gal4	Galactose-responsive transcription factor
GFLV	Grapevine fanleaf virus
GFP	Grün-fluoreszierendes Protein
GusA	β-Glucuronidase
xg	Zentrifugalbeschleunigung
H2O _{deion}	deionisiertes Wasser
His/H	Histidin
Hel	Helikase
IB	<i>Inclusion body</i> (bakterielle Einschlusskörper)
IC	<i>Immunocapture</i>
IgG	Immunglobulin G
IPTG	Isopropyl-β-D-thiogalactopyranosid
kDa	Kilodalton
LB	Luria-Bertani
Leu/L	Leucin
LacZ	β-Galactosidase
Mbp	Megabasenpaare
MP	<i>movement</i> Protein (Transportprotein)
nt	Nukloetide
<i>N.</i> spp.	Nicotiana spp.
NCBI	National Center for Biotechnology information
ORF	Open-reading frame (Offener Leserahmen)
OD	Optische Dichte

PCo	Proteinase-Cofaktor
PCR	Polymerase chain reaction (Polymerase-Kettenreaktion)
PD	Plasmodesmos/Plasmodesmata
PDLP	PD-located proteins
PI	Präimmunserum
Pk	polyklonal
PNRV	Prunus necrotic ringspot virus
PSTVd	Potato Spindle Tuber Viroid
Pro	Proteinase
RCNMV	Redclover necrotic mottle virus
RdRP	RNA-dependent RNA-Polymerase
RNA	Ribonukleinsäure
RS	Rohserum
RT	Raumtemperatur
RYMV	<i>Rice yellow mottle virus</i>
S. cerevisiae	Saccharomyces cerevisiae
SD	Synthetic Defined
SDS	Sodiumdodecylsulfat
sog.	sogenannte
SEL	Size Exclusion Limit
SLRV	Strawberry latent ringspot virus
S. nigra	Sambucus nigra
SOB	Super optimal broth
spp.	Species pluralis
TF	Transkriptionsfaktor
TMV	Tobacco mosaic virus
ToMV	Tomato mosaic virus
TRV	Tobacco rattle virus
TSWV	Tomato spotted wilt virus
UAS	Upstream activating sequence
UTR	Untranslated region
vgl.	vergleiche
VLP	<i>Virus-like particles</i>
VPg	Genomgekoppeltes Protein
vRNP	viraler Ribonukleinprotein-Komplex
(v/v)	<i>volume per volume</i>
VT	Volumenteil
WDV	Wheat dwarf virus
(w/v)	weight per volume
W	Tryptophan
WP	Waschpuffer
X. spp.	<i>Xiphinema</i> spp.
YTHS	Yeast two-hybrid system (Hefe Zwei-Hybrid System)
YPD	Yeast extract peptone dextrose
ZW	Zellwand

Abbildungsverzeichnis

Abbildung 1.1: Schematische Darstellung der Modifikation der Plasmodesmata (PD) durch virale Transportproteine (modifiziert nach Niehl and Heinlein, 2011)4
Abbildung 1.2: Schematische Darstellung des Hefe Zwei-Hybrid Systems6
Abbildung 1.3: Genomorganisation des <i>Cherry leaf roll virus</i> -Isolats E395 aus Rhabarber (<i>Rheum rhabarbarum</i>), Elektronenmikroskopische Aufnahme von Partikeln einer CLRV-E395 Reinigung und typische CLRV-Blattsymptome
Abbildung 3.1: Vorhersage der Sekundärstruktur des MP des CLRV-Isolats E395 mit PSIPREDv3.3 (Jones 1999) unter Angabe der Wahrscheinlichkeit41
Abbildung 3.2: Vorhersage einer <i>coiled-coil</i> Domäne mit dem Programm COILS (Lupas et al., 1991) im Bereich der AS 50 und 79 in der Aminosäuresequenz des CLRV-MP E39541
Abbildung 3.3: Kyte & Doolittle Hydrophobizitätsprofil des CLRV-MP E39542
Abbildung 3.4: Schematische Darstellung der strukturellen und putativ funktionellen Domänen I bis IV des CLRV-MP43
Abbildung 3.5: Schematische Darstellung der fünf Deletionsmutanten des MP E39544
Abbildung 3.6: Amplifizierung der Volllängenproteine MP und CP der Isolate E395, E327 und E51448 sowie der MP-Deletionsmutanten des MP E39545
Abbildung 3.7: Positivkontrollen für YTH-Experimente
Abbildung 3.8: YTH-Interaktionsstudie mit den Deletionsmutanten des MP E395 und den Volllängen-MP der CLRV-Isolate E327, E395 und E51448 sowie dem CP des Isolats E39548
Abbildung 3.9: YTH-Interaktionsstudie mit den Deletionsmutanten des MP E395 zurCharakterisierung der funktionellen Bereiche des MP
Abbildung 3.10: Elektronenmikroskopische Aufnahme (x 12.000) von CLRV-Partikeln in infizierten Sambucus nigra Zellen, die entlang tubulärer Strukturen in den Plasmodesmata angeordnet sind50
Abbildung 3.11: YTH-Interaktionsstudie mit dem MP und CP des Isolats E395 zum Nachweis derfür den Transport essentiellen Interaktionen
Abbildung 3.12:Untersuchung der Wechselwirkung zwischen MP von CLRV-Isolatenverschiedener Serogruppen sowie dem CP des Isolats E395 in S. cerevisiae Y190
Abbildung 3.13: A)Amplifizierung der MP von <i>Tobacco mosaic virus</i> und <i>Tobacco rattle virus</i> mit der Velocity-Polymerase B)YTH-Interaktionsstudie mit den MP der CLRV-Isolate E395, E327, E51448 sowie den MP E395 Deletionsmutanten und dem CP dieses Isolats als Köderproteinen53
Abbildung 3.14: Bindungsanalyse zur Überprüfung der Interaktionsspezifität der Volllängen-MP und -CP sowie der MP-Deletionsmutanten ΔN1 und ΔC2 mit TSWV-N, TSWV-NSs, WDV-RepA und <i>A. thaliana</i> -PRL1 im YTHS
Abbildung 3.15: Kolonie-PCR mit pACT2-spezifischen Primern von <i>E. coli</i> DH5α Transformanden zur Identifizierung von pACT2-Plasmiden. Die Plasmid-DNA wurde aus positiven Klonen von <i>S. cerevisiae</i> Y190 aus der Durchmusterung der cDNA-Bibliothek von <i>A. thaliana</i> Col-1 mit dem MP ΔN1 isoliert
Abbildung 3.16: Bindungsanalyse zwischen dem Protein At-4/1 aus <i>A. thaliana</i> und dem Volllängen- sowie den partiellen MP von CLRV-E395 in <i>S. cerevisiae</i> Y19061
Abbildung 3.17: Vektorkarte des Plasmids pET28a(+) mit der integrierten Sequenz des MP von Isolat E395
Abbildung 3.18: Expression von rekombinantem (His) ₆ -MP E395 in <i>E. coli</i> HMS17463
Abbildung 3.19: Expression von rekombinantem (His)-MP £395 in <i>E. coli</i> HMS174 und BL21(DE)pLys64
Abbildung 3.20: Expression von rekombinantem (His) ₆ -MP E395 in <i>E. coli</i> HMS17465
Abbildung 3.21: Expression von rekombinantem (His) ₆ -MP E395 in <i>E. coli</i> HMS17466

Abbildung 3.22: Analyse der IB-Aufreinigungen aus <i>E. coli</i> HMS174 sowie der Eluatfraktionen E ₁ bis E ₄ nach der denaturierenden Aufreinigung über Ni-NTA-Agarose mittels SDS-PAGE und Western Blot
Abbildung 3.23: In vitro Nachweis der spezifischen Bindung von MP und CP mittels Protein- Overlay-Blot
Abbildung 3.24: Ergebnisse des ACP-ELISA mit dem Präimmunserum (PI) in den Verdünnungen 1:500, 1:1000 und 1:200071
Abbildung 3.25: Ergebnisse des ACP-ELISA mit dem Rohserum (RS) in den Verdünnungen 1:250, 1:500, 1:1000 und 1:200072
Abbildung 3.26: Ergebnisse des ACP-ELISA mit dem aufgereinigten Anti-Peptid Antikörper pAB2476 (IgG) in den Verdünnungen 1:250, 1:500, 1:1000 und 1:200072
Abbildung 3.27: Vergleich der Ergebnisse des ACP-ELISA mit Präimmunserum, dem Rohserum und dem aufgereinigten pAB2476 in der Verdünnung 1:200073
Abbildung 3.28: Detektion des CLRV-MP in Gesamtproteinextrakten von <i>E. coli</i> HMS174 mit dem Expressionskonstrukt pETa(+)-MP E395 mit dem RS in einer 1:2000 Verdünnung 74
Abbildung 3.29: Detektion von nativem CLRV-MP mit dem Anti-Peptid Antikörper pAb2476 (Verdünnung 1:2000) mittels Tissue Print in Blattquerschnitten von <i>C. quinoa</i>
Abbildung 3.30: Schematische Darstellung der Lage der 4/1-spezifischen Oligonukleotide in der 4/1-kodierenden Sequenz von A. thaliana
Abbildung 3.31: Überprüfung der Bindungsspezifität der abgeleiteten degenerierten Primer zur Detektion 4/1-orthologer Gene in der PCR mit dem Plasmid pGY-Nt-4/178
Abbildung 3.32: PCR mit Nad5-spezifischen Oligonukleotiden zur internen Überprüfung der cDNA- Synthese
Abbildung 3.33: PCR zum Nachweis von 4/1-orthologen in krautigen und holzigen Wirtspflanzen von CLRV
Abbildung 3.34: SDS-PAGE und Western Blot von Blatt (1)-, Stiel (2)- und Blütenextrakten (3) von N. benthamiana und A. thaliana zum Nachweis der 4/1-orthologen Proteine mittels monoklonalem Antikörper 1D2
Abbildung 3.35: CLRV-typische Blattsymptome an Betula pendula 6(Schwarzer Grund) in der Vegetationsperiode 2012
Abbildung 3.36: Unspezifische Blattsymptome an <i>B. pendula</i> 5 in den Vegetationsperioden 2012 und 2013
Abbildung 3.37: Nachweis von CLRV in Blatt (B)- bzw. männlichen (M) und weiblichen (W)Kätzchenmaterial von Betula pendula 4 im jahreszeitlichen Verlauf mittels RT-PCR mit RW1/RW2Primern nach Werner et al. (1997)
Abbildung 3.38: Etablierung der Positivkontrolle für einen Tissue Print zur Lokalisation von CLRV- Partikeln in Pflanzengewebe
Abbildung 3.39: Lokalisation von CLRV-Partikeln in männlichen und weiblichen Blütenständen vonB. pendula 4 im jahreszeitlichen Verlauf mittels Tissue Print
Abbildung 3.40: Darstellung der Verteilung der CLRV-Partikel in weiblichen Blütenständen von <i>B. pendula</i>
Abbildung 3.41: Lokalisation von CLRV-MP in männlichen und weiblichen Blütenständen von <i>B. pendula</i> 7 an drei Zeitpunkten im Jahr mittels Tissue Print

Tabellenverzeichnis

Tabelle 2.1: Größenstandards für RNA-und Proteingelelektrophorese
Tabelle 2.2: Enzyme und Proteine13
Tabelle 2.3: Oligonukleotide, die in dieser Arbeit verwendet wurden
Tabelle 2.4: Virusisolate, die in dieser Arbeit verwendet wurden15
Tabelle 2.5: E. coli Standard- und Proteinexpressionsstämme, die in dieser Arbeit verwendet wurden
Tabelle 2.6: Saccharomyces cerevisiae-Stamm, der in dieser Arbeit verwendet wurden16
Tabelle 2.7: Auflistung der in dieser Arbeit verwendeten Betula pendula unter Angabe der GPS- Koordinaten 17
Tabelle 2.8: Vektoren, die in dieser Arbeit verwendet wurden17
Tabelle 2.9: Plasmide, die in dieser Arbeit verwendet wurden18
Tabelle 2.10: Reaktionsansatz der Kolonie-PCR mit pTaq-Polymerase 23
Tabelle 2.11: PCR-Programm zur Kolonie-PCR
Tabelle 2.12: Reaktionsansatz der Reversen Transkription 25
Tabelle 2.13: Reaktionsansatz der RW1/RW2-PCR zum spezifischen Nachweis von CLRV25
Tabelle 2.14: PCR-Programm der RW1/RW2-PCR zum spezifischen Nachweis von CLRV in der IC- RT-PCR 25
Tabelle 2.15: Zusammensetzung der 10x DO-Lösung
Tabelle 2.16: Zusammensetzung von Trenn- und Sammelgelen für die Polyacrylamid- Gelelektrophorese
Tabelle 2.17: Auflistung der verwendeten primären und sekundären Antikörper
Tabelle 3.1: Generierte GAL4-AD- und GAL4-BD-Fusionen der Volllängen-MP der CLRV-IsolateE395, E327 und E51448 sowie der MP-Deletionsmutanten des MP E395 und des CP E395
Tabelle 3.2: Übersicht über die Durchmusterung der cDNA-Bibliothek von A. thaliana Col-1 mit denKöderplasmiden pAS2-MP E395 und pAS2-CP E395 im YTHS
Tabelle 3.3: Übersicht über die Durchmusterung der cDNA-Bibliothek von A. thaliana Col-1 mit denKöderplasmiden pAS2-MP E395∆N1 und pAS2-MP E395∆C2 im YTHS56
Tabelle 3.4: Ergebnis der Sequenzanalyse der isolierten cDNAs aus dem Screen mit dem MP E395 $\Delta N1$ 58
Tabelle 3.5: Ergebnis der Sequenzanalyse der isolierten cDNAs aus dem Screen mit dem MP E395 Δ C2
Tabelle 3.6:Variationen in Induktorkonzentration und Kultivierungstemperatur zur Reduktion derAggregatbildung des Fusionsproteins (His)6-MP E395 in <i>E. coli</i> Proteinexpressionsstämmen63
Tabelle 3.7: Probenmaterial für die Durchführung von ACP-ELISA, EBIA, und Tissue Print (TP) zurCharakterisierung des Anti-Peptid Antikörpers pAB2476 gegen das CLRV-MP
Tabelle 3.8: Übersicht über die Primer-Kombinationen, die in der PCR zum Nachweis 4/1-orthologerSequenzen in CLRV-Wirtspflanzen angewendet wurden
Tabelle 3.9: Übersicht über die im Tissue Print getesteten CLRV-spezifischen Antikörper

1 Einleitung

1.1 Virus-Wirt-Beziehungen

Proteine steuern die vielfältigen Funktionen des Lebens. Dabei sind Interaktionen mit anderen Proteinen zur Erfüllung ihrer zellulären Funktion entscheidend. Diese umfassen die Zellarchitektur, den Stoffwechsel, das Signalsystem sowie die Verfügbarmachung von zellulärer Energie (Brückner et al. 2009). Komplexe biologische Systeme zeichnen sich durch die Anwesenheit von Protein-Netzwerken aus. Zum Verständnis der essentiellen Prozesse und molekularen Zusammenhänge ist eine Entschlüsselung dieser Protein-Netzwerke unumgänglich. Pathogene nutzen zur eigenen Vermehrung die Protein-Protein-Interaktionsnetzwerke der Wirtsorganismen.

Insbesondere Viren als obligate Parasiten sind für ihre Vermehrung auf die Syntheseleistung der lebenden Wirtszellen angewiesen, weil sie keinen eigenen Stoffwechsel haben (Meyer-Kahsnitz 1993). Virusinfektionen an Pflanzen können zu erheblichen ökonomischen und ökologischen Schäden führen (Büttner et al. 2013). So sind in vielen Pflanzenarten Ertragseinbußen bis zu 100 % keine Seltenheit (Scholthof et al. 2011). Alexander et al. (2014) fassen die besonderen Charakteristika der Pflanzenviren zusammen. Pflanzenviren sind innerhalb verschiedener Taxa und Ökosysteme weit verbreitet. Umfangreiche Wirtspflanzenkreise, die auch verschiedene Taxa umfassen können, kommen häufig vor. Viren weisen oftmals eine erhöhte Mobilität in der Natur auf, indem sie sich bei der Übertragung verschiedener Vektoren wie Arthropoden, Pilze und Nematoden bedienen. Da Virusinfektionen einen großen Einfluss auf den Ertrag und die Fitness der Pflanze haben können, ist das Verständnis der Epidemiologie von eminenter Bedeutung. Gleichzeitig gilt es aufzuklären, welche molekularen Mechanismen dem Virustransport zu Grunde liegen.

Die systemische Virusinfektion einer Wirtspflanze ist ein sehr komplexer Prozess, der auf balancierten und geordneten Interaktionen von viralen und pflanzlichen Faktoren beruht. Der komplexe virale Replikationszyklus umfasst den Eintritt des Virus in die Pflanze, die En- und Dekapsidierung, die Replikation und Translation, den Kurz- und Langstreckentransport innerhalb der Wirtspflanze sowie das Umgehen der pflanzlichen Abwehr und kann nur durch die vielfältigen Interaktionen mit Wirtsproteinen ermöglicht werden (Brizard et al. 2006, Harries und Ding 2011). Für die Untersuchung von interagierenden Proteinen steht heute ein umfangreiches Methodenspektrum zur Verfügung, mit dem die Analyse von spezifischen Protein-Protein-Interaktionen aber auch des Interaktoms einer Zelle oder eines Organismus bzw. die Suche nach bisher unbekannten Interaktionspartnern möglich ist. Gängige Methoden sind unter anderem das Hefe Zwei-Hybrid System (*Yeast Two-Hybrid System*, YTHS) und die bimolekulare

Fluoreszenzkomplementation (BiFC). Bis heute konnten mittels dieser Methoden zahlreiche pflanzliche Faktoren identifiziert werden, die den viralen Proteinen als Interaktionspartner dienen.

1.2 Identifizierung von Virus-Virus-/ und Virus-Wirt-Interaktionen mit dem YTHS

1.2.1 Grundlagen der systemischen Infektion einer Wirtspflanze

Jede Pflanzenzelle ist von einer Zellwand sowie i.d.R. einer Kutikula umgeben, die für Pflanzenviren undurchlässig sind. Für eine erfolgreiche Infektion muss diese Barriere überwunden werden (Scholthof 2005). Die Notwendigkeit des Eindringens durch die Zellwand kann umgangen werden, indem eine Übertragung durch Samen und Pollen oder vegetative Vermehrung erfolgt (Drews et al. 2013). Grundsätzlich wird zwischen einer vektoriellen Übertragung durch saugende bzw. stechende Nematoden oder Arthropoden und einer nicht-vektoriellen Übertragung durch mechanische Verletzung oder kontaminiertes Boden- oder Nährwasser unterschieden (Drews et al. 2013). Nach erfolgreichem Eindringen in die Wirtszelle werden die Organellen der Zelle als Replikationsund Ausbreitungsmaschinerie verwendet. Für eine erfolgreiche systemische Infektion muss zunächst der Kurzstreckentransport von der primär-infizierten Zelle in benachbarte Zellen erfolgen. Dazu müssen die Viruspartikel nach der Replikation vom Ort der Replikation zu den Plasmodesmata (PD) und diesen zytoplasmatischen Kanal erfolgreich passieren. Auf diese Weise können verschiedene Gewebe infiziert werden, bis schließlich der Langstreckentransport über das vaskuläre System erfolgt (Tilsner et al. 2014). Bereits 1934 wurde postuliert, dass der Transport des Tobacco mosaic virus (TMV) über diese Prozesse erfolgt (Samuel 1934). Inzwischen ist bewiesen, dass die Passage von Pflanzenviren durch spezialisierte virale Proteine, die Transportproteine (movement Proteine, MP), kontrolliert wird. Diese vermitteln den Durchtritt von viralen Genomen oder ganzen Viruspartikeln durch die PD als zytoplasmatische Zell-zu-Zell-Verbindungen und die Passage durch das vaskuläre System (Niehl und Heinlein 2011, Harries und Ding 2011, Harries und Nelson 2008, Schoelz et al. 2011).

Die systemische Infektion einer Wirtspflanze erfordert die Fähigkeit des Virus, sich in verschiedene Zelltypen (Mesophyllzellen, Bündelscheidenzellen, Parenchym- und Geleitzellen, Siebelemente) auszubreiten, während der lokale Zell-zu-Zell Transport lediglich epidermale und Mesophyllzellen umfasst. Lediglich 1 bis 15 virale Genome realisieren die Neuinfektion einer benachbarten Zelle (Gutiérrez et al. 2012). Dabei ist die Passage durch die PD der limitierende Prozess. Je nach Typ, pflanzlichem Gewebe und Entwicklungszustand weisen PD unterschiedliche Eigenschaften auf (Lucas und Gilbertson 1994). Zudem besitzen PD einen Durchmesser von ca. 50 nm. Der zytoplasmatische Kanal

weist einen Durchmesser von 3 bis 4 nm auf und erlaubt entsprechend des *Stokes*-Radius die Passage eines etwa 30 kDa globulären Proteins (Tilsner et al. 2014, Lucas und Lee 2004, Lucas und Gilbertson 1994). Die natürliche Konformation bzw. das Größenausschlussvolumen (*size exclusion limit*, SEL) der PD ermöglicht die freie Diffusion von Ionen und kleinen Molekülen wie Metaboliten und Pflanzenhormonen, verhindert aber die Passage größerer Moleküle (Hull 2014, Oparka et al. 1999, Lucas und Wolf 1999). Auch virale Transportkomplexe (virale Ribonukleoproteinkomplexe, vRNP) oder Virionen überschreiten in ihrer Größe das SEL um ein Vielfaches. Isometrische Virionen und vRNP-Komplexe weisen einen Durchmesser zwischen 18 und 80 nm auf. Flexible stäbchenförmige und filamentöse Viren sind lediglich 2,5 bis 15 nm breit, können aber eine Länge bis 2 µm erreichen. Deshalb ist die Modifikation der PD durch die viralen MP für einen erfolgreichen Transport von Zelle zu Zelle essentiell.

Die Vergrößerung des SEL und damit verbunden ein erfolgreicher Transport von Viruspartikeln oder vRNP-Komplexen wird durch verschiedene Strategien innerhalb der Pflanzenviren realisiert. Die zentrale Rolle in der Modifikation der Viruspartikel übernimmt das virale MP. Große Unterschiede gibt es in der Art und der Anzahl der viruskodierten MP sowie der Notwendigkeit der Beteiligung weiterer viraler Proteine. Generell lassen sich zwei Transportstrategien unterscheiden (Niehl und Heinlein 2011, Tilsner et al. 2014) (Abb. 1.1):

Durch MP von Vertretern der Gattungen Nepo-, Como-, Alfamo- und Tospovirus wird eine strukturelle Veränderung der PD herbei geführt, indem der Desmotubulus durch eine röhrenartige Struktur aus multimerisierten MP ersetzt wird (tubule-guided movement). Die Lokalisation dieser Tubuli erfolgt in Interaktion mit Wirtsproteinen. Tubuli-bildende Viren werden als kleine sphärische Virionen bzw. als vRNP-Komplexe im Falle der Tospoviren (Tilsner et al. 2014) transportiert. Das Grapevine fanleaf virus (GFLV) ist ein Vertreter der Familie Nepovirus und wird über tubuläre Strukturen transportiert (Kalašjan et al. 1979, Ritzenthaler et al. 1995). Die Virusreplikation erfolgt am ER, translatierte MPs diffundieren im Zytoplasma und binden schließlich an PD-lokalisierte Proteine (PDLP). An den PD kommt es zur Ausbildung tubulärer Strukturen aus multimerisierenden MP. Virionen werden in die benachbarte Zelle in einem dynamischen Prozess von polarer Assemblierung und Deassemblierung der MP an den Röhren transportiert (Abb. 1.1). Dabei interagiert das MP mit dem C-Terminus der viralen Hüllproteine (Belin et al. 1999). PDLPs 1-8 sind Typl-Transmembranproteine, die den Myosin-abhängigen sekretorischen Stoffwechselweg nutzen, um zu den PD transportiert zu werden (Amari et al. 2010, Amari et al. 2011). PDLP sind entlang der inneren Membran der PD sowie an der Basis der MP-Tubuli lokalisiert. Sie fungieren als Rezeptoren für das MP von GFLV. Sie sind für die Multimerisierung von MP an PD essentiell, da deren Mutation eine defekte Tubulibildung bedingt, die den GFLV-Transport einschränkt (Amari et al. 2010, Amari et al. 2011). Es konnte gezeigt werden,