Experimentelle Untersuchung und Bewertung eines indirekt beheizten Carbonate-Looping-Prozesses

Experimentelle Untersuchung und Bewertung eines indirekt beheizten Carbonate-Looping-Prozesses

Experimentelle Untersuchung und Bewertung eines indirekt beheizten Carbonate-Looping-Prozesses

Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Michael Reitz aus Simmern/Hunsrück Tag der Einreichung: 07.03.2017, Tag der Prüfung: 30.05.2017 Darmstadt – D 17

1. Gutachten: Prof. Dr.-Ing. Bernd Epple 2. Gutachten: Prof. Dr.-Ing. Jürgen Karl

Fachbereich Maschinenbau Institut für Energiesysteme und Energietechnik

Experimentelle Untersuchung und Bewertung eines indirekt beheizten Carbonate-Looping-Prozesses

Genehmigte Dissertation von Michael Reitz aus Simmern/Hunsrück

1. Gutachten: Prof. Dr.-Ing. Bernd Epple 2. Gutachten: Prof. Dr.-Ing. Jürgen Karl

Tag der Einreichung: 07.03.2017 Tag der Prüfung: 30.05.2017

Darmstadt – D 17

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2017

Zugl.: (TU) Darmstadt, Univ., Diss., 2017

© CUVILLIER VERLAG, Göttingen 2017 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2017

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-9573-4 eISBN 978-3-7369-8573-5

Kurzfassung

Die Nutzung von Verfahren zur CO_2 -Abscheidung und -Speicherung (CCS) zur Reduzierung der Treibhausgasemissionen im Energie- und Industriesektor mit dem Ziel der Begrenzung der Erderwärmung auf weniger als 2 °C wird ab Mitte des 21. Jahrhundert unumgänglich sein. Die derzeit verfügbaren Verfahren sind mit hohen Wirkungsgradeinbußen bei der Stromerzeugung und hohen CO_2 -Vermeidungskosten verbunden und führen somit zu einer geringen oder verspäteten Nutzung der überaus wichtigen Technologien zur Emissionsreduzierung. Die Weiterentwicklung der CCS-Verfahren bis hin zu einem kommerziellen Maßstab ist somit von eminenter Bedeutung für die Reduzierung der CO_2 -Emissionen.

In der vorliegenden Arbeit wird die Entwicklung eines innovativen Post-Combustion-Verfahrens der zweiten Generation, dem indirekt beheizten Carbonate-Looping-Prozess, der eine verfahrenstechnische Weiterentwicklung des oxy-gefeuerten Carbonate-Looping-Prozesses darstellt, präsentiert. Dies erfolgt ausgehend von dem Verfahrenskonzept und dem aktuellen Stand der Technik über die Auslegung, Konstruktion und Inbetriebnahme einer Versuchsanlage an der Technischen Universität Darmstadt mit einer nominellen Leistung von 300 kW_{th} bezogen auf den zugeführten Abgasstrom bis hin zu der Demonstration der Machbarkeit durch die erfolgreiche Durchführung von vier umfassenden Versuchskampagnen und der Bewertung des Prozesses auf Basis der daraus gewonnenen Ergebnisse.

Der indirekt beheizte Carbonate-Looping-Prozess basiert auf der reversiblen Karbonisierungs-Kalzinierungs-Reaktion unter dem Prinzip der trockenen Sorption. Als Absorbens wird Kalkstein verwendet, der größtenteils aus Kalziumkarbonat besteht, kostengünstig im Tagebau gewonnen werden kann und in der Natur in großen Mengen vorhanden ist. Das Verfahren nutzt ein System gekoppelter Wirbelschichtreaktoren, Karbonator und Kalzinator, zum Abtrennen des CO₂ aus Abgasströmen. Die Wärmebereitstellung zur Regenerierung bzw. Kalzinierung des Sorbens erfolgt mittels Hochtemperaturwärmerohren über einen zusätzlichen Reaktor, der hermetisch von dem Absorptionskreislauf getrennt ist. Die durch diese Verfahrensvariante entstehenden Vorteile gegenüber der Regenerierung des Sorbens mittels Oxy-Verbrennung werden in der vorliegenden Arbeit experimentell untersucht und bewertet.

In mehr als 500 Betriebsstunden mit gekoppelten Wirbelschichtreaktoren, davon 340 h mit CO_2 -Abscheidung, konnte die Betriebsfähigkeit der Versuchsanlage mit CO_2 -Abscheideeffizienzen zwischen 60 und 90% in einer Vielzahl von unterschiedlichen Betriebspunkten demonstriert werden. Die durchgeführten Versuche bestätigen zum oxy-gefeuerten Carbonate-Looping-Prozess vergleichbare CO_2 -Abscheideleistungen. Der Wärmerohrwärmeübertrager, der die innovative Komponente der Versuchsanlage darstellt, zeigte ein exzellentes Betriebsverhalten bei der Übertragung der erforderlichen Wärmeströme. Auf Basis der entnommenen Feststoffproben konnten zudem die Auswirkungen der indirekten Beheizung auf das Sorbens untersucht werden.

Inhaltsverzeichnis

Al	Abbildungsverzeichnis v			
Та	abellenverzeichnis ix			
Al	okürz	ungsvo	erzeichnis	xi
Sy	/mbo	lverzei	chnis	xiii
1 Einleitung und Motivation		und Motivation	1	
	1.1	Das Po	otenzial der CCS/CCU-Technologien	1
	1.2	Übersi	cht der Verfahren zur CO ₂ -Abscheidung	3
		1.2.1	Technologischer Entwicklungsstand	4
		1.2.2	CO ₂ -Vermeidungskosten	7
	1.3	Aufbe	reitung, Transport, Lagerung und Verwertung von CO_2	8
	1.4	Ableit	ung der Aufgabenstellung	9
	1.5	Übersi	cht und Gliederung der Arbeit	10
2	Entv	wicklur	ngsstand des Carbonate-Looping-Prozesses	11
	2.1	Verfah	renstechnische Grundlagen	12
		2.1.1	Chemisches Gleichgewicht im System CaO-CaCO $_3$	12
		2.1.2	Reaktionsbereiche der Karbonisierungsreaktion	14
		2.1.3	Deaktivierung des Sorbens	15
		2.1.4	Einfluss von SO ₂ auf das Sorbens	17
		2.1.5	Einfluss von Wasserdampf auf das Sorbens	18
		2.1.6	Abriebverhalten des Sorbens	19
	2.2	Grund	lagen der Wirbelschichten	21
		2.2.1	Entstehung und Charakterisierung von Wirbelschichten	21
		2.2.2	Partikelklassifikation nach Geldart	24
		2.2.3	Wärmeübertragung in Wirbelschichten	26
	2.3	Grund	lagen der Wärmerohre	28
	2.4	Oxy-g	efeuerter CaL-Prozess	32
	2.5	Indire	kt beheizter CaL-Prozess (IHCaL)	33
		2.5.1	IHCaL-Prozess mit Wärmeträger	33
		2.5.2	IHCaL-Prozess mit Wärmeübertrager	34
	2.6	Übersi	cht über CaL-Versuchsanlagen	36

3	Aus	slegung und Konstruktion der IHCaL-Versuchsanlage 39		39
	3.1	.1 Anforderungen an die Versuchsanlage		39
3.2 Auslegung der Versuchsanlage		gung der Versuchsanlage	40	
		3.2.1	Karbonator	42
		3.2.2	Wärmerohrwärmeübertrager	44
		3.2.3	Kalzinator	48
3.2.4 Heizwirbelschicht		Heizwirbelschicht	50	
3.2.5 Peripherie		Peripherie	51	
	3.3	Verifiz	ierung des Anlagenkonzeptes mittels Kaltmodellversuchen	53
		3.3.1	Skalierung der Versuchsanlage	53
		3.3.2	Überprüfung des Kalzinatorkonzeptes	56
		3.3.3	Überprüfung des Kopplungskonzeptes	57
		3.3.4	Übertragung der Erkenntnisse auf die Versuchsanlage	59
	3.4	Konstr	uktion der Versuchsanlage	61
	3.5	Verwe	ndete Messtechnik	68
		3.5.1	Druckmessungen	69
		3.5.2	Temperaturmessungen	70
		3.5.3	Durchflussmessungen	71
		3.5.4	Konzentrationsmessungen	72
3.5.5 Massenstrommessung		Massenstrommessung	73	
3.5.6 Messunsicherheiten		75		
	3.6 Inbetriebnahme der Versuchsanlage		76	
	3.7	Optim	ierung der Versuchsanlage	79
4	Ехр	erimen	telle Untersuchung im 300 kW _{th} -Maßstab	81
	4.1	Rahme	enbedingungen der Versuchskampagnen	81
		4.1.1	Eigenschaften des Sorbens	82
		4.1.2	Eigenschaften des Bettmaterials der Heizwirbelschicht	83
		4.1.3	Eigenschaften des synthetischen Abgases	84
	4.2	Übersi	cht der Versuchskampagnen	85
		4.2.1	Versuchskampagne C1	85
		4.2.2	Versuchskampagne C2	86
		4.2.3	Versuchskampagne C3	87
		4.2.4	Versuchskampagne C4	88
	4.3	Betrie	bserfahrung	89
	4.4	Versuc	hsergebnisse	90
		4.4.1	Betriebsbereiche der Versuchsanlage	91
		4.4.2	Druckprofile der Versuchsanlage	91

		4.4.3	Temperaturprofil der Versuchsanlage	96
		4.4.4	Ermittelte Massenstromdichten	100
5	Boya	ortuno	und Diskussion der Versuchsergebnisse	101
J	5 1	Masser	n- und Energiehilanzierung	101
	5.2	Station		101
	5.2	Finflüg	see auf die CO_{c} -Abscheideeffizienz des Karbonators	100
	0.0	531	Karbonatortemperatur	108
		5.3.2	Aktive Raumzeit	100
		5.3.3	Ca-Umlaufverhältnis	113
		5.3.4	Karbonatorinventar	115
		5.3.5	CO ₂ -Konzentration des Abgases	116
		5.3.6	H_2O -Konzentration des Abgases	117
		5.3.7	SO ₂ -Konzentration des Abgases	119
		5.3.8	Einfluss des Make-up-Stromes	121
	5.4	Einflüs	sse auf die Effizienz des Kalzinators	122
		5.4.1	Aktive Kalzinatorraumzeit	123
		5.4.2	Temperatur und CO ₂ -Partialdruck im Kalzinator	124
	5.5	Einflüs	sse auf den Wärmebedarf des IHCaL-Prozesses	125
		5.5.1	CO ₂ -Abscheideeffizienz	127
		5.5.2	Ca-Umlaufverhältnis und Temperaturdifferenz	128
		5.5.3	Make-up-Strom	129
	5.6	Einflüs	sse der indirekten Beheizung auf das Sorbens	130
		5.6.1	Sorbenszusammensetzung	130
		5.6.2	Spezifische Sorbensoberfläche und Porenvolumen	133
		5.6.3	Sorbensreaktivität	134
	5.7	Bestim	mung von Partikelabrieb und Partikellebensdauer	136
		5.7.1	Bestimmung des Abriebkoeffizienten mittels Strahlschale	136
		5.7.2	Bestimmung des Partikelabriebes mittels Feststoffproben	140
	5.8	Leistui	ngsfähigkeit des Wärmerohrwärmeübertragers	142
		5.8.1	Übertragene Wärmeströme	142
		5.8.2	Wärmedurchgangskoeffizient des Wärmerohrwärmeübertragers	143
		5.8.3	Wärmeübergangskoeffizienten in Kalzinator und Heizwirbelschicht	145
		5.8.4	Mechanische Stabilität der Wärmerohre	147
	5.9	Optim	ierungspotenziale	149
	5.10	Skalie	rung des IHCaL-Prozesses	151

6 Zusammenfassung und Ausblick

iii

Literatur

Α	Ana	lyse der Feststoffproben	171
	A.1	Bestimmung von X_{mittel} und X_{CaCO_3}	171
	A.2	Chemische Zusammensetzung	174
	A.3	Übersicht der analysierten Feststoffproben	175

159

Abbildungsverzeichnis

1.1	Änderung der weltweiten CO2-Emissionen der Stromproduktion im "450 Szenario" \ldots	2
1.2	Verfahren zur CO ₂ -Abscheidung	3
1.3	CO_2 -Vermeidungskosten unterschiedlicher CO_2 -Abscheideverfahren	7
2.1	Verfahrensschema Carbonate-Looping-Prozess	11
2.2	CO_2 -Gleichgewichtskonzentration in Abhängigkeit der Temperatur	13
2.3	Maximale CO_2 -Einbinderate in Abhängigkeit der CO_2 -Eingangskonzentration	14
2.4	Reaktionsbereiche der Karbonisierungsreaktion in Abhängigkeit der Zyklenzahl	15
2.5	Einfluss der Temperatur auf die Oberfläche und Porosität von Kalkstein	16
2.6	Deaktivierung des Sorbens in Abhängigkeit der Zyklenzahl	17
2.7	Charakteristische Strömungszustände in Wirbelschichten	23
2.8	Allgemeines Zustandsdiagramm für die Strömungen in Gas/Feststoff-Systemen	24
2.9	Geldart-Klassifikationen	25
2.10	Wärmeübergangskoeffizienten in Abhängigkeit der Leerrohrgeschwindigkeit	27
2.11	Aufbau und Funktionsweise eines Wärmerohres	28
2.12	Wärmeträger für verschiedene Temperaturbereiche	29
2.13	Leistungsgrenzen eines Wärmerohres	30
2.14	Verfahrensschema des oxy-gefeuerten CaL-Prozesses	32
2.15	Verfahrensschema des mittels Wärmeträger indirekt beheizten CaL-Prozesses	33
2.16	Verfahrensschema des mittels Wärmeübertrager indirekt beheizten CaL-Prozesses	34
3.1	Verfahrensschema der indirekt beheizten Carbonate-Looping-Versuchsanlage	41
3.2	Strömungsgeschwindigkeiten im Karbonator	43
3.3	Massenstromdichte im Karbonator in Abhängigkeit der mittleren Partikelgröße	44
3.4	Verschiedene Möglichkeiten der Anordnung von Kalzinator und Heizwirbelschicht	45
3.5	Verschiedene Möglichkeiten zur Anordnung der Wärmerohre	46
3.6	Limitierung des Wärmetransportvermögens von Wirbelschicht und Wärmerohr	47
3.7	Verschiedene Möglichkeiten der Partikelführung im Kalzinator	49
3.8	Ermittelte Massenstromdichten in Abhängigkeit des Fluidsierungsverhältnisses	57
3.9	Charakteristisches Druckprofil des Wirbelschichtkaltmodells	58
3.10	CAD Darstellung der indirekt beheizten CaL-Versuchsanlage	61
3.11	CAD Darstellung des IHCaL-Reaktorsystems	64
3.12	Explosionsdarstellung des Prozessteils der indirekt beheizten CaL-Versuchsanlage	66
3.13	Berechnete Leistungsgrenzen der Wärmerohre	68
3.14	Positionen von Druck- und Temperaturmessungen der IHCaL-Versuchsanlage	69
3.15	Beispielhafter Druckverlauf und Messaufbau zur Massenstrombestimmung	74
3.16	Übersicht Druckverläufe der kalten Inbetriebnahme	76

5.19	Einfluss der CO_2 -Abscheideeffizienz auf das Wärmeverhältnis des IHCaL-Prozesses	127
5.20	Einfluss des Ca-Umlaufverhältnisses auf das Wärmeverhältnis des IHCaL-Prozesses	128
5.21	Einfluss des Make-up-Stromes auf das Wärmeverhältnis des IHCaL-Prozesses	129
5.22	Vergleich der Zusammensetzung von Feststoffproben des IHCaL-Prozesse	131
5.23	Vergleich der Zusammensetzung von Feststoffproben unterschiedlicher CaL-Prozesse	132
5.24	Stationärer Zustand der Reaktivität des Sorbens	136
5.25	Versuchsaufbau zur Abriebbestimmung	138
5.26	Zeitverlauf eines Abriebexperimentes für unterschiedliche Feststoffproben	139
5.27	Ermittelte Abriebkoeffizienten des Sorbens	140
5.28	Partikelgrößenverteilung von ausgewählten Feststoffproben der Kampagne C3	141
5.29	Übertragene Wärmeströme in Abhängigkeit der Temperaturdifferenz	143
5.30	Berechnete Wärmeübergangskoeffizienten und Betriebsbereich des Kalzinators	145
5.31	Berechnete Wärmeübergangskoeffizienten und Betriebsbereich der Heizwirbelschicht	146
5.32	Durchschnittliche vertikale Verformung der Wärmerohre	148
5.33	Energieflußdiagramm des Wärmerohrwärmeübertragers	150
5.34	Wärmeverhältnisse unterschiedlicher Prozesskonfigurationen	153
A.1	Zeitverläufe thermogravimetrischer Analysen	171
A.2	Bestimmung der molaren Konversion $X_{mittel,n+1}$	172
A.3	Vergleich von $X_{CaCO_2,TGA}$ und $X_{CaCO_2,GLV}$ von verschiedenen Feststoffproben	173

Tabellenverzeichnis

1.1	Stufen des technologischen Reifegrades	4
1.2	Technologische Entwicklungsstände von Verfahrensvarianten des CLC- und CaL-Verfahrens	6
2.1	Übersicht über Carbonate-Looping-Versuchsanlagen (< 200 kW _{th}) $\dots \dots \dots \dots$	37
2.2	Übersicht über Carbonate-Looping-Versuchsanlagen (> $200 \text{ kW}_{\text{th}}$)	38
3.1	Grundannahmen des IHCaL-Prozesses	40
3.2	Auslegungsparameter des Karbonators	42
3.3	Auslegungsparameter des Wärmerohrwärmeübertragers	48
3.4	Auslegungsparameter des Kalzinators	50
3.5	Auslegungsparameter der Heizwirbelschicht	50
3.6	Abmessungen der Versuchsanlage und des Kaltmodells	54
3.7	Auslegungsparameter der Versuchsanlage und des Kaltmodells	55
3.8	Vergleich der dimensionslosen Parameter zwischen Versuchsanlage und Kaltmodell \ldots	56
3.9	Eingesetzte Werkstoffe der Wärmerohre	67
3.10	Übersicht der Druckmesspunkte des Reaktorsystems	70
3.11	Übersicht der Temperaturmesspunkte des Reaktorsystems	71
3.12	Übersicht der eingesetzten Durchflussmesstechnik	72
3.13	Übersicht der eingesetzten Messverfahren und -geräte zur kontinuierlichen Gasanalyse	72
3.14	Messunsicherheiten der IHCaL-Versuchsanlage	75
4.1	Chemische Zusammensetzung (RFA) des verwendeten Kalksteins	83
4.2	Partikelgrößenverteilung Kalkstein Rheinkalk GmbH 0,1-0,3 mm, Messinghausen	83
4.3	Partikelgrößenverteilung Kalkstein Rheinkalk GmbH 0,3-0,7 mm, Messinghausen	83
4.4	Partikelgrößenverteilung Quarzsand Quarzwerke Österreich GmbH 0,7-1,2 mm	84
4.5	Zusammensetzung des synthetischen Abgases der Versuchskampagnen C1-C4	84
5.1	Betriebsparameter stationärere Betriebspunkte der Versuchskampagnen C1-C4	107
5.2	Oberfläche, Porenvolumen und Karbonatgehalt unterschiedlicher Sorbensproben	134
5.3	Entwicklung von Partikelgröße und Feinanteil in Abhängigkeit der Zeit	141
5.4	Skalierung des IHCaL-Prozesses zur Prozessdemonstration in der Entwicklungsstufe TRL 7	152
A.1	Chemische Zusammensetzung des Sorbens	174
A.2	Übersicht Feststoffproben C1	175
A.3	Übersicht Feststoffproben C2	175
A.4	Übersicht Feststoffproben C3-1	176
A.5	Übersicht Feststoffproben C3-2	177
A.6	Übersicht Feststoffproben C4	177

Abkürzungsverzeichnis

BET	Brunauer-Emmett-Teller-Analyse		
BFB	Bubbling Fluidized Bed (Blasenbildende Wirbelschicht)		
BJH Barrett-Joyner-Halenda-Analyse			
CaL	Carbonate-Looping-Prozess		
CANMET	Arbeitesgruppe des Canadian Energy Technology Centre (CETC)		
CCS	Carbon Capture and Storage (Abtrennung und Speicherung von CO_2)		
CCU	Carbon Capture and Utilization (Abtrennung und Verwertung von CO_2)		
CFB	Circulating Fluidized Bed (Zirkulierende Wirbelschicht)		
EB	Entrained Bed (Flugstrom)		
EGR	Enhanced Gas Recovery (Ausbeutesteigerung erschöpfter Erdgaslagerstätten)		
EOR	Enhanced Oil Recovery (Ausbeutesteigerung erschöpfter Erdöllagerstätten)		
EST	Institut für Energiesysteme und Energietechnik, Technische Universität Darmstadt		
EVT	Lehrstuhl für Energieverfahrenstechnik, FAU Erlangen-Nürnberg		
FAU Friedrich-Alexander-Universität Erlangen-Nürnberg			
FFB	Fast Fluidized Bed (Schnell fluidisierte (zirkulierende) Wirbelschicht)		
HWS	Heizwirbelschicht		
IEA	International Energy Agency (Internationale Energieagentur)		
IEAGHG	IEA Greenhouse Gas R&D Programme		
IFK	Institut für Feuerungs- und Kraftwerkstechnik, Universität Stuttgart		
IGCC	Integrated Gasification Combined Cycle (Kombi-Prozess mit integrierter Vergasung)		
IHCaL	Indirekt beheizter Carbonate-Looping-Prozess		
INCAR-CSIC	Instituto Nacional del Carbón - Consejo Superior de Investigaciones Científicas		
IPCC	Intergovernmental Panel on Climate Change (Zwischenstaatlicher Ausschuss über		
	Klimaveränderungen)		
ITRI	Industrial Technology Research Institute of Taiwan		
PSD	Particle Size Distribution (Partikelgrößenverteilung)		
RFA	Röntgenfluoreszenzanalyse		
TFB	Turbulent Fluidized Bed (Turbulent fluidisierte (zirkulierende) Wirbelschicht)		
TGA	Thermogravimetrische Analyse		
US	Umlaufschleuse		
WRWÜ	Wärmerohrwärmeübertrager		

Symbolverzeichnis

Lateinische Buchstaben

Α	m ²	Querschnittsfläche
A_i	Gew%/h	Abriebskoeffizient
A _{tot}	Gew%/h	Kumulierte Abriebskoeffizient
С	Vol%	Konzentration
$c_{CO_2,ggw}$	Vol%	CO ₂ -Gleichgewichtskonzentration
c_p	J/kgK	Spezifische Wärmekapazität bei konstantem Druck
d_p^*	-	Dimensionsloser Partikeldurchmesser
d_p	m	Partikeldurchmesser
d_h	m	Hydraulischer Bettdurchmesser
E_{Karb}	-	CO ₂ -Abscheideeffizienz des Karbonators
E _{Karb,max}	-	Maximale CO ₂ -Abscheideeffizienz des Karbonators
E_{Kalz}	-	Kalzinatoreffizienz
g	m/s ²	Schwerebeschleunigung
G_s	kg/m²s	Massenstromdichte
H_u	MJ/kg	Heizwert
h	m	Betthöhe
k	-	Konstante für die Abnahme der Reaktivität des Kalksteins
k_s	1/s	Geschwindigkeitskonstant der Karbonisierungsreaktion
L	m	Charakteristische Länge
т	kg	Masse
$m_{f,t}$	kg	Filtermasse bei der Abriebbestimmung nach einer Zeit t
m_s	kg	Probenmasse bei der Abriebbestimmung
ṁ	kg/s	Massenstrom
M	kg/mol	Molare Masse
п	mol	Stoffmenge
'n	mol/s	Stoffmengenstrom
Ν	-	Anzahl der durchlaufenen Karbonisierungs- Kalzinierungszyklen
р	Pa	Druck
$p_{CO_2,ggw}$	Pa	CO ₂ -Gleichgewichtsdruck
Q	J	Wärmemenge
Ż	W	Thermische Leistung
t^*	S	Charakteristische Zeit der Karbonisierungsreaktion
t	S	Zeit
t_{Kalz}	S	Verweilzeit Kalzinator

Т	К	Temperatur
<i>u</i> *	-	Dimensionslose Geschwindigkeit
<i>u</i> ₀	m/s	Leerrohrgeschwindigkeit
u_A	m/s	Austragungsgeschwindigkeit
u_L	m/s	Lockerungsgeschwindigkeit
U	W/m ² K	Wärmedurchgangskoeffizient
V	m ³	Volumen
X _{Karb}	mol_{CaCO_3}/mol_{Ca}	Molare Konversion am Karbonatoraustritt
X_{Kalz}	mol_{CaCO_3}/mol_{Ca}	Molare Konversion am Kalzinatoraustritt
X_{mittel}	mol_{CaCO_3}/mol_{Ca}	Mittlere molare Konversion im Karbonator
X_N	${ m mol}_{{ m CaCO}_3}/{ m mol}_{{ m Ca}}$	Molare Konversion nach N Zyklen
X_r	${ m mol}_{{ m CaCO}_3}/{ m mol}_{{ m Ca}}$	Molare Restaktivität des Sorbens

2

Griechische Buchstaben

α	W/m ² K	Wärmeübergangskoeffizient
Δp	mbar	Druckverlust der Wirbelschicht
Δh	m	Höhendifferenz
ΔH	kJ/mol	Reaktionsenthalpie
ε	-	Leerraumanteil
μ	Pa s	Dynamische Viskosität
arphi	-	Gas-Feststoff-Kontaktfaktor
ϕ	-	Sphärizität
ρ	kg/m ³	Dichte
τ	S	Raumzeit
τ_{aktiv}	S	Aktive Raumzeit

Kennzahlen

Ar	-	Archimedeszahl
Fr	-	Froudezahl
Re	-	Reynoldszahl
Π_{Ca}	-	Ca-Umlaufverhältnis
Π_d	-	Durchmesserverhältnis
Π_u	-	Geschwindigkeitsverhältnis
$\Pi_{ ho}$	-	Dichteverhältnis