Markus Junk

Technical and economical assessment of various carbonate looping process configurations

Technical and economical assessment of various carbonate looping process configurations

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Technical and economical assessment of various carbonate looping process configurations

Zur Erlangung des Grades eines Doktor der Ingenieurwissenschaft (Dr.-Ing.) genehmigte Dissertation von Markus Junk
Oktober 2016, Darmstadt
Darmstadt D-17
1. Gutachten: Prof. Dr.-Ing. Bernd Epple

2. Gutachten: Prof. Dr.-Ing. Jürgen Karl

TECHNISCHE UNIVERSITÄT DARMSTADT R

Fachbereich Maschinenbau Institut für Energiesysteme und Energietechnik Genehmigte Dissertation von Dipl.-Ing. Markus Junk aus Gladbeck Hauptberichterstatter: Prof. Dr.-Ing. Bernd Epple Nebenberichterstatter: Prof. Dr.-Ing. Jürgen Karl Darmstadt D- 17

Technische Universität Darmstadt – Fachbereich Maschinenbau

Tag der Einreichung: 19.10.2016

Tag der mündlichen Prüfung: 21.12.2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2016 Zugl.: (TU) Darmstadt, Univ., Diss., 2016

© CUVILLIER VERLAG, Göttingen 2016 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2016

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-9448-5 eISBN 978-3-7369-8448-6

Preface

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Energiesysteme und Energietechnik an der Technischen Universität Darmstadt. Ganz herzlich möchte ich mich bei Herrn Professor Dr.-lng. Bernd Epple, dem Leiter des Instituts und Betreuer meiner Doktorarbeit, bedanken. Er hat mir die Möglichkeit gegeben, mich mit vielfaltigen interessanten Aufgaben zu beschäftigen. Seiner Unterstützung, Beratung und Förderung konnte ich mir stets gewiss sein.

Ferner gilt mein besonderer Dank Herrn Professor Dr.-Ing. Jürgen Karl, der sich dazu bereiterklärt hat, die Mitberichterstattung für diese Arbeit zu übernehmen. Ihm und seinem Mitarbeiter Daniel Höftberger möchte ich vor allem für die besondere Unterstützung und Kooperation während des CARINA Projektes danken. Ohne den großen Einsatz bei dem Bau der Heatpipes wäre das Projekt nicht so erfolgreich abgelaufen.

Bedanken möchte ich mich auch ganz herzlich bei Herrn Dr.-Ing. Jochen Ströhle, dem Akademischen Rat am Institut für Energiesysteme und Energietechnik. Seine Unterstützung, seine Anregungen und Hinweise haben einen wertvollen Beitrag zum Gelingen der Arbeit geleistet. "Danke" sagen möchte ich meinen Kollegen und Freunden, insbesondere Johannes Kremer, Ralf Starkloff, Peter Ohlemüller, Lorenz Frigge, Karl Karner, Josef Langen, Jan-Peter Busch, Matthias Orth, Vitali Kez, Martin Haaf, Alexander Daikeler, Jochen Hilz, Stefan Pfeiffer, Jörg Belz, Qu Zhichao, Ingo Zorbach, Ralf Postler, Falah Alobaid, Philipp Herdel, Martin Helbig, David Krause, Alexander Atroh und Alexander Galloy. Besonderer Dank geht auch an meinen Kollegen Michael Reitz und unsere Werkstatt, ohne die der Aufbau der Pilotanlage so nicht möglich gewesen wäre.

Besonders bedanken möchte ich mich auch bei unserer langjährigen Sekretärin Susanne Tropp, die mich immer bei allen Anliegen unterstützt hat. Allen anderen Kollegen des Instituts sowie allen Studenten, die bei mir ihre Studien-, Bachelor-, Diplom- oder Masterarbeiten geschrieben haben, gilt ebenfalls mein Dank. Besonders hervorheben möchte ich hier Katrin Armbrust, Tobias Wedemeier, Jan May und Jens Heußer, die einen wichtigen Beitrag für diese Arbeit geleistet haben. Des Weiteren möchte ich mich bei Herrn Dr.-Ing. Ulrich Priesmeier von der Steinmüller Babcock Environment GmbH für die freundliche Unterstützung im Rahmen des Projektes CARINA bedanken. Herrn Dr. Ing. Reinhold Elsen von der RWE AG danke ich für die langjährige Zusammenarbeit und die guten Gespräche im Rahmen der Vorlesung "Planung, Bau, Inbetriebnahmen und Betrieb von Großkraftwerken".

Schließlich möchte ich mich bei meiner Freundin Kristina Albert, meinem Bruder Andreas Junk und meinen Eltern Monika und Volker Junk aufs Herzlichste dafür bedanken, dass sie mich immer grenzenlos unterstützt und mir jederzeit den Rücken freigehalten haben. Auf Ihre Unterstützung während meines Studiums und der anschließenden Promotion konnte ich immer zählen.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Table of Contents

Preface III				
No	omeno	clatur	e	VII
Li	st of F	igure	s	XV
Li	st of T	ables		XXI
Ał	ostract	t		XXIII
1	Intro	ductio	on	1
	1.1	Moti	vation	1
	1.2	$\rm CO_2$	Emissions	2
	1.3	Carb	oon Capture and Storage	5
	1.4	Rese	earch Objectives	
	1.5	Thes	sis Outline	9
2	Post-	Comb	oustion CO_2 Capture	11
	2.1	Ami	ne Scrubbing	
	2.2	Carb	oonate Looping	
	2.2	.1	Standard Carbonate Looping	
	2.2	.Z Stati	Indirectly Heated Carbonate Looping	10
	2.3 2.2		Stages of Development of the Carbonate Looping Process	10 10
	2.3	2	Worldwide Carbonate Looping Pilot Plants	
2	Theo	.2	I Fundamentals of the Carbonate Looping Process	25
5	3 1	Chei	nical Fundamentals	
	3.1	.1	Chemical Equilibrium	35
	3.1	.2	Reaction Kinetics	
	3.1	.3	Reactivity of Quick Lime	
	3.2	Fund	lamentals of Fluidized Bed Technology	
	3.2	.1	Flow Regimes	43
	3.2	.2	Geldart Particle Characterization	
	3.2	.3	Solid Distribution	45
	3.3	Fund	lamentals of Heat Pipe Technology	
	3.3	.1	Heat Transport Limits	48
	3.3	.2	Industrial Application of Heat Pipes	50
4	Exper Conf	rimer igurat	ntal Investigations of the Carbonate Looping Process for Various E)esign 51
	4.1	Setu	p of the 1 MW Directly Fired Carbonate Looping Pilot Plant	
	4.2	Expe	erimental Investigations in the 1 MW Pilot Plant	53
	4.2	.1	Results of the 1 MW _{th} Test Campaigns	53
	4.2	.2	Discussion of the Directly Heated Test Results in 1 MW Scale	58
	4.3	Setu	p of the 300 kW Indirectly Heated Carbonate Looping Test Facility	59
	4.4	Expe	erimental Investigations in the 300 kW_{th} Pilot Plant	
	4.4	.1	Test Campaign without Carbonator Cooling	
	4.4	.2	Test Campaign with Carbonator Cooling	80

	4.4.3	Estimation of the Measurement Uncertainties
	4.4.4	Discussion of the Indirectly Heated Test Results in 300 kW_{th} Scale
5	Modeling	of the CO ₂ Capture in the Carbonate Looping Process
	5.1 Ove	rview of Existing Models using Kinetic and Hydrodynamic Approaches
	5.2 Mod	lified Carbonator Model for the Simulation of the CL Process
	5.2.1	Kinetics and Capacity of Quick Lime
	5.2.2	Basic Assumptions
	5.2.3	Composition of Fluid Flows
	5.2.4	Modeling of the Circulating Fluidized Bed
	5.2.5	Modeling of Effects due to Calcium Sulfate Generation
	5.2.6	Calculation of CO ₂ Capture in Dependency on the Molar Conversion
	5.2.7	Calculation of the CO ₂ Capture in Dependency of the Material Balance 103
	5.2.8	Modification of the Model for Simulation of the CL Process
	5.2.9	Model Sequence
	5.2.10	Sensitivity Analysis
	5.3 Vali	dation of the Carbonator Model114
	5.3.1	Validation by Experimental Data of the 1 MW Pilot114
	5.3.2	Validation by Experimental Data of the 300 kW Pilot 121
	5.3.3	Discussion of the Results and Challenges129
6	Thermody	namic Evaluation of Various Carbonate Looping Process Configurations
 7 Economical Evaluation of the Carbonate Looping Process 7.1 Model for Calculation of the Levelized Costs of Electricity 		al Evaluation of the Carbonate Looping Process142
		lel for Calculation of the Levelized Costs of Electricity
	7.2 Cost	Evaluation of the Reference Plant
	7.3 Cost	Evaluation of the Indirectly Heated Carbonate Loping Process
	7.3.1	Cost Evaluation based on the 300 kW _{th} Pilot Plant
	7.3.2	Sensitivity Analysis
	7.3.3	Analysis of Extreme Scenarios
	7.4 Cost	Evaluation of the Standard Carbonate Looping Process
	7.5 Cost	Comparison with other CO_2 Capture Processes
8	Conclusio	n and Future Work
9	Reference	s
10	Appendix	
Сı	ırriculum V	⁷ itae

Nomenclature

<u>Latin symbols</u>

а	Decay constant of the solid fraction in the lean phase	1/m
Α	Carbonator cross section	m^2
AD	Annual depreciation	€/a
AEP	Annual electricity production	MWh
AEP_n	Electricity production in the year n	MWh
AH	Annual hours of operation	h
b	Decay constant of the contact efficiency in the lean phase	1/m
С	Concentration	-
СС	Capital costs	€
CC_n	Capital costs in year n	€
c _{CO2}	Average CO_2 concentration in the carbonator	mol/m³
$c_{CO2}*$	Equivalent CO ₂ concentration in the carbonator	mol/m³
D	Carbonator diameter	m
d_p	Particle diameter	m
DP	Depreciation period	а
d_p*	Dimensionless particle diameter (K-L Model)	-
Ε	CO ₂ capture efficiency	-
Ea	Activation energy	J/mol
<i>e</i> _{max}	Average carbonate layer thickness on the calcium oxide	m
F_0	Molar make-up-flow (CaCO ₃)	mol/s
f_a	Fraction of active CaO in the carbonator	-
F _{Ash}	Molar ash flow introduced into the CL process	mol/s
FC	Fuel costs	€
f_{Calc}	Average calcination efficiency	-
f_{Carb}	Average carbonation in the carbonator	-
FC_n	Fuel costs in the year n	€
F_{CO2}	Molar CO ₂ flow to the carbonator	mol/s
f_{m} , f_{w}	Limestone specific parameter	-
FOC	Fixed operating costs	€

FOC_n	Fixed operating costs in the year n	€
FP	Fuel price	€/t
F_R	Molar CaO flow in the solid loop	mol/s
F _{R,Ash}	Molar ash flow in the solid loop	mol/s
$F_{R,S}$	Molar calcium sulfate flow in the solid loop	mol/s
F_{Rt}	Molar solid circulation flow between reactors	mol/s
F_S	Molar calcium sulfate flow introduced into the CL process	mol/s
g	Gravity	m/s ²
G_s	Specific mass flow at the carbonator exit	kg/m²*s
h	Specific enthalpy	J/kg
Н	Enthalpy	J/mol
H_d	Height of the dense phase	m
H_l	Height of the lean phase	m
HP	Heating price	€/MWh _{th}
HP_n	Heating price in the year n	€/MWh _{th}
H_t	Total height of the carbonator	m
i	Full cylces without make-up introduction	-
<i>IC_{Total}</i>	Total investment costs	€
IDC	Interest during construction	€
I_n	Interest payment in the year n	€
k	Deactivation constant of the sorbent	-
Κ	Equilibrium constant	-
<i>k</i> '''	Reaction rate constant of a first order reaction (K-L model)	-
k'	Reaction rate constant	-
k_0	Reaction constant of the Arrhenius equation	-
K _{cw}	Exchange coefficient (core-wall)	1/s
k_r	First order reaction rate constant of the carbonation reaction	m³/mol*s
k_{ri}	Average reaction velocity of the carbonation reaction of the active sorbent particel	1/s
k_s	Intrinsic reaction rate constant of the carbonation reaction	m ⁴ /mol*s
LAR	Levelized asset retirement costs	€/MWh
LC	Levelized costs of the respective cost component	€/MWh

LCC	Levelized capital costs	€/MWh
LCOE	Levelized costs of electricity	€/MWh
$LCOE_{PP}$	LCOE of reference plant without IHCL process	€/MWh
$LCOE_{PP+IHCL}$	LCOE of reference plant with IHCL process	€/MWh
LFC	Levelized fuel costs	€/MWh
LFOC	Levelized costs of electricity	€/MWh
LHV	Lower Heating Value	MJ/kg
LVOC	Levelized variable operating costs	€/MWh
∆LCOE	Difference of the LCOE (reference plant with and without IHCL)	€/MWh
т	Mass	kg
'n	Mass flow	kg/s
Μ	Molar mass	g/mol
n	Mole	mol
Ν	Number of cycles	-
N_{age}	Number of full carbonation/calcination	-
NPV	Added net present values of the respective cost component	€/MWh
ОС	Owner costs	€
р	Pressure	Pa
Р	Electrical power	W
p_{CO_2}	Price of CO ₂ certificate	€/t CO ₂
P _{el,gr}	Electrical Gross Power	$\mathrm{MW}_{\mathrm{el}}$
PR	Performance ratio	-
Q	Heat flow	W
R	Universal gas constant	J/kmol*K
$r_{Fo,}$	Age structure at the last make-up introduction	-
r _N	Fraction of the particles in cycle N	-
<i>r</i> _{Nage}	Fraction of particles with $\mathrm{N}_{\mathrm{age}}$ full carbonation/calcination cycles	-
S	Active reaction surface	
S_0	Initial active reaction surface	m^{2}/m^{3}
S_N	Specific active reaction surface of one particle in cycle N	m^{2}/m^{3}
sp.AR	Specific costs for asset retirement	€/MW _{el,gr}

sp.FOC _n	Specific fixed operating costs in the year n	€/MWh _{el,gr}
$sp.TC_n$	Specific total costs in the year n	€/ MWh _{el,gr}
sp.VOC _n	Specific variable operating costs in the year n	€/MWh _{el,gr}
Т	Temperature	° C
t	Time	S
TC_n	Total costs in the year n	€
t _{lim}	Time that is necessary to reach full conversion	S
TPC	Total Plant Costs	€
и	Gas velocity	m/s
u_0	Superficial gas velocity	m/s
u_t	Terminal velocity	m/s
u_t^*	Dimensionless terminal velocity	-
V	Volume	m ³
<i>॑</i> V	Volume flow	m³/s _{i.Br.}
v/r	Reaction rate	1/s
V_M	Molar volume	m³/mol
VOC	Variable operating costs	€
VOC_n	Variable operating costs per year	€
W	Velocity	m/s
W_s	Solid inventory carbonator	kg
Χ	Particle conversion	-
X _{ave}	Average sorbent conversion	-
x_i	Mole fraction	-
X _{max,ave}	Average maximum sorbent conversion	-
X_N	Maximum conversion at the end of the fast reaction phase	-
X_r	Particle end conversion after a high number of cycles	-
у	Volume fraction	-
Z	Height	m

Greek symbols

δ	Core volume fraction of the dense phase	-
Δx_{CaSO4}	Average sulfated sorbent fraction per cycle	-
е*	Asymptotic solid volume fraction	-
\mathcal{E}_0	Particle porosity	-
Е	Solid volume fraction or auxiliary electrical power	-
η	Efficiency	-
μ	Viscosity	kg/m*s
ξ	Volume ratio of Ca particles to all particles in the system	-
ρ	Density	kg∕m³
τ	Average residence time (space time)	S
$ au_a$	Active space time	S
Ψ	Pore structure parameter	-

9

Indices

0	Make Up
а	Potential active fraction
ave	Average
Calc	Calciner
сар	Captured
Carb	Carbonator
CL	Carbonate Looping
cond	Condenser
d	Dense phase
diss	Dissipated
el	Electric
eq	Chemical equilibrium
evap	Evaporator
F	Fuel
g	Gas phase
in	Input parameters

1	Lean phase
LS	Loopseal
max	Maximum
mf	Minimal Fluidization
NB	New Built
out	Outlet flow
PHR	Preheated Retrofit
R	Retrofit
\$	Solid phase
th	Thermal
tot	Total
W	Wall region of the fluidized bed

Most used chemical symbols

С	Carbon
C_3H_8	Propane
Ca(OH) ₂	Calcium hydroxide
CaCO ₃	Calcium carbonate (limestone)
CaO	Calcium oxide (burnt lime)
CH ₄	Methane
СО	Carbon monoxide
CO_2	Carbon dioxide
H_2	Hydrogen
H_2O	Water
N_2	Nitrogen
N_2O	Nitrous oxide
NO _x	Nitrous oxide
O_2	Oxygen
SO_2	Sulfur dioxide

Abbreviations

AG	Aktiengesellschaft (Stock company)
BFB	Bubbling Fluidized Bed
Cal	Calciner
Car	Carbonator
CCS/U	Carbon Capture and Storage/Utilization
CFB	Circulating Fluidized Bed
CFD	Computational Fluid Dynamics
CL	Carbonate Looping
CLC	Chemical Looping Combustion
COORETEC	CO ₂ -Reduktions-Technologien (Initiative of BMWi)
DEA	Diethanol-Amine
DEM	Discrete Element Method
EB	Entrained Bed
EPC	Engineering, Procurement and Construction
EPRI	Electric Power Research Institute
Eqs	Equation
EST	Institute for Energy Systems and Technology (TU Darmstadt)
EU	European Union
FAU	Friedrich-Alexander Universität Nürnberg
FGD	Flue Gas Desulfurization Unit
Fig	Figure
GKM	Grosskraftwerk Mannheim
GPU	Gas Processing Unit
Gt	Gigatonne
GW	Gigawatt
HE	Heat Exchanger
I/O	Input/output
IEA	International Energy Agency
IEAGHG	IEA Greenhouse Gas R&D Programme
IFK	Institut für Feuerungs- und Kraftwerkstechnik (Stuttgart)

IGCC	Integrated Gasification Combined Cycle
IHCL	Indirectly Heated Carbonate Looping Process
IHCL _{NP}	Indirectly Heated Carbonate Looping Process (New Build Plant)
IHCL _{PHR}	Indirectly Heated Carbonate Looping Process (Preheated Retrofit)
IHCL _R	Indirectly Heated Carbonate Looping Process (Retrofit)
INCAR-CSIS	Instituto Nacional del Carbón - CSIC
INDC	Intended Nationally Determined Contributions
IR	Imputed interest rate
IR _{AR}	Imputed interest rate for asset retirement
ITRI	Industrial Technology Research Institute (Taiwan)
K-L	Kunii-Levenspiel
$kW_{th} \\$	Kilowatt (thermal)
LP	Low Pressure
LT	Lifetime
M&E	Mass and Energy Balance
MEA	Monoethanol-Amine
MP	Medium Pressure
MW	Megawatt
n	Operating year
OECD	Organization for Economic Co-operation and Development
Ppm	Parts Per Million
PSD	Particle Size Distribution
RFCR	Research Fund For Coal and Steel
RK	Rotary Kiln
SCL _R	Standard Carbonate Looping (Retrofit)
SCR	Selective Catalytic Reduction (DeNO _x)
TGA	Thermogravimetric analysis
TUD	Technische Universität Darmstadt
UNFCCC	United Nations Framework Convention on Climate Change

List of Figures

Figure 1: Global Energy related CO_2 emissions by economic sector and region (gigatonne of
CO ₂ -equivalent per year) [9]2
Figure 2: CO ₂ concentration in the atmosphere over the last 65 years
Figure 3: Overview of three main carbon capture process classes
Figure 4: IGCC process with CO ₂ capture7
Figure 5: Simplified process scheme of the oxy-fuel technology7
Figure 6: Chemical Looping process scheme
Figure 7: Principle of post-combustion CO_2 capture
Figure 8: Process scheme of MEA scrubbing12
Figure 9: Schematic of the standard carbonate looping process
Figure 10: Schematic of the indirectly heated carbonate looping process
Figure 11: Simplified schematic of the dual fluidized bed pilot plant in Ottawa
Figure 12: Configuration and process flow diagram of the dual CFB pilot plant in Stuttgart
(R1: Calciner, R2: Carbonator)27
Figure 13: Capture rates at dry and wet flue gas conditions at different temperature at the
200 kW _{th} pilot plant in Stuttgart (own representation of results) [70]
Figure 14: Simplified process flow diagram of the three stage carbonate looping process 29
Figure 15: General scheme and integration of the carbonate looping pilot plant at La Pereda power station [73]
Figure 16: CO ₂ equilibrium concentration at atmospheric pressure in dependency of the
temperature. (Comparison between Baker and García)
Figure 17: CO_2 equilibrium concentration for the carbonation temperature range between
500 °C and 700 °C
Figure 18: Conversion curves vs. time for different cycle numbers. (d_p 0.4–0.6 mm;
$p_{CO2} 0.01$ MPa; $T_{carbonation} = 650$ °C, for 5 min; $T_{calcination} = 900$ °C, for 5 min.) Own representation
of results; Data adopted from Grasa et al. [82]
Figure 19: CO_2 capture efficiency vs. carbonator temperature for 15 vol.% CO_2 inlet
concentration (own calculation)
Figure 20: Flow regimes in fluidized beds at different fluidization velocity (a: very low; h:
very nign) [93]

Figure 21: Solid distribution in the fluidized bed at different flow formations [93] 45
Figure 22: Working principle of heat pipe [62]46
Figure 23: Merit number for different working fluids [98] 47
Figure 24: Heat transport limits of a heat pipe [98]
Figure 25: Setup of the 1 MW pilot plant at TU Darmstadt [53]
Figure 26: CO_2 capture efficiency of the carbonator compared to the equilibrium CO_2
concentration and corresponding reactor temperature
Figure 27: Carbonator and total CO ₂ capture efficiency with corresponding carbonator
inventory and two selected operation points (P1 and P2) for the mass and energy balance in
Table 4 and Table 5
Figure 28: Particle size distribution of two samples (S1 after 9 hours and S2 after 17 hours of
operation) extracted from the carbonator compared to the PSD of raw limestone
Figure 29: (a) Heat pipe heat exchanger of 300 kW pilot (b) Scaled cold flow model of
calciner
Figure 30: Experimental setup of the 300 kW _{th} test facility [42]
Figure 31: Fluidized bed reactor system [46]63
Figure 32: Sectional representation (left) and picture (right) of the heat pipe heat exchanger64
Figure 33: Setup of the indirectly heated carbonate looping test facility
Figure 34: Picture of the 300 kW pilot plant (left) and heat pipe heat exchanger (right) 68
Figure 35: Design of the heat pipes for the 300 kW test plant at TUD [62]
Figure 36: Scheme of a 10 MW_{th} (green color) heat pipe heat exchanger as well as scalable
modules of 1 MW_{th} (blue color) and 300 kW_{th} (yellow color) pilot plants. [62]
Figure 37: Cumulative particle size distribution of the sorbent
Figure 38: CO_2 capture and CO_2 concentration over a selected period of 70 h during the first
test campaign (P1: Operating point 1 for mass and energy balance and reactor temperature
profile)74
Figure 39: Temperature characteristics of the reactors for the selected time period of 70 h 75
Figure 40: Temperature distribution in the reactors for P176
Figure 41: CO_2 capture rate based on the equilibrium and carbonator temperature
Figure 42: Carbonator inventory and pressure and thermal power of the combustor for the 70
hours of plant operation

XVII

