Higher Order Horizontal Discretization of Euler-Equations in a Non-Hydrostatic NWP and RCM Model

HIGHER ORDER HORIZONTAL DISCRETIZATION OF EULER-EQUATIONS IN A NON-HYDROSTATIC NWP AND RCM MODEL

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q/

Jack Ogaja

Higher Order Horizontal Discretization of Euler-Equations in a Non-Hydrostatic NWP and RCM Model

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2016 Zugl.: (BTU) Cottbus, Univ., Diss., 2015

© CUVILLIER VERLAG, Göttingen 2016 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfältigen.
1. Auflage, 2016
Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft

ISBN 978-3-7369-9294-8 eISBN 978-3-7369-8294-9

ABSTRACT

For the first time, efficient fourth order accurate horizontal discretization of the Euler equations has been implemented in an operational NWP and RCM model implicitly conserving the kinetic energy of the rotational flow, which allowed simulation of regional climate over a European domain with COSMO model without horizontal numerical filter. The first spatial scheme implemented is a central difference fourth order scheme which is a natural extension of the COSMO spatial schemes by consistent discretization of linear and nonlinear terms of the model's Euler equations to fourth order accuracy. The second, is a symmetric fourth order accurate scheme previously used for turbulence studies.

It has been shown analytically that none of the previously implemented numerical schemes (COSMO schemes) is higher order (higher than second order) accurate. In contrast, the new schemes have been shown to be fourth order accurate. It is further shown that the symmetric scheme conserves rotational part of the momentum and kinetic energy *a priori*. The ageostrophic divergent part is discretized fourth order accurate. Analysis of the numerical errors of the schemes show that the new schemes exhibit significantly improved accuracy in terms of amplitude error, and slight improvement in terms of phase errors in comparison with the COSMO schemes. Linear stability analysis of the new schemes reveal improved linear stability which allows significantly larger time steps compared to the COSMO schemes. Theoretical analysis further reveal significant decrease in alias error of the symmetric schemes, which reduces significantly the non-linear instability of the schemes compared to other schemes. Together with conservation of the kinetic energy, it allows stable simulations without numerical diffusion.

A two-dimensional numerical idealized test has been used to reveal the second order and fourth order convergence properties of the schemes. Instability attributed to inconsistent discretization of non-linear and linear terms of the model's Euler equations has been demonstrated using the same idealized test case and a real case study. The model's numerical accuracy, stability and simulation quality using different schemes have been further assessed by analysis of a series of regional climate simulations over European domain using ERA-interim re-analysis boundary data. The results show a significant improvement of the models stability and effective resolution. The results also reveal significant effects of the new schemes on the coupling between the model's resolved dynamics and the sub-grid scale physical parameterizations. This has particularly enhanced the bias in the model's simulated convective precipitation.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q/

ACKNOWLEDGMENTS

I wish to thank my supervisor Prof. Dr. Eberhard Schaller for the invaluable support, guidance, understanding, and kindness throughout the period of this study. Many thanks also to Dr. Andreas Will for the scientific advice and overall support especially at the beginning of my studies. I also thank Prof. Dr. Rupert Klein of Institute of Mathematics, Free University, Berlin, for accepting to review my thesis. This study was partly funded by German Weather Service (DWD) and German Federal Ministry of Education and Research (BMBF) and I would like to extend my gratitude to the two for the financial support. I am very indebted to Dr. Michael Baldauf of DWD for several scientific discussions and the provision of the new fast-waves solver for the COSMO model, and the recommendations he has ever made on me. A number of scientists and model developers at DWD also played important roles at the beginning of this study with helps in idealised tests configurations and other technical aspects of the COSMO model. I am very grateful to them. I am also grateful to The German Climate Computing Center (DKRZ) for providing computing resources including data storage space for this study.

Of course I cannot forget the supportive environment I worked in, with very friendly colleagues (*Kollegen und Kolleginnen*) starting with Dr. Klaus Keuler who in the period of my study offered very important scientific recommendations and took his valuable time to help me prepare the configuration and boundary data sets for the real case study. I am also very grateful to my room-mates Marten and Abouzar, and 'COSMO-*mate*' Stefan, for the exciting all-round discussions. Not forgetting other colleagues from the Institute, Dr. Kai Radtke, *Herr* Michael Woldt, *Herr* Willi Christoph, and Dr. Andreas Krebs, and formerly Dr. Goran Georgievski. Thank you all for the valuable support you offered during my study. I also appreciate the administrative assistance offered by *Frau* Sabine Printschitsch throughout the period of this study. *Danke sehr, Frau Printschitsch*.

Finally, I would like to thank all my family members for every support they offered me during my study.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q/

TABLE OF CONTENTS

LIST O	F TABI	LES	xii
LIST O	F FIGU	JRES	xiii
LIST O	F FRE	QUENTLY USED ABBREVIATIONS	xvi
NOTAT	ION .		xvii
CHAPT	ER 1	INTRODUCTION	1
1.1	Object	lives	5
1.2	Outlin	e	6
I Fu	ndam	entals, Review and Theory	9
CHAPT	ER 2	HORIZONTAL DISCRETIZATION ON A STAGGERED GRID	10
2.1	Introd	uction	10
2.2	Numer	rical Operators and Error Convergence	12
	2.2.1	Interpolation Operators	12
	2.2.2	Spatial Differencing Operators	13
2.3	Discret	tization of Non-linear Terms	14
	2.3.1	Quasi-Higher Order Advection Schemes	15
	2.3.2	Higher Order Advection Schemes	17
	2.3.3	Quadratic Conserving Advection Schemes	18
2.4	Summ	ary	23
CHAPT	ER 3	ERRORS AND STABILITY ANALYSIS OF ADVECTION SCHEMES	25
3.1	Introd	uction	25
3.2	Error 2	Analyses	27
	3.2.1	Discrete Dispersion Relation, Phase, and Phase Speed Approxi-	
		mations	27
	3.2.2	Group Velocity Approximations	35
	3.2.3	Alias Error	36
3.3	Linear	Stability Analysis	40
3.4	Effecti	ve Resolution Analysis	50
3.5	Summ	ary	53
II T	he M	odel System and Code Implementation	61
CHAPT	ER 4	SPATIAL SCHEMES IN A NON-HYDROSTATIC MODEL	62

R

Table of Contens

V

4.1	Introduction
4.2	The Model System
4.3	Compressible Euler Equations in Terrain-following Coordinates
4.4	Boundary Conditions
4.5	Quasi-Higher Order Advection Schemes
4.6	Fourth Order Advection Scheme
4.7	Fourth Order Quadratic Conserving Advection Scheme
4.8	Fourth Order Discretization of Fast-waves Terms
4.9	Numerical Schemes Configurations
4.10	Summary
III (Code Verification and Real Case Study 73
CHAPT	TER 5 IDEALIZED NUMERICAL TESTS 74
5.1	Introduction
5.2	Euler Equations in Cartesian Coordinates
5.3	Linear Analytic Solution
5.4	The Model Configuration
5.5	Error Norms
5.6	Test's Quality
5.7	2D Hydrostatic Linear Mountain Flow Case
5.8	2D Non-hydrostatic Linear Mountain Case
5.9	Vertical Flux of Horizontal Momentum
5.10	2D Atmosphere at Rest Test Case
	5.10.1 Numerical Stability Test
	5.10.2 Convergence Study
5.11	Summary
CHAPT	FER 6 REAL CASE STUDY 94
6.1	Configuration
6.2	Simulation Stability
6.3	Zonal Spectral Analysis
	6.3.1 Kinetic Energy Spectra
	6.3.2 Model's Effective Resolution
	6.3.3 Precipitation Spectra
6.4	Climatologies
6.5	Summary
IV S	Summary and Outlook 113
CHAPT	FER 7 SUMMARY AND OUTLOOK 114
7.1	Summary
7.2	Outlook

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

7.2.3	1 Physics-Dynamics Coupling
7.2.2	2 Model Efficiency
V Appe	endices and Bibliography 119
APPENDIX	A FINITE DIFFERENCE APPROXIMATIONS
APPENDIX	B NUMERICAL PROPERTIES OF THE MODEL'S SCHEMES 122
B.1 Diss	sipation Property of Upwind Difference Schemes
B.2 Con	servative Property of Quadratic Conserving Schemes
APPENDIX	C SUPPLEMENTARY FIGURES
REFERENC	ES

LIST OF TABLES

2.1 2.2	Weighting factors of centered finite difference operators (interpolation and first order derivative) of second, fourth and sixth order of accuracy Summary of discretization of the non-linear terms on a staggered grid	13 24
3.1	Number of grid points per wavelength $n(q)$ of different finite difference schemes for specific phase error maximum bounds	33
3.2	Critical wavenumbers $K = k\Delta x$ (wavenumbers which become unstable first) for the Runge-Kutta schemes of order 1 to 7 with centered finite differences and upwind spatial schemes	47
3.3	Critical Courant numbers $C := c\Delta t / \Delta x$ for the Runge-Kutta schemes of order 1 to 7 with centered finite differences and upwind schemes	47
3.4	Effective resolution of different spatial schemes with Runge-Kutta time- integration schemes	53
4.1	Semi-discrete terms contributing to the fast waves with different orders of accuracy m for every term	69
5.1	Main namelist parameters settings and descriptions for idealised tests configurations for the dynamical core of the model system	79
0.Z	u' and w' fields $\dots \dots \dots$	81
5.3	Order of convergence for u' and w' fields calculated from the atmosphere at rest test case $\ldots \ldots \ldots$	91
6.1	Overview of the real case simulations for the period 1979-1998 with ERA-	0.0
6.2	Stability levels of the model based on the run times using the existing third order upwind QHOS scheme and the new fourth order centered	96
63	difference HOS and QCHOS schemes $\dots \dots \dots$	98
0.0	Fig. (6.3) at a wavelength $L_{\lambda} = 36$ km and $L_{\lambda} = 100$ km	103

LIST OF FIGURES

1.1	Schematic representation of the complexity and multi-scale nature of dif- ferent important atmospheric phenomena, and the temporal and spatial resolution limit of the current climate models	2
2.1	Arakawa stager red C-grid showing staggering of vectors and scalars $\ .\ .\ .$.	12
3.1	1-dimensional grid system (1D form of figure 2.1) showing staggering of a vector field ψ at the edges of grid sections and definition of an arbitrary scalar quantity S at the center of each grid section	25
3.2	Normalized damping factor of third and fifth order upwind schemes plotted against wavenumber k	30
3.3	Phase speed as a function of resolution for analytic solution and numerical solution using finite difference schemes of different orders of accuracy of	00
3.4 3.5	a linear advection equation	31 34
3.6	riods q	35 36
3.7	Representation of aliasing due to interaction between three different waves $ k_3 = k_1 + k_2 > k_{max}$ on a line in the wavenumber range between 0 and	
3.8	$k_{max} = 2\pi/\Delta x$ Plot of the magnitude of the nonlinear interaction coefficients $ E^{AdvTN} $ against primary wavenumber k_2	38 41
3.9	The modulus of the amplification factor $ A(C, K = K_{crit,S2}) $ as a function of Courant number C	45
3.10	The modulus of the amplification factor $ A(C, K = K_{crit,S4}) $ as a function of Courant number C	46
3.11	The modulus of the amplification factor $ A(C, K = K_{crit,S6}) $ as a function of Courant number C	46
3.12	The modulus of the amplification factor $ A(C, K = K_{crit,C2}) $ as a function of Courant number C	48
3.13	The modulus of the amplification factor $ A(C, K = K_{crit,C3}) $ as a function of Courant number C	49
3.14	The modulus of the amplification factor $ A(C, K = K_{crit,C4}) $ as a function of Courant number C	49

2

 \sim

3.15	The modulus of the amplification factor $ A(C, K = K_{crit,C5}) $ as a function of Courant number C		50
3.16	The modulus of the amplification factor $ A(C, K = K_{crit,C6}) $ as a function	•••	50
3.17	of Courant number C		50
2 1 0	nation with 3rd order Runge-Kutta time integration schemes		55
5.10	with 4th order Runge-Kutta time integration schemes		56
3.19	Plot of relative dispersive error of different spatial schemes in combination with 3rd order Bunge-Kutta time integration schemes		57
3.20	Plot of relative dispersive error of different spatial schemes in combination		5.
	with 4th order Runge-Kutta time integration schemes		58
$5.1 \\ 5.2$	Domain schematic and mountain configuration for the idealised test cases . A cross-section of u' for the hydrostatic analytic solution and COSMO		78
53	solution for the 2D mountain flow idealized test case $\dots \dots \dots \dots$		83
0.0	solution for the 2D mountain flow idealized test case		84
5.4	A cross-section of u' for the nonhydrostatic analytic solution and COSMO solution for the 2D mountain flow idealized test case		85
5.5	A cross-section of w' for the nonhydrostatic analytic solution and COSMO		0.0
5.6	Vertical flux of horizontal momentum in hydrostatic and nonhydrostatic		80
	2D linear mountain flow test results. The test simulations have been car- ried out using different spatial schemes		87
5.7	Vertical cross-sections of w' from two simulations using QHOS scheme		01
5.8	AdvC4p2, and HOS scheme $AdvN4p4Vertical cross-sections of u' from two simulations using QHOS scheme$		88
59	AdvC4p2, and HOS scheme $AdvN4p4$		89
0.0	bation vertical velocity w' from the atmosphere at rest test case using		
5.10	AdvC4p2, $AdvN4p4$, $AdvS4p2$, and $AdvS4p4$ schemes		90
	2D atmosphere at rest test case using $AdvC4p2$, $AdvN4p4$ and $AdvS4p4$		02
C 1	Madal damain with sub-mailer and far and some study	• •	90
$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Annual and meridional mean spectra of the kinetic energy calculated from	• •	95
	have been calculated at different atmospheric layers from near the bound-		
6.3	ary layer to near tropopause		100
C A	u velocity and their differences in the 3-6km layer \ldots		102
$\begin{array}{c} 0.4 \\ 6.5 \end{array}$	Mean July differences between QHOS and QCHOS schemes for July 1979-		104
66	1998 for the quantities, TKVM, HPBL, PREC_CON and T_2M		105
0.0	of TKVM between QHOS scheme $C3p2v2d0.025$ (RTC002) and QCHOS		
	scheme $S4p4v2d0.00(\text{RTC012})$		106

6.7	Differences between 20-year monthly means of HPBL simulated using
	QHOS and QCHOS schemes
6.8	Diurnal cycle of Convective precipitation simulated using QHOS and
	QCHOS schemes in different regions of the domain
6.9	Time-series of the differences between near-surface layer soil water content
	simulated using QHOS and QCHOS schemes
6.10	Time series of the differences between convective precipitation simulated
	using QHOS and QCHOS schemes
6.11	Differences between total monthly Convective precipitation simulated us-
	ing QHOS and QCHOS schemes
6.12	Spatial distribution of the differences of Summer daily mean 2m air tem-
	perature and total precipitation between observations and third order
	upwind QHOS scheme $C3p2v2d0.25$
C.1	Convergence of normalized error norms $(\frac{l_{\infty}}{l_{\infty}}, \frac{l_{1}}{l_{\infty}}, \frac{l_{2}}{l_{\infty}})$ for the pertur-
0.1	bation horizontal velocity u' from the atmosphere at rest test case using
	AdvC4p2, $AdvN4p4$, $AdvS4p2$, and $AdvS4p4$ schemes
C.2	Time development of normalized error norms $(\frac{l_{\infty}}{l_{\infty}}, \frac{l_{1}}{l_{\infty}}, \frac{l_{2}}{l_{\infty}})$ for u' in a
	2D atmosphere at rest test case using $AdvC4p2$, $AdvN4p4$ and $AdvS4p4$
	schemes $\ldots \ldots \ldots$

XV