

Utilization of Waste-Derived Fuels in the Carbonate Looping Process: Experimental Demonstration and Techno-Economic Assessment

Utilization of Waste-Derived Fuels in the Carbonate Looping Process: Experimental Demonstration and Techno-Economic Assessment

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Utilization of Waste-Derived Fuels in the Carbonate Looping Process: Experimental Demonstration and Techno-Economic Assessment

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt

zur

Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

Dissertation

vorgelegt von

Martin Haaf

aus Wertheim am Main

Erstgutachter:	Prof. DrIng. Bernd Epple
Zweitgutachter:	Prof. DrIng. Bastian J. M. Etzold

Tag der Einreichung:14.04.2020Tag der mündlichen Prüfung:03.06.2020

Darmstadt 2020

D 17

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

 Aufl. - Göttingen: Cuvillier, 2020 Zugl.: (TU) Darmstadt, Univ., Diss., 2020

© CUVILLIER VERLAG, Göttingen 2020 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2020

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-7229-2 eISBN 978-3-7369-6229-3

Utilization of Waste-Derived Fuels in the Carbonate Looping Process: Experimental Demonstration and Techno-Economic Assessment

Genehmigte Dissertation von Martin Haaf aus Wertheim am Main

Erstgutachter: Zweitgutachter: Prof. Dr.-Ing. Bernd Epple Prof. Dr.-Ing. Bastian J. M. Etzold

Tag der Einreichung:14.04.2020Tag der mündlichen Prüfung:03.06.2020

Technische Universität Darmstadt – Fachbereich Maschinenbau Darmstadt - D 17

Preface

The Ph.D. thesis "Utilization of Waste-Derived Fuels in the Carbonate Looping Process: Experimental Demonstration and Techno-Economic Assessment" was developed during my work as research scientist at the Institute for Energy Systems and Technology (EST) at the Technische Universität Darmstadt between October 2014 and December 2019.

I would like to thank Prof. Dr.-Ing. Bernd Epple, the Head of the Institute and supervisor of my Ph.D. thesis for the possibility to conduct my own research under his supervision.

Furthermore, I would like to acknowledge the funding from the German Ministry of Economic Affairs and Energy based on a resolution of the German Parliament (MONIKA: "Methanol aus Strom und CO₂ einer Abfallverbrennungsanlage - Untersuchungen zur CO₂-Abscheidung mit Kalkstein" FKZ: 03ET7089) and the SUEZ Group. The majority of the results were achieved in the course of the MONIKA research project.

My special thanks goes to Prof. Dr.-Ing. Bastian J. M. Etzold Head of the Institute for Technical and Macromolecular Chemistry at Technische Universität Darmstadt, who took over the co-reporting of this doctoral thesis.

Furthermore, I would like to express my deep gratitude to Dr.-Ing. Jochen Ströhle, the Academic Superior Council of the EST for his guidance, support and fruitful discussion. He was always willing to answer any questions that arose in the course of my doctorate.

My sincere gratitude goes to all of my colleagues at the EST that greatly contributed to the success of the experimental investigation at the circulating fluidized bed test facility. Without your work, efforts and ideas, it would not have been possible to achieve these results. Similarly, I would further like to acknowledge the support of the workshop team around Christof and Joachim - even the smartest visions require flanges, steelwork, signals and cables. Thank you Susanne for turning on the light throughout administrative nights. I would also like to thank the students Dennis and Ronak who contributed to this thesis through their student jobs. In addition to all work-related collaborations it was a pleasure to spend everyday-life together with you at the Lichtwiese. Thank you Ralf, Markus, Martin, Maximilian, Peter, Josef, Vitali, Jens, Michael, Jan-Peter, Lorenz, Nicolas, David, Philipp, Christian, Jan, Coskun, Falah, Adil, Adel, Andreas, Dennis, Alexander S., Jochen, Alexander D., Thomas, Nhut, Eric, Carina, Marcel, Ammar, Wisam, Pascal, Ayman, Joachim, Christof, Florian and Waldemar.

Finally, a special thank you to Mr. Rahul Anantharaman from SINTEF ENERGY Trondheim for giving me the opportunity to take part in the NCCS mobility program that allowed me to conduct my research for three months in the beautiful city of Trondheim. Even given the brevity of this stay, I have benefited greatly both, professionally and personally.

Most of all I would like to thank my father Ludwig and his wife Monika for their support throughout the past years. It was so important to have you as a safe harbor. In my thoughts I am with you, my dear mother Christina; unfortunately you can no longer be with us at this time.

Abstract

The economic and environmental threat of climate change due to the anthropogenic rise of the CO_2 concentration in the earth's atmosphere is widely accepted and addressed. Several pathways are being considered in order to diminish the emissions of CO_2 at sufficient mass and time scale. In addition to efficiency improvements, the reduction of energy consumption and the intensive utilization of renewable energy sources such as wind, solar and biomass, the application of carbon capture and storage processes in energy-intense industries seems to be unavoidable.

Through these processes, the CO₂ contained in an exhaust gas stream is separated, purified and subsequently stored in an appropriate long-term storage side. Balancing the CO₂ emissions along the whole process chain, CO₂ reductions of more than 90 % are feasible. The process of CO₂ capture from the respective exhaust gas streams represents the most energy-intensive part of such a process chain which leads to growing research activities in the field of CO₂ capture processes. The carbonate or calcium looping (CaL) process is a second generation CO₂ capture process based on the reversible reaction of calcium oxide and CO₂. The limestone-based sorbent is exposed to cyclic carbonation-calcination reaction regimes, which is realized by means of two interconnected fluidized bed reactors.

In addition to traditional energy-intensive industries such as fossil-fired thermal power plants or the production processes for steel and clinker, waste-to-energy (WtE) plants represent a stationary CO_2 emitter that is reasonably large for the integration of carbon capture and storage processes. WtE plants are predicted to be widely used in future waste treatment strategies, which increases the need to cope with the related CO_2 emissions even further. Due to the organic waste fractions, part of the emitted CO_2 is regarded as carbon-neutral. Once this part is captured and stored, negative CO_2 emissions are feasible, thus CO_2 is removed from the atmosphere.

This thesis evaluates the utilization of waste-derived fuels in the CaL process. In the first step, the feasibility of continuous CO_2 capture by means of a waste-derived fuel fired CaL process was successfully demonstrated by experimental investigations at a 1 MW_{th} pilot plant. In these investigations, the boundary conditions were adapted to an application in WtE plants. Over the course of the test series, it was shown for the first time worldwide that CO_2 capture rates of more than 90 % are feasible, while the CaL process was fueled by commercially available solid recovered fuel.

Based on the experimental data, a CaL process was validated and subsequently applied for the determination of heat and mass balances for the retrofit of a 60 MW_{th} WtE plant. The technoeconomic assessment bases on the key performance indicators such as levelized cost of electricity (LCOE) and the cost per avoided CO₂ (CAC). It was found that the LCOE increases from 80 EUR/MWhe up to 176 EUR/MWhe in case of the CaL retrofit. This further leads to CAC of 112 EUR/t_{CO2,av}. Even though this cost range seems high, it needs to be noted that the application of the CaL process in the framework of WtE plants represents a cost-efficient solution for the achievement of negative CO₂ emissions in comparison to competitive negative emission technologies.

Kurzfassung

Die wirtschaftlichen und ökologischen Gefahren des Klimawandels aufgrund des anthropogenen Anstiegs der CO₂-Konzentration in der Erdatmosphäre sind weithin anerkannt. Es werden verschiedene Ansätze zur Reduktion dieser CO₂-Emissionen diskutiert. Neben Effizienzsteigerungen, der Reduzierung des Energieverbrauchs und der Nutzung erneuerbarer Energiequellen wie beispielsweise Wind, Sonne und Biomasse scheint die Anwendung von Verfahren zur Abscheidung und Speicherung von CO₂ in energieintensiven Industrien unumgänglich zu sein.

Hierbei wird das in einem Abgasstrom enthaltene CO₂ abgetrennt, aufbereitet und anschließend in Langzeitlagerstätten gespeichert. Bei einer Bilanzierung der CO₂-Emissionen entlang der gesamten Prozesskette sind CO₂-Reduktionen von mehr als 90 % möglich. Der Prozessschritt der CO₂-Abscheidung stellt hierbei den energieintensivsten Teil dar, was zu wachsenden Forschungsaktivitäten im Bereich der CO₂-Abscheideverfahren führt. Das Carbonate- oder Calcium-Looping (CaL) Verfahren ist ein CO₂-Abscheideverfahren der 2. Generation, welches auf der reversiblen Reaktion zwischen Kalziumoxid und CO₂ beruht. Das auf Kalkstein basierende Sorbents ist hierbei zyklischen Karbonisierungs-Kalzinierungsreaktionsregimen ausgesetzt, die innerhalb zweier, miteinander gekoppelter Wirbelschichtreaktoren realisiert werden. Der Wärmebedarf des CaL-Prozesses wird durch eine Oxyfuel-Verbrennung von zusätzlichem Brennstoff gedeckt.

Neben den traditionellen energieintensiven Industrien wie fossil-befeuerte, thermische Kraftwerke oder den Produktionsprozessen für Stahl und Klinker stellen Müllverbrennungsanlagen (MVA) einen stationären CO₂-Emittenten dar, der für die Integration von CO₂-Abscheidungs- und Speicherprozessen angemessen groß ist. Es ist zu erwarten, dass Müllverbrennungsanlagen in Zukunft im großen Umfang in Abfallentsorgungsstrategien berücksichtigt werden, was die Notwendigkeit, die damit verbundenen CO₂-Emissionen zu bewältigen, noch weiter erhöht. Aufgrund der organischen Abfallfraktionen wird ein Teil des emittierten CO₂-Emissionen möglich, wodurch bereits emittiertes CO₂ aus der Atmosphäre entfernt wird.

Diese Dissertation bewertet die Nutzung von Ersatzbrennstoffen (EBS) im CaL-Prozess. Im ersten Schritt konnte die CO₂-Abscheidung aus einem MVA-ähnlichen Abgas durch einen EBS-gefeuerten CaL-Prozess anhand von experimentellen Untersuchungen im 1 MW_{th}-Maßstab erfolgreich nachgewiesen werden. Im Rahmen der Versuchsreihen wurde weltweit erstmals gezeigt, dass CO₂-Abscheidungsraten von mehr als 90 % realisierbar sind, während der CaL-Prozess mit kommerziell erhältlichen EBS befeuert wird.

Basierend auf den experimentellen Daten wurde ein CaL-Prozessmodell validiert und anschließend zur Bestimmung von Massen- und Energiebilanzen für die Nachrüstung einer MVA eingesetzt. Die technisch-wirtschaftliche Bewertung basiert auf wichtigen Leistungsindikatoren wie den Stromgestehungskosten und den CO₂-Vermeidungskosten. Die Stromgestehungskosten einer MVA steigen im Falle einer CaL-Prozess Nachrüstung von 80 EUR/MWh_e auf ca. 176 EUR/MWh_e. Dies führt weiter zu CO₂-Vermeidungskosten von ca. 112 EUR/t_{CO2,vermieden}. Auch wenn diese Kostenspanne relativ hoch erscheint, ist zu beachten, dass die Anwendung des CaL-Prozesses im Rahmen von MVAs einen kosteneffizienten Weg zur Erzielung negativer CO₂-Emissionen darstellt.

Table of Contents

Abstra	net	i
Kurzfa	assung	ii
Table	of Contents	iii
List of	'Figures	vii
List of	Tables	X
Nomer	nclature	xi
1 Int	troduction	1
1.1 N	Motivation	1
1.2 (Objectives of the Thesis	3
1.3	Thesis Outline	4
•		-
2 Cu	irrent State of Research	
2.1 V	Waste Management	5
2.1.1	Global Municipal Waste Generation and Treatment Strategies	
2.1.2	Waste-to-Energy Plants	
22 (Carbon Canture and Storage	10
2.2.1	Capture	
2.2.2	Conditioning and Transportation	
2.2.3	Storage	
2.2.4	Negative CO ₂ Emissions	
2.2.5	Carbon Capture and Storage in the Framework of Waste-to-Energy Plants	
2.3 I	Fundamentals of Fluidized Beds	16
2.3.1	Particle Characterization	
2.3.2	Fluidization Regimes	
2.4 I	Fluidized Bed Combustion of Solid Recovered Fuel	
2.4.1	Emission of Carbon Monoxide	
2.4.2	Emission of Nitrogen Oxides	
2.4.3	Emission of Sulfur DioXide	
2.4.4	Emission of riverogen Uniorate	

2.5	Carbonate Looping Process	
2.5.	1 Fundamentals and Process Layout	23
2.5.2	2 Chemical Equilibrium in the CaCO ₃ -CaO System	
2.5.	3 Carbonation Reaction	
2.5.4	4 Sorbent Deactivation Mechanisms	
2.5.	5 Pilot-Scale Investigation of the Carbonate Looping Process	32
2.5.	6 Carbonate Looping Process Modelling	
2.5.	7 Techno-Economic Carbonate Looping Process Characteristics	
3 E	Experimental Investigations at 1 MW _{th} Scale	41
3.1	Carbonate Looping Process Configuration	41
3.2	Measurement Equipment	
3.2.	1 Pressure	44
3.2.2	2 Temperature	
3.2.	3 Gas Composition	
3.2.4	4 Volumetric Gas Flow	46
3.2.:	5 Solid Mass Flow	
3.2.	6 Accuracy of Process Evaluation	47
3.3	Applied Materials	
3.4	Evaluation Methodology	
3.4.	1 Solid Sample Evaluation	50
3.4.2	2 Process Data Evaluation Methodology	53
3.5	Range of Process Conditions	
3.6	Circulating Fluidized Bed Reactor Profiles	
3.6.	1 Temperature Profiles	
3.6.2	2 Pressure Profile	59
3.7	Sorbent Properties	60
3.7.	1 Chemical Composition	60
3.7.2	2 Particle Size Distribution	
3.7.	3 Sorbent Stability	
3.7.4	4 Sorbent Activity	67
3.8	Closure of Carbon Balances	68
3.8.	1 Verification Approach I	
3.8.2	2 Verification Approach II	69
3.9	Carbonator Operation	
3.9.	1 Effect of the Carbonator Temperature	
3.9.2	2 Effect of the Specific Make-up Rate	71
3.9.	3 Effect of the Specific Sorbent Circulation Rate	
3.9.4	4 Effect of the Specific Carbonator Inventory	73
3.9.3	5 Effect of the Carbonator Active Space Time	74
3.10	Calciner Operation	76
3.10	0.1 Evaluation of Gaseous Pollutant Formation	76

3.10.	2 Evaluation of Sorbent Regeneration	87
3.11	Comprehensive Carbonate Looping Process Performance Assessment	91
3.11.	Carbonate Looping Process Heat Ratio	
3.11.	2 Dependency of Total CO ₂ Capture Rate on Carbonator Absorption Efficiency	
3.11.	3 Specific Heat Demand	
3.11.	4 Specific Oxygen Demand	
3.11.	5 Specific Make-up Requirement	
3.11.	5 The Fate of Chlorine	
3.12	Experimental Summary	97
4 C	arbonate Looping Process Modelling	
4.1	Model Description	
4.1.1	CFB Carbonator Hydrodynamics	100
4.1.2	CO2 Absorption Efficiency Based on the Molar Conversion	101
4.1.3	CO2 Absorption Efficiency Based on the Material Balance	102
4.2	Model Validation	
4.3	Modell Sensitivity	
4.3.1	Make-up Limestone Feeding Rate	106
4.3.2	Specific Sorbent Circulation Rate	106
4.3.3	Sorbent Sulfation Level	107
4.4	Process Modelling Summary	
5 T	echno-Economic Investigations	
5 To	echno-Economic Investigations Technical Evaluation Methodology	
5 To 5.1	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant	109 109
5 T 5.1 5.1.1 5.1.2	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System.	109 109
5 T 5.1 5.1.1 5.1.2 5.1.3	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System Carbonate Looping Water-Steam Cycle	109 109 109
5 T 5.1 5.1.1 5.1.2 5.1.3 5 2	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System Carbonate Looping Water-Steam Cycle Fconomical Evaluation Methodology	
5 T (5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System Carbonate Looping Water-Steam Cycle Economical Evaluation Methodology Capital Expenditures.	109 109 109 110 112 113 113
5 T 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2	echno-Economic Investigations	109 109 109 110 112 113 113 114
5 T 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.2.3	echno-Economic Investigations	109 109 109 110 112 113 113 114 115
5 T 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.2.3 5.3	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System Carbonate Looping Water-Steam Cycle Economical Evaluation Methodology Capital Expenditures Operational Expenditures Key Performance Indicators Techno-Economic Process Assessment	109 109 109 110 110 112 113 113 114 115 118
5 T 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System Carbonate Looping Water-Steam Cycle Economical Evaluation Methodology Capital Expenditures Operational Expenditures Key Performance Indicators Thermodynamic Assessment	109 109 110 110 112 113 113 114 114 115 118
5 T 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2	echno-Economic Investigations	109 109 109 110 112 113 113 114 115 118 118 127
5 T (5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.3 5.3 5.3.1 5.3.2 5.4	echno-Economic Investigations	109 109 109 109 110 112 113 113 114 115 118 118 127
5 To 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.3 5.3 5.3.1 5.3.2 5.4 6 Co	echno-Economic Investigations	109 109 109 110 112 113 113 114 115 118 127 130 131
5 To 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.3 5.3 5.3 5.3.1 5.3.2 5.4 6 Co Piblic	echno-Economic Investigations Technical Evaluation Methodology Reference Waste-to-Energy Plant Carbonate Looping Solid Looping System Carbonate Looping Water-Steam Cycle Economical Evaluation Methodology Capital Expenditures Operational Expenditures. Key Performance Indicators Thermodynamic Assessment Economic Assessment Techno-Economic Summary	109 109 109 110 112 113 113 114 115 118 118 113 113 114 115 118 118 127 130 131
5 To 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3 5.3.1 5.3.2 5.4 6 Co Biblio	echno-Economic Investigations	109 109 109 110 112 113 113 114 115 118 118 117 118 118 118 113 113 113 114 115 118 118 127 130 131 133
5 To 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.3 5.3 5.3.1 5.3.2 5.4 6 Co Biblio A.	echno-Economic Investigations	109 109 109 110 112 113 113 114 115 118 118 117 118 111 113 114 115 118 119 111 111 113 114 115 118 113 1131 133 149

А.	2 Data Plots of Carbonate Looping Test Campaigns	150
A.	3 Data Plots of SRF Combustion Test Campaign	156
А.	4 Experimental Data for Model Validation	158
A.	5 Cost Methodology for Non-Standard Components	158
Pu	blications and Presentations	. 159

List of Figures

Figure 1-1: CO ₂ concertation in the atmosphere from the year 1000 to 2017, data from [5, 6]1
Figure 1-2: Energy technology perspective scenarios for the energy sector. 2 °C scenario (a) and beyond 2 °C
scenario (b), data from [9]
Figure 2-1: Composition of MSW dependent on the country income level, data from [12]5
Figure 2-2: Waste treatment hierarchy, adopted from [13]
Figure 2-3: Comparison of the specific CO ₂ emissions (e_{CO2}) for different types of fuel, data from [22-24] 8
Figure 2-4: Energy flows in WtE plants that produce power (a) or heat and power (b), adopted from [30] 9
Figure 2-5: Gross electrical efficiencies (η_{gross}) for different live steam parameters (T , p) for WtE plants that
produce power only (a) or heat and power (b), data from [33]10
Figure 2-6: Approaches to capture CO ₂ from combustion processes, adopted from [41]11
Figure 2-7: Schematic of NETs including the representation of carbon flows, adopted from [70]14
Figure 2-8: Geldart particle classification at ambient conditions; adopted from [83]16
Figure 2-9: Fluidization states dependent on the superficial gas velocity, adopted from [85]
Figure 2-10: Fluidization states for gas/solid flow according to Grace et al. [86], extended from [83] 19
Figure 2-11: Schematic of the CaL process
Figure 2-12: Schematic of the directly heated CaL process (a) and of the indirectly heated CaL process (b).24
Figure 2-13: Chemical equilibrium of the carbonation-calcination system at atmospheric pressure
Figure 2-14: Theoretical maximum CO ₂ absorption efficiency at chemical equilibrium for different CaL
applications (Cement: $y_{CO2,in} = 30$ vol.%, Coal-power: $y_{CO2,in} = 14$ vol.%, WtE: $y_{CO2,in} =$
9.5 vol.%)
Figure 2-15: TGA carbonation sequence of a fresh and a spent limestone sample
Figure 2-16: Sorbent activity as a function of the cycle number for different fitting parameters of Eq. 2-17
(Worst: $X_r = 0.06$, $k = 0.624$; Base: $X_r = 0.075$, $k = 0.52$; Best: $X_r = 0.09$, $k = 0.416$)
Figure 2-1/: Thermodynamic schematic of a CaL retrofit at existing coal-fired power plants
Figure 2-18: Evaluation methodology for two different CaL process integration cases, adopted from [183]. 40
Figure 5-1: Flowsheet of the 1 MW th Cal pilot plant at 1 consistent Universitat Darmstadt
Figure 5-2: 5D-CAD drawing of the 1 Mwth CaL pilot piant
Figure 5-5: Scientiate of the newly instance SKF recently system. 44
Figure 5-4. Fattele size distribution of the fresh interscore interscore make-up. 40
Figure 5-5. FOA analysis of a firsh finitestone (a) and of night cycled solven (b)
Figure 3-0. Schemato of recovant material streams for Cat process evaluation.
Figure 5-7. Experimental operation range of carbonator and carbinet
Figure 5-6. Eorgeterin data prot. Graph a. Average reactor temperatures (T) and spectra solution inverting (E_{cons} ,) and
$(D_{100})_{100}$ (D_{100})
Figure 3-9: Hydrodynamic characterization of the experiment for carbonator and calciner. Graph a: Particle
classification [83] Granh b: Eluidization states [86]
Figure 3-10: Temperature profiles of carbonator and calciner riser for different process conditions ($E_{corb,nom}$)
$= 62.1 \%, \phi = 12.8 (a); E_{control non} = 96.9, \phi = 13.7 (b); E_{control non} = 68.7, \phi = 18.2 (c), \dots, 58$
Figure 3-11: Pressure profile of the interconnected CFB system. Cal, process configuration with screw
conveyor (a: Nozzle grid, b: Reactor outlet, c: Loop seal)
Figure 3-12: Sorbent composition of CaL material streams. Fuel: SRF I, E _{carb} = 84.9 %, E _{tot} = 93.9 %, E _{cale} =
90.5 % (BA: Bottom ash, LS 4.1: Carbonator outlet, LS 4.4: Carbonator inlet)
Figure 3-13: Mass fraction of ash in the circulating sorbent (x_{ash}) dependent on the SRF-specific make-up
feed $(\dot{m}_{MU}/\dot{m}_{SRF})$
Figure 3-14: Mass fraction of calcium sulfate in the circulating sorbent (x_{CaSO4}) dependent on the SRF-
specific make-up feed ($\dot{m}_{MU} / \dot{m}_{SRF}$) for operation points firing SRF I (a) and SRF II (b)

Figure 3-15	Exemplary PSD of material streams while firing SRF I in the calciner (LS: Loop Seal, BA: Bottom ash, Fresh: Limestone make-up)
Figure 3-16	Time development of the distribution of coarse materials in the bottom ashes of carbonator (a) and calciner (b) 64
Figure 3-17	Development of the sorbent abrasion coefficient (a) and increment sorbent abrasion coefficient
rigure 5-17.	(b) for sorbent samples taken at different times (t_i) at the carbonator inlet (I S 4 A) and the
	(b) for sorbent samples taken at unretent times (i_{s}) at the carbonator injet (LS 4.4) and the carbonator outlet (LS 4.1) (55)
Figure 3 18	Attrition coefficient (4) as a function of the CoCO mass fraction $(x_{z,zz})$ of the sorbent 66
Figure 3 10	Paletive reduction of the mean particle diameter of the pre-sized corbert fraction
Figure 3-19.	(4d = 1) dependent on the objection efficient (4)
Eigura 2 20	$(2ia_{p,50,<1000\mu m})$ dependent on the analysis make up ratio (A) for different every
Figure 3-20	sorbent activity $(X_{max,n+1})$ dependent on the specific make-up ratio (A) for different average
Eigung 2 21	Calchief temperatures $(I_{calc,low} < 850 \text{ C}, I_{calc,high} < 850 \text{ C})$.
Figure 3-21	Sorbent activity $(A_{max,n+1})$ dependent on the calcium suitate mass fraction (x_{CaSO4})
Figure 3-22	Closure of carbonator carbon balance for CaL evaluation points
Figure 3-23	Comparison of measured ($F_{CO2,capt,meas}$) and calculated ($F_{CO2,capt,calcu}$) molar fluxes of CO ₂ at the
E	outlet of the calciner
Figure 3-24:	Carbonator CO ₂ absorption efficiency (E_{carb}) dependent on the average carbonator temperature
	(<i>T_{carb}</i>) for different types of flue gas (FG I: synthetic, FG II: NG, FG III: LEP)
Figure 3-25:	Nominalized CO ₂ absorption efficiency ($E_{carb,nom}$) dependent on the specific make-up rate (Λ),
	$W_{s,carb} = 257-364 \text{ kg/m}^2, \ \varphi_{low} < 12, \ \varphi_{high} > 15.$
Figure 3-26:	Nominalized CO ₂ absorption efficiency ($E_{carb,nom}$) dependent on the specific sorbent circulation
	rate (Φ), $W_{s,carb} = 257-364 \text{ kg/m}^2$, $\Lambda_{med} = 0.100 - 0.175$, $\Lambda_{high} > 0.175$
Figure 3-27:	Nominalized CO ₂ absorption efficiency ($E_{carb,nom}$) dependent on the specific carbonator
	inventory ($W_{s,spec}$), $\Lambda = 0.100 - 0.175$ (a), $\Lambda = 0.175 - 0.323$ (b)
Figure 3-28:	Normalized CO ₂ absorption efficiency as a function of the carbonator active space time
	$(T_{carb} = 670 \text{ °C}, y_{CO2,in} = 9.5 \text{ vol.}\%, k_s \varphi = 0.315 \text{ 1/s}).$ 75
Figure 3-29:	Experimental setup for the investigation of SRF combustion in a CFB combustion system (a)
	and in a CaL calciner (b)76
Figure 3-30:	Evaluation methodology for the combustion tests in air or oxygen-enriched air atmosphere (a)
	and oxyfuel atmosphere (b)77
Figure 3-31:	Nominalized specific CO emission ($e_{CO,nom}$) dependent on the oxygen-to-fuel ratio (a: SRF I, TP
	I; b: SRF II, TP I; c: SRF I, TP II; d: SRF II, TP II)
Figure 3-32:	: Specific NO emission (e_{NO}) as a function of the oxygen-to-fuel ratio (a: SRF I, TP I; b: SRF II,
	TP II; c: SRF I, TP II; d: SRF II, TP II)
Figure 3-33:	Nominalized specific NO emission ($e_{NO,nom}$) as a function of the nominalized specific CO
	emissions (e _{CO,nom}) during TP I (a: SRF I, b: SRF II) and during TP II (c: SRF I, d: SRF II) 83
Figure 3-34:	Specific SO ₂ emission (e_{SO2}) and sulfur retention rate (R_S) as a function of the furnace
•	temperature during TP I (a: SRF I, oxygen-enriched air; b: SRF I, oxyfuel; c: SRF II, oxygen-
	enriched air; d: SRF II, oxyfuel)
Figure 3-35:	Specific HCl emission (e_{HCl}) and chlorine retention rate (R_{Cl}) as a function of the furnace
8	temperature during TP I (a: SRF I, oxygen-enriched air; b: SRF I, oxyfuel; c: SRF II, oxygen-
	enriched air; d: SRF II, oxyfuel)
Figure 3-36:	Specific HCl emission (e_{HCl}) and chlorine retention rate (R_{Cl}) as a function of the furnace
0	temperature during TP II (a: SRF I, oxygen-enriched air; b: SRF I, oxyfuel; c: SRF II, oxygen-
	enriched air: d: SRF II. oxvfuel)
Figure 3-37:	Graph a: Molar carbonate content at the outlet of the calciner (X_{calc}), and Graph b: Calciner
	efficiency (E_{colo}) as a function of the calciner temperature (T_{colo}) 88
Figure 3-38:	Calciner CO ₂ partial pressure ratio (Q_{calc}) as a function of the calciner temperature (T_{calc}) for
	different oxygen-to-fuel ratios ($\lambda_{loc} < 1.3, \lambda_{loch} > 1.3$)
Figure 3-39	Graph a: Molar carbonate content at the outlet of the calciner (X_{add}) and Graph b: Calciner
guie 5 555	efficiency (E_{adc}) as a function of calciner CO ₂ partial pressure ratio (Q_{adc}) and output 0. Calciner 90
Figure 3-40	Calciner efficiency (E_{rest}) as a function of the calciner active space time (τ_{rest}) for data with
1 iguie 5-40.	a calciner CO ₂ partial pressure ratio < 1 91
Figure 3-41	Cal. process heat ratio $(HR_{c,i})$ dependent on the temperature difference between calciner and
	carbonator ($\Lambda T_{(calc,corb)}$) for low $\Phi_{low} < 18.04$ and $\Phi_{timb} > 18.04$
	((unc-curo)) ion Augn Actor

٠		
1	х	
-		

Figure 3-42: Total CO ₂ capture rate (E_{tot}) dependent on the CO ₂ absorption efficiency in the carbonator (E_{carb}) for different CaL process heat ratios ($HR_{CaL,low} < 0.62$, $HR_{CaL,med} = 0.62 - 0.64$, $HR_{CaL,h}$)	$_{igh} >$
Figure 3-43: Graph a: Specific heat demand (Q_{spec}) as a function of the CaL process heat ratio (HR_{CaL}), Graph b: Specific heat demand as a function of the share of CO ₂ being absorbed in the	. 93
carbonator $(F_{CO2,abs}/F_{CO2,capt})$. 93
Figure 3-44: Specific oxygen demand $(O_{2,spec})$ as a function of the specific heat demand (a) and dependent	t on
the oxygen-to-fuel ratio in the calciner (b).	94
Figure 3-45: Specific make-up requirement ($\dot{m}_{MU}/\dot{m}_{CO2,capi}$) dependent on the nominalized carbonator CO ₂ absorption efficiency ($E_{carb,nom}$) for three different specific make-up rates ($\Lambda_{low} < 0.100$; $\Lambda_{med} = 0.1000$; $\Lambda_{med} = 0.1000$; $\Lambda_{med} = 0.1000$; $\Lambda_{med} = 0.1000$; $\Lambda_{med} = 0.10000$; $\Lambda_{med} = 0.1$	=
$0.100 - 0.1/5$; $\Lambda_{high} > 0.1/5$.	93
Figure 5-40. The face of enforme for a representative operation in the carbonator	. 90
Figure 4-2: Comparison of the CO ₂ absorption efficiency derived from the experiment (E_{-1}) and from	. 99 the
Figure 4-2. Comparison of the CO ₂ assorption enteries we derived non-nucle experiment ($E_{carb,exp}$) and non-	103
Figure 4.3: Maximum sorbent activity (Y_{L}) calculated by the process model and by TGA analysis	105
dependent on the CaSO ₄ mass fraction of the sorbent at the carbonator inlet (x_{C,SO_4})	104
Figure 4-4: Comparison of the influence of the carbonator active space time (τ_{arb} active) on the nominalized	101
carbonator CO ₂ absorption efficiency (<i>Ecorb</i> nom)	
Figure 4-5: Influence of the make-up limestone mass flow (m_{M}) on the CO ₂ absorption efficiency (E_{cont})	and
on the maximum average (X_{max}, w) and average molar sorbent conversion (X_{max}) .	106
Figure 4-6: Influence of the sorbent circulation rate (Φ) on the CO ₂ absorption efficiency (E_{carb}), on the	
maximum average (X_{max}) and average molar sorbent conversion (X_{ave}) .	107
Figure 4-7: Influence of the molar sorbent sulfation level (X_{sulf}) on the CO ₂ absorption efficiency (E_{carb}), or	m
the maximum (X_{max}) and average molar sorbent conversion (X_{ave}) .	107
Figure 5-1: Simplified thermodynamic layout of the WtE plant water-steam cycle	110
Figure 5-2: Flowsheet of the CaL solid looping system.	111
Figure 5-3: Flowsheet of the CaL water-steam cycle	112
Figure 5-4: Methodology for the calculation of the total plant costs, adopted from [24]	113
Figure 5-5: Methodology for the calculation of the operational expenditures, adopted from [24]	114
Figure 5-6: Influence of additional low-carbon net power on the LCOE (a), net electrical efficiency (b) an	ıd
on the specific fossil CO ₂ emissions (c) as a function of the additional net power ratio (δ_{CaL}).	116
Figure 5-7: Heat transfer curve of the CaL water-steam cycle (left) and heat distribution (right), for the	
following live steam parameter sets: 450 °C / 40 bar (a), 520 °C / 80 bar (b)	122
Figure 5-8: Corrosion regimes at heat exchanger surfaces in the calciner convective pass according to the "Flingern" diagram (back-end integration)	123
Figure 5-9: Advanced heat integration concepts (top), convective heat exchanger surfaces arrangement	100
(bottom). HIC 2: External superheating (a), HIC 3: external superheating + reheating (b)	123
Figure 5-10: Heat transfer curve of the advanced heat integration options (left) and heat distribution (right	it).
HIC 2: Superheating (a) and HIC 3: Reheating- and superheating (b).	124
Figure 5-11: Corrosion regimes at near exchanger surfaces in the calciner convective pass according to the "Figure 5-11" convective pass according to the " (1) and	125
Fingern diagram, file 2 (a) and file 5 (b)	123
Figure 5-12. Comparison of total net electrical entirency ($\eta_{net,tot}$) dependent on the CaL process gross pow rotio (PP_{r-s}) for HIC 1 (a) HIC 2 (b) and HIC 3 (a)	126
Figure 5.12: Comparison of SPECCA dependent on the total net power $(P_{1},)$ for HIC 1 (a) HIC 2 (b)	120
and HC 3 (c) $(r \in [n], r \in [n])$	127
Figure 5-14: LCOE and CAC for the economic extreme case scenarios	120
Figure 5-15: LCOE dependent on credit for avoided CO ₂ .	129
Figure A-1: Data plots (Graph a-c) of relevant process data for the first CaL test campaign (part 1)	151
Figure A-2: Data plots (a-c) of relevant process data for the first CaL test campaign (part 1).	152
Figure A-3: Data plots (a-c) of relevant process data for the second CaL test campaign (part 1).	153
Figure A-4: Data plots (a-c) of relevant process data for the second CaL test campaign (part 2).	154
Figure A-5: Data plots of relevant process data for the second CaL test campaign (part 3).	155
Figure A-6: Data plots of relevant process data for SRF combustion in a stand-alone CFB.	157

List of Tables

Table 2-1: Classification characteristics and quality classes of solid recovered fuel [20].	7
Table 2-2: CO2 capture approaches and the current status of process development, data from [53-55]	12
Table 2-3: Quality specification for the pipeline transport of CO2 [58]	12
Table 2-4: Overview and key characteristics of worldwide CaL process test facilities	32
Table 2-5: Thermodynamic characteristics of CaL retrofit studies at coal-fired power plants	39
Table 2-6: Economic characteristics of CaL retrofit studies at coal-fired power plants.	40
Table 3-1: Dimensions of the main subsystems of the 1 MWth CaL pilot plant	41
Table 3-2: Position of pressure measurement devices within the solid looping system	45
Table 3-3: Position of temperature measurement devices within the solid looping system	45
Table 3-4: Gas measurement techniques at the 1 MWth CaL pilot plant.	46
Table 3-5: Volumetric flow measurement techniques at the 1 MWth CaL pilot plant	47
Table 3-6: Chemical composition of the fresh make-up limestone.	48
Table 3-7: Proximate analysis, LHV and elementary composition of the two types of SRF	49
Table 3-8: Elementary composition of the fuels used in the combustion chamber [219, 220]	49
Table 3-9: Flue gas composition for various flue gas options and for a typical WtE plant [24]	50
Table 3-10: TGA measurement program for the determination of the sorbent activity.	52
Table 3-11: Range of experimental operation conditions during pilot testing.	55
Table 3-12: Chemical composition of silicate sand	77
Table 3-13: Range of experimental conditions during TP I and TP II.	79
Table 3-14: Chlorine-containing solid material streams in the CaL process (BA: Bottom ash, FA: Fly as	h). 96
Table 4-1: Model parameter for the hydrodynamic calculation [83, 189]	101
Table 4-2: Experimental input parameter for process model validation.	103
Table 4-3: Boundary conditions for the sensitivity analysis.	105
Table 5-1: Composition of the municipal solid waste [82].	109
Table 5-2: Composition of the WtE plant flue gas at stack	110
Table 5-3: Thermodynamic characteristics of the reference WtE plant.	110
Table 5-4: Boundary conditions for process modelling of the CaL solid looping system	111
Table 5-5: Boundary conditions for process modelling of the CaL water-steam cycle	113
Table 5-6: Process and project contingency levels [214, 248].	114
Table 5-7: Cost of utilities	115
Table 5-8: Techno-economic boundary conditions for state-of-the-art power plants [55]	116
Table 5-9: Thermodynamic performance of the WtE plant retroffited by the CaL process	119
Table 5-10: Specific CO2 flows involved in the WtE+CaL system.	119
Table 5-11: Boundary conditions for the assessment of the influence of CaL process conditions	119
Table 5-12: Thermodynamic results for different CaL process conditions	120
Table 5-13: Boundary conditions for the assessment of the CaL water-steam cycle parameter	121
Table 5-14: Thermodynamic results for different CaL water-steam cycle parameters.	121
Table 5-15: Thermodynamic characteristics of heat integration scenarios.	124
Table 5-16: Total plant costs (TPC) of CaL process components	127
Table 5-17: Results of the techno-economic assessment for the base case	128
Table 5-18: Boundary conditions for the economic evaluation of extreme scenarios	128
Table A-1: Results of solid sample analysis for test campaign 1	149
Table A-2: Results of solid sample analysis for test campaign 2.	149
Table A-3: Experimental input data for process model validation	158
Table A-4: Direct cost methodology for the evaluation of non-standard components	158

Nomenclature

Latin symbols

а	Decay constant of the solid volume fraction in the lean region	n [1/m]
Α	Cross-section area	[m ²]
a_1, a_2	Limestone specific deactivation parameter	[-]
A_i	Abrasion coefficient	[wt.%/h]
A _{incr}	Incremental abrasion coefficient	[wt.%/h]
A _{tot}	Total cumulative sorbent abrasion coefficient	[wt.%]
b	Limestone specific deactivation parameter	[-]
С	Concentration	$[mol/m^3]$
CAC	Cost of CO ₂ avoided	$[EUR/t_{CO2,av}]$
d	Diameter	[m]
d_p	Particle diameter	[m]
d_p^*	Dimensionless particle diameter	[m]
e	Specific gaseous emissions	$[mg/MJ_{th}], [g/MJ_{th}]$
Ε	CO_2 absorption efficiency, CO_2 capture efficiency	[%]
F	Molar flow rate	[mol/s]
f_1, f_2	Limestone specific deactivation parameter	[-]
factive	Active fraction of Ca-particles in a bed	[-]
f_{calc}	Degree of calcination	[-]
fcarb	Degree of carbonation	[-]
f_m, f_w	Limestone specific deactivation parameter	[-]
f_l	Average volume concentration of solids in the lean region of	a riser [-]
FC	Fuel costs	[EUR]
FCF	Fixed charge factor	[-]
FOC	Fixed operating costs	[-]
G_s^*	Saturated solid mass flow rate in a riser	[kg/m ² s]
ΔH^0	Heat of reaction	[kJ/mol]
h	Height	[m]
HR _{CaL}	CaL process heat ratio	[-]
k	Sorbent deactivation constant	[-]
k_0	Carbonation reaction rate constant	[-]
l	Length	[-]
LCOE	Levelized cost of electricity	[EUR/MWh _e]
т	Mass	[kg]
'n	Mass flow rate	[kg/s]
М	Molar mass	[kg/kmol]
Ν	Number of complete carbonation-calcination cycles	[-]

xi

n	Molar quantity	[mol]
$O_{2,spec}$	Specific oxygen demand	[kg ₀₂ /kg _{C02,capt}]
р	Pressure	$[N/m^2]$, [bar]
Р	Accumulated distributional sum	[-]
P _{el}	Electrical Power	[MW]
PR _{CaL}	CaL process gross power ratio	[-]
P_{th}	Thermal Power	[MW]
Q	Heat flux	[MW]
Q_{spec}	Specific heat demand	[MJ _{th} /kg _{CO2,capt}]
r	Interest rate	[-]
r_N	Fraction of particles having N cycles between carbonator and c	alciner [-]
r _{N,age}	Fraction of particles having N_{age} full carbonation-calcination c	ycles [-]
R	Retention rate	[%]
R_{CO2}	CO ₂ Recovery rate	[%]
S_0	Initial specific surface area of Ca-particles	$[m^2/m^3]$
S_N	Specific surface area of Ca-particles having N complete	
	carbonation-calcination cycles	$[m^2/m^3]$
SAR	Secondary air ratio	[-]
SPECCA	Specific primary energy consumption per CO ₂ avoided	$[MJ_{th}/kg_{CO2,av}]$
t	Time	[s]
Т	Temperature	[° <i>C</i>]
ΔT	Temperature difference	[K]
u_0	Superficial gas velocity	[m/s]
u_0^*	Dimensionless superficial gas velocity	[-]
u_{mf}	Superficial gas velocity at minimum fluidization conditions	[m/s]
<i>u</i> _t	Terminal velocity of a particle	[m/s]
V	Volume	[m ³]
V_m	Molar volume	[cm ³ /mol]
<i>॑</i> V	Volumetric flowrate	[m ³ /s]
VOC	Variable operating cost	[EUR]
W	Width	[m]
W_s	Solid inventory of fluidized bed	[kg]
$W_{s,spec}$	Specific solid inventory of fluidized bed	$[kg/m^2]$
x	Mass concentration	[<i>wt</i> .%] [–]
Χ	Molar conversion	$[mol_{caCO3}/mol_{Ca}]$
X_{ave}	Average molar conversion	$[mol_{caCO3}/mol_{Ca}]$
X _{max,ave}	Maximum average sorbent activity	$[mol_{caCO3}/mol_{Ca}]$
$X_{max,N}$	Maximum average sorbent activity having N complete	
	carbonation-calcination cycles	$[mol_{CaCO3}/mol_{Ca}]$
X_r	Residual sorbent conversion capacity	$[\mathrm{mol}_{CaCO3}/\mathrm{mol}_{Ca}]$
у	Volumetric concentration	[vol. %][–]