Kristofer Leach

Modelling Force Transfer in Boundary Layers of Moving Walls for Compressible and Incompressible Turbulent Flows Across Multiple Scales





Modelling Force Transfer in Boundary Layers of Moving Walls for Compressible and Incompressible Turbulent Flows Across Multiple Scales

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

## Modelling Force Transfer in Boundary Layers of Moving Walls for Compressible and Incompressible Turbulent Flows Across Multiple Scales

Vom Fachbereich Produktionstechnik der UNIVERSITÄT BREMEN

> zur Erlangung des Grades Doktor-Ingenieur genehmigte

> > Dissertation

von M.Math. Kristofer Leach

Gutachter: Prof. Dr. rer. nat. Claus Braxmaier Prof. Dr. rer. nat. Thomas Schuster, Universität des Saarlandes

> Tag der mündlichen Prüfung: 10. Dezember 2014

#### Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2014 Zugl.: Bremen, Univ., Diss., 2014

© CUVILLIER VERLAG, Göttingen 2014 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2014 Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft

ISBN 978-3-95404-910-3 eISBN 978-3-7369-4910-2

## Zusammenfassung

Die Entwicklung kleiner Werkzeugmaschinen zur Bearbeitung extrem kleiner Werkstücke ist u.a. auf den Gebieten der Mechantronik, der Optik oder der Medizin von zunehmend größerer Bedeutung. Das Miniaturisieren existierender Werkzeuge stößt allmählich an gewisse Grenzen und es ist nötig, neue Werkzeuge zu entwickeln, um einen Fortschritt zu erzielen.

Diese Arbeit beschreibt die Gestaltung einer neuartigen Schleifkugel, die magnetisch gelagert und von einer pressluftgetriebenen Strömung in Rotation versetzt wird. Es wird eine Parameterstudie durchgeführt, welche die optimale geometrische Auslegung eines Prototyps unter Einhaltung gewisser physikalischer Einschränkungen bestimmt. Die daraus hervorgehende optimale Auslegung wird im Anschluss detailliert untersucht, um festzustellen, welcher Belastung die elektromagnetische Lagerung standzuhalten hat und um die zum Schleifen verfügbare Kraft zu quantifizieren. Entgegen den Erwartungen zeigte die Untersuchung, dass Luft kein geeignetes Antriebsmedium darstellt und dass Öl an dessen Stelle treten muss um genügend Schleifkraft zu erzielen. Die bei der Entwicklung des Prototyps gesammelten Erfahrungen dienen als Grundlage für die Entwicklung eines kleineren funktionsfähigen Schleifwerkzeugs, welches unter Verwendung von hydraulischem Antrieb analysiert wird. Im Anschluss wird unter Verwendung von Luftantrieb eine skalenübergreifende Analyse der auf die Schleifkugel wirkenden Kräfte durchgeführt.

Machzahlen betragen bis zu 0,9, während Reynoldszahlen maximal  $10^5$  erreichen. Daher wird Large-Eddy-Simulation in Verbindung mit dem kompressiblen Smagorinsky Modell nach Furby eingesetzt. Geringe Temperaturvariation erlaubt die Annahme adiabater Wände. Fluid-Struktur Interaktion wird durch das logarithmische Wandgesetz für kompressible turbulente Strömungen modelliert. Die Parameterstudien untersuchen den Einfluss verschiedener Faktoren wie geometrische Eigenschaften und Viskosität des Antriebsmediums. Anschließend werden Simulationen unter einer Vielzahl verschiedener Normvolumenströme  $\dot{V}_N$  und Kugelrotationsfrequenzen f durchgeführt.

Da die Schleifkraft des 40 mm Prototyps weniger als 0,04 N betrug, wurde für ein funktionstüchtiges 8 mm Schleifwerkzeug das Antriebsmedium durch ein Öl mit einer kinematischen Viskosität von  $1,38 \cdot 10^4 \text{ m}^2 \text{ s}^{-1}$  bei Raumtemperatur ersetzt. Zwei weitere Kanäle wurden hinzugefügt und vertikal angeordnet, um die Schleifkraft und die Anpresskraft zu erhöhen. So konnte ausreichend Schleifkraft von mehr als 0,1 N und Anpresskraft von mehr als 1 N erzielt werden. Im Anschluss wurden durch eine Skalenanalyse dimen-

i

Q/

sionslose Gleichungen für Normalkräfte, Schleifkraft sowie Anpresskraft aufgestellt. Diese konnten nicht nur genutzt werden um auf beliebige weitere Skalen schließen zu können, sondern auch um die beiden Antriebsmedien und die beiden Geometrien untereinander zu vergleichen.

Die in dieser Arbeit präsentierten Ergebnisse zeigen nicht nur wie die Kraftübertragung von Fluiden auf Festkörper skalenübergreifend modelliert werden kann und die Resultate zur Herleitung dimensionsloser Gleichungen, welche für beliebige Parameter gelten, genutzt werden, sondern bieten eine Grundlage für die Entwicklung eines neuartigen und bahnbrechenden Schleifwerkzeuges auf dem Gebiet des Mikroschleifens.

ii

## Abstract

Developing miniature tools used to machine parts that are themselves small in size is rapidly gaining importance in fields such as mechatronics, optics, or medicine. Miniaturising existing tools has its limitations and it is becoming ever more necessary to develop new tools in order make progress in this regard.

This thesis describes the design of a new kind of abrading sphere which is magnetically mounted inside a spherical gap and set in rotation pneumatically with air. A parametric study is performed in order to determine optimal geometric layout of a prototype while taking physical restrictions into account. The resulting optimal configuration is then examined in detail in order to determine demands to be met by the magnetic bearing and its computerised control, as well as to quantify the extent of force potentially available to the abrasion process. Contrary to expectation, the analysis showed that air is not a viable propulsion medium and that oil needs to take its place to yield sufficient grinding force. Using the knowledge gained from developing the prototype, a smaller working model is devised and analysed using hydraulic propulsion. Use of the tool with pneumatic propulsion is then subjected to a study across multiple length scales focusing on the forces acting on the grinding sphere.

Mach numbers range up to 0.9 with Reynolds numbers of up to  $10^5$ . Hence, Large Eddy Simulation is performed in conjunction with the compressible Smagorinsky model according to Fureby. Minimal temperature variation allows for the assumption of adiabatic walls. Fluid-solid interaction is modelled using the law of the wall for compressible turbulent flow. Parametric studies investigate the influence of varying geometric factors and viscosities of the fluid used. Subsequently, simulations are conducted under a variety of standard volumetric flow rates  $\dot{V}_N$  and rotation frequencies f.

The available grinding force determined for the 40 mm prototype using pneumatic propulsion was found not to exceed 0.04 N. For the working 8 mm model, the propulsion medium was thus changed to an oil with a kinematic viscosity of  $1.38 \cdot 10^{-4} \text{ m}^2 \text{ s}^{-1}$  at room temperature. Two additional fluid ducts were added and introduced vertically from the top to increase grinding force and downward force. Sufficient grinding force in excess of 0.1 N and contact force exceeding 1 N could be achieved. In a subsequent study across multiple scales, non-dimensional relations governing normal forces, grinding force, as well as grinding power were established. These could not only be used to predict arbitrary scales, but also to compare the two propulsion media and geometric variations with each other.



The results presented in this thesis demonstrate how fluid-to-solid force transfer can be modelled across a multitude of scales and the results used to derive non-dimensional relations that hold true for arbitrary parameters. They also lay the foundation for the development of a novel and revolutionary grinding tool in the field of miniature precision machining.

## Preface

I would like to extend my gratitude to my project supervisors the late Prof. Dr.-Ing. Hans J. Rath, Prof. Dr. Claus Braxmaier, and Dr.-Ing. Rodion Groll for their continued support and their valuable and inspiring guidance in the field of Fluid Mechanics and CFD. Also, I would like to thank Prof. Dr. Thomas Schuster, Prof. Dr.-Ing. Ekkard Brinksmeier, Prof. Dr.-Ing. Bernd Orlik, Dr.-Ing. Ralf Gläbe, Dr.-Ing. Lars Schönemann, Carla Brandao, Alexander Norbach, and all the members of SPP 1476 for their excellent cooperation and fruitful discussions while working on project *GrindBall*. Additionally, I would like to thank my colleagues at ZARM Stephan Reichel, Claudia Zimmermann, Torben Schadowski, Fabian Fastabend, Rico Schultz, and Želimir Marojević with whom I had inspiring scientific inter-exchange throughout my time there. I would especially like to thank the members of my family Barry, Helga, and Jennifer for their love and support.

Furthermore, many thanks are due to the German Research Foundation (DFG) for funding project *GrindBall* and the North-German Supercomputing Alliance (HLRN) for providing free access to their super-computing facilities, thereby enabling a quality of simulations that would not have been achievable by regular means.

V

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

## Contents

| 1 | Intro | oductio | on                                   | 1  |
|---|-------|---------|--------------------------------------|----|
|   | 1.1   | Motiva  | ation                                | 1  |
|   | 1.2   | Basic   | setup                                | 3  |
|   | 1.3   | Goals   | and limitations                      | 4  |
| 2 | Gov   | erning  | equations                            | 7  |
|   | 2.1   | Conser  | rvation of mass                      | 7  |
|   | 2.2   | Conser  | rvation of momentum                  | 8  |
|   | 2.3   | Motion  | n and deformation of a fluid element | 10 |
|   | 2.4   | Deform  | nation law for a Newtonian fluid     | 13 |
|   | 2.5   | Mecha   | unical and thermodynamic pressure    | 15 |
|   | 2.6   | The N   | avier-Stokes equations               | 16 |
|   | 2.7   | The er  | nergy equation                       | 16 |
|   | 2.8   | The p   | erfect gas                           | 19 |
|   | 2.9   | Suther  | rland's viscosity model              | 21 |
|   | 2.10  | Incom   | pressible flow                       | 21 |
|   | 2.11  | Summ    | ary                                  | 22 |
| 3 | Con   | putati  | onal methods                         | 25 |
|   | 3.1   | Discre  | tisation methods                     | 25 |
|   |       | 3.1.1   | Finite Difference Method             | 26 |
|   |       | 3.1.2   | Finite Volume Method                 | 27 |
|   |       | 3.1.3   | Finite Element Method                | 29 |
|   | 3.2   | Interp  | olation schemes                      | 30 |
|   |       | 3.2.1   | Upwind interpolation scheme          | 30 |
|   |       | 3.2.2   | Linear upwind interpolation scheme   | 31 |
|   |       | 3.2.3   | Linear interpolation scheme          | 31 |
|   |       | 3.2.4   | Other interpolation schemes          | 33 |
|   | 3.3   | Bound   | lary conditions                      | 33 |
|   | 3.4   | Unstea  | ady problems                         | 34 |
|   |       | 3.4.1   | Explicit (forward) Euler Method      | 36 |
|   |       | 3.4.2   | Implicit (backward) Euler Method     | 38 |
|   |       | 3.4.3   | Crank-Nicolson Method                | 39 |
|   |       | 3.4.4   | Other methods                        | 40 |

vii

|   | 3.5 | Solving the Navier-Stokes equations                                                                                                                |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     | 3.5.1 SIMPLE                                                                                                                                       |
|   |     | 3.5.2 PISO                                                                                                                                         |
|   |     | 3.5.3 PIMPLE                                                                                                                                       |
|   | 3.6 | Large Eddy Simulation                                                                                                                              |
|   |     | 3.6.1 Filtered Navier-Stokes equations                                                                                                             |
|   |     | 3.6.2 Smagorinsky model                                                                                                                            |
|   |     | 3.6.3 Dynamic Smagorinsky model for incompressible flow                                                                                            |
|   |     | $3.6.4$ Law of the Wall $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ 51                                                          |
|   | 3.7 | Summary                                                                                                                                            |
|   | -   |                                                                                                                                                    |
| 4 | Dev | eloping a prototype grinding tool     55                                                                                                           |
|   | 4.1 | Parametric study   56     4.1.1   Veriable requestors                                                                                              |
|   |     | 4.1.1 Variable parameters                                                                                                                          |
|   |     | 4.1.2 Simulation setup                                                                                                                             |
|   |     | 4.1.3 Forces                                                                                                                                       |
|   | 1.0 | $4.1.4  \text{Evaluation}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                                        |
|   | 4.2 | Computational results                                                                                                                              |
|   |     | 4.2.1 Simulation Setup                                                                                                                             |
|   |     | 4.2.2 Reynolds and Mach numbers                                                                                                                    |
|   |     | 4.2.3 Temperature variation                                                                                                                        |
|   |     | 4.2.4 Normal forces                                                                                                                                |
|   |     | 4.2.5 Tangential forces                                                                                                                            |
|   |     | $4.2.6  \text{Flow analysis}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                                     |
|   |     | 4.2.7 Grinding force dependency                                                                                                                    |
|   |     | $4.2.8  \text{Grinding power}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                                    |
| 5 | Emp | irical validation of simulated data 87                                                                                                             |
|   | 5.1 | Experimental setup                                                                                                                                 |
|   | 5.2 | Simulation setup                                                                                                                                   |
|   | 5.3 | Empirical and computational results                                                                                                                |
| 6 | Dav | loning a fully functional 9 mm grinding tool                                                                                                       |
| U | 6 1 | Determination of an adequate propulsion fluid                                                                                                      |
|   | 0.1 | 6.1.1 Covitation: limiting factor of liquida                                                                                                       |
|   |     | 6.1.2 Oil vigeogity study                                                                                                                          |
|   | 6.9 | Ontimination of momentum and momentum (77)                                                                                                         |
|   | 0.2 | Contraction of geometric parameters                                                                                                                |
|   |     | $0.2.1  \text{Gap neight} \qquad \dots \qquad 97$                                                                                                  |
|   |     | $0.2.2  \text{Co-auct position}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                                  |
|   |     | 0.2.3 Duct diameter                                                                                                                                |
|   |     | $0.2.4  \text{Main duct offset} \dots \dots$ |
|   |     | $6.2.5  \text{Final adjustments}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                                 |

|    |      | 6.2.6 Summary                                   | 103 |
|----|------|-------------------------------------------------|-----|
|    | 6.3  | Optimisation of the computational grid          | 105 |
|    |      | 6.3.1 Test setup                                | 106 |
|    |      | 6.3.2 Results for air                           | 106 |
|    |      | 6.3.3 Results for oil                           | 108 |
|    | 6.4  | Computational Results                           | 108 |
|    |      | 6.4.1 Reynolds and Cavitation numbers           | 109 |
|    |      | 6.4.2 Normal forces                             | 109 |
|    |      | 6.4.3 Tangential forces                         | 112 |
|    |      | 6.4.4 Grinding power                            | 114 |
| 7  | Mod  | delling force transfer across multiple scales 1 | 17  |
|    | 7.1  | Simulation Setup                                | 117 |
|    | 7.2  | Computational results                           | 121 |
|    |      | 7.2.1 Normal forces                             | 121 |
|    |      | 7.2.2 Tangential force                          | 125 |
|    |      | 7.2.3 Grinding power                            | 131 |
|    | 7.3  | Non-dimensional analysis                        | 136 |
|    |      | 7.3.1 Normal forces                             | 137 |
|    |      | 7.3.2 Tangential forces                         | 138 |
|    |      | 7.3.3 Grinding power                            | 142 |
|    | 7.4  | Single duct vs. triple duct geometry            | 143 |
|    | 7.5  | Air vs. oil propulsion                          | 146 |
| 8  | Con  | clusion 1                                       | 49  |
|    | 8.1  | Summary                                         | 149 |
|    | 8.2  | Limitations                                     | 151 |
|    | 8.3  | Future research possibilities                   | 153 |
| ٨  | nond | 1                                               | 55  |
| Αŀ | penu |                                                 | 55  |
| Α  | The  | orems & formulae 1                              | 55  |
|    | A.1  | Divergence theorem                              | 155 |
|    | A.2  | Leibnitz integral rule                          | 155 |
|    | A.3  | Reynolds transport theorem                      | 156 |
|    | A.4  | Grinding angle and corresponding abrasion force | 156 |
|    | A.5  | Extrapolation of standard deviation             | 157 |
|    | A.6  | Sigmoid function                                | 158 |
| В  | Adv  | anced Meshing Techniques 1                      | 61  |
|    | B.1  | Meshing a cylinder with hexahedra               | 161 |
|    | B.2  | Automatic Mesh Generation                       | 164 |

|    | B.3   | Selective Grid Refinement                   | 174 |
|----|-------|---------------------------------------------|-----|
| С  | Sup   | plemental results                           | 177 |
|    | C.1   | 40mm GrindBall prototype (Chapter 4)        | 178 |
|    | C.2   | Dynamometer validation (Chapter 5)          | 180 |
|    | C.3   | 8mm hydraulic grinding tool (Chapter 6)     | 180 |
|    | C.4   | Scale Analysis (Chapter 7)                  | 185 |
| D  | Оре   | nFOAM settings                              | 189 |
|    | D.1   | 40mm GrindBall parametric study (Chapter 4) | 189 |
|    | D.2   | 40mm GrindBall prototype (Chapter 4)        | 191 |
|    | D.3   | Dynamometer validation (Chapter 5)          | 192 |
|    | D.4   | Propulsion fluid study (Chapter 6)          | 194 |
|    | D.5   | Simulations using ISO VG46 oil (Chapter 6)  | 195 |
|    | D.6   | Scale Analysis (Chapter 7)                  | 196 |
| Bi | bliog | raphy                                       | 199 |

#### Bibliography

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

## Nomenclature

Scalar quantities are dented by normal italic symbols while vectors and tensors are presented in bold. To differentiate, vectors are underlined once while tensors receive double underlining. Alternatively, Einstein notation may be used to denote vector and tensor components. Unless stated otherwise, units and dimensions are presented according to the International System of Units, i.e. mass (M) in kg, length (L) in meters m, time (T) in seconds s, temperature ( $\Theta$ ) in Kelvin K, and amount of substance (N) in mol. Furthermore, the derived units Newton N=kg m s<sup>-2</sup>, Pascal Pa=kg m<sup>-1</sup> s<sup>-2</sup>, Hertz Hz=s<sup>-1</sup>, Joule J=kg m<sup>2</sup> s<sup>-2</sup> and Watt W=J s<sup>-1</sup> are employed.

| Symbol                     | Description                        | Unit                              | Dimension                               |
|----------------------------|------------------------------------|-----------------------------------|-----------------------------------------|
| A                          | Area                               | $m^2$                             | $L^2$                                   |
| $A_S$                      | Sutherland coefficient             | $kg m^{-1}s^{-1}K^{-\frac{1}{2}}$ | $M L^{-1} T^{-1} \Theta^{-\frac{1}{2}}$ |
| <u>a</u>                   | Acceleration                       | ${ m ms}^{-2}$                    | $L T^{-2}$                              |
| a                          | Speed of sound                     | ${ m ms^{-1}}$                    | $L T^{-1}$                              |
| a                          | Arbitrary scalar                   |                                   |                                         |
| В                          | Constant                           |                                   |                                         |
| <u>b</u>                   | Body force vector                  | Ν                                 | $\rm MLT^{-2}$                          |
| b                          | Blending coefficient               |                                   |                                         |
| $C_{ij}$                   | Clark tensor                       | $m^2 s^{-2}$                      | $L^2T^{-2}$                             |
| C                          | Constant                           |                                   |                                         |
| $c_p$                      | Specific heat at constant pressure | $\mathrm{Jkg^{-1}K^{-1}}$         | $L^2 \Theta^{-1} T^{-2}$                |
| $c_v$                      | Specific heat at constant volume   | $\mathrm{Jkg^{-1}K^{-1}}$         | $L^2 \Theta^{-1} T^{-2}$                |
| d                          | Diameter                           | m                                 | L                                       |
| E                          | Energy                             | J                                 | $M L^2 T^{-3}$                          |
| $E_{\rm tot}$              | Total energy per unit volume       | $\mathrm{Jm^{-3}}$                | $M L^{-1} T^{-2}$                       |
| $\underline{\mathbf{e}}_i$ | Unit vector                        |                                   |                                         |
| e                          | Internal energy per unit mass      | $m^2 s^{-2}$                      | $L^2T^{-2}$                             |
| $\mathbf{F}$               | Force                              | Ν                                 | $M L T^{-2}$                            |
| <u>f</u>                   | Force per volume                   | ${ m N}{ m m}^{-3}$               | $M L^{-2} T^{-2}$                       |
| $F_t$                      | Abrasion force                     | Ν                                 | $M L T^{-2}$                            |
| f                          | Rotation frequency                 | Hz                                | T-1                                     |
| f                          | Generic flux term                  |                                   |                                         |
| f                          | Arbitrary function                 |                                   |                                         |
| G                          | Convolution kernel                 |                                   |                                         |
| g                          | Gravity vector                     | ${ m ms^{-2}}$                    | $L T^{-2}$                              |
| $\overline{h}$             | Enthalpy per unit mass             | $m^2s^{-2}$                       | $L^2T^{-2}$                             |

#### **Roman Symbols**

| h               | Height                                  | m                                                        | L                                                                |
|-----------------|-----------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
| Ι               | Identity tensor                         |                                                          |                                                                  |
| K               | Constant                                |                                                          |                                                                  |
| $K_B$           | Boltzmann Constant                      | $\mathrm{J}\mathrm{K}^{\text{-1}}$                       | $\mathrm{M}\mathrm{L}^2\Theta^{\text{-1}}\mathrm{T}^{\text{-2}}$ |
| k               | Thermal conductivity                    | $\mathrm{W}\mathrm{m}^{\text{-1}}\mathrm{K}^{\text{-1}}$ | $\rm ML\Theta^{-1}T^{-3}$                                        |
| $k_l$           | Characteristic length of wall roughness | m                                                        | L                                                                |
| $k_{\rm sgs}$   | Subgrid scale kinetic energy            | $m^2 s^{-2}$                                             | $L^2T^{-2}$                                                      |
| $L_{ij}$        | Leonard tensor                          | $m^2s^{-2}$                                              | $L^2T^{-2}$                                                      |
| L               | Characteristic length                   | m                                                        | L                                                                |
| $\mathbf{M}$    | Moment                                  | Nm                                                       | $\rm ML^2T^{-2}$                                                 |
| M               | Molecular weight                        | $\rm kgmol^{-1}$                                         | ${ m M~N^{-1}}$                                                  |
| m               | Mass                                    | kg                                                       | М                                                                |
| $\dot{m}$       | Mass flow rate                          | $\mathrm{kg}\mathrm{s}^{\text{-1}}$                      | ${ m M}{ m T}^{-1}$                                              |
| <u>n</u>        | Normal vector                           |                                                          |                                                                  |
| Р               | Power                                   | W                                                        | M L T <sup>-3</sup>                                              |
| p               | Pressure                                | Pa                                                       | $\mathrm{M}\mathrm{L}^{\text{-}1}\mathrm{T}^{\text{-}2}$         |
| Q               | Source term                             |                                                          |                                                                  |
| Q               | Heat per unit volume                    | $\mathrm{Jm^{-3}}$                                       | $\mathrm{M}\mathrm{L}^{\text{-}1}\mathrm{T}^{\text{-}2}$         |
| <u>q</u>        | Heat flux                               | $\mathrm{kg}\mathrm{s}^{-2}$                             | ${ m MT^{-3}}$                                                   |
| $R_{ij}$        | Reynolds tensor                         | $m^2 s^{-2}$                                             | $L^2T^{-2}$                                                      |
| R               | Specific gas constant                   | $\mathrm{Jkg^{-1}K^{-1}}$                                | $L^2 \Theta^{-1} T^{-2}$                                         |
| $R_0$           | Universal gas constant                  | $\rm Jmol^{-1}K$                                         | $M L^2 N^{-1} \Theta^{-1} T^{-2}$                                |
| <u>r</u>        | Spatial position vector                 |                                                          |                                                                  |
| r               | Radial vector                           |                                                          |                                                                  |
| r               | Radius                                  | m                                                        | L                                                                |
| <u>S</u>        | Symmetric velocity gradient             | s <sup>-1</sup>                                          | T-1                                                              |
| S               | Path length                             | m                                                        | L                                                                |
| <u>T</u>        | Arbitrary tensor                        |                                                          |                                                                  |
| U               | Arbitrary tensor                        |                                                          |                                                                  |
| Т               | Temperature                             | К                                                        | Θ                                                                |
| $T_S$           | Sutherland constant                     | К                                                        | Θ                                                                |
| t               | Time                                    | S                                                        | Т                                                                |
| U               | Magnitude of velocity                   | $\mathrm{ms}^{-1}$                                       | L T <sup>-1</sup>                                                |
| <u>u</u>        | Velocity vector                         | $\mathrm{ms^{-1}}$                                       | L T <sup>-1</sup>                                                |
| $u_{\tau}$      | Shear velocity                          | $\mathrm{ms}^{-1}$                                       | L T <sup>-1</sup>                                                |
| $u_1, u_2, u_3$ | Velocity components                     | ${ m ms^{-1}}$                                           | $L T^{-1}$                                                       |
| <u>v</u>        | Arbitrary vector                        |                                                          | 2                                                                |
| V               | Volume                                  | $m^3$                                                    | $L^{3}$                                                          |
| V               | Volumetric flow rate                    | $m^{3}s^{-1}$                                            | $L^{3}T^{-1}$                                                    |
| W               | Rate of work per unit area              | kg s⁻²                                                   | $M T^{-3}$                                                       |
| W               | Arbitrary vector                        |                                                          |                                                                  |

Nomenclature

| W                  | Work per unit volume    | $\mathrm{Jm^{-3}}$ | $\rm ML^{-1}T^{-2}$ |
|--------------------|-------------------------|--------------------|---------------------|
| x                  | Spatial position vector |                    |                     |
| $\hat{\mathbf{x}}$ | Unit vector             |                    |                     |
| x                  | Standard variable       |                    |                     |
| $x_1, x_2, x_3$    | Cartesian coordinates   |                    |                     |
| x, y, z            | Cartesian coordinates   |                    |                     |

## **Greek Symbols**

| Symbol                       | Description                      | Unit                                        | Dimension                                                |
|------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------------------|
| α                            | Thermal diffusivity              | Pas                                         | $M L^{-1} T^{-1}$                                        |
| $\alpha, \beta, \gamma$      | Direction cosines                |                                             |                                                          |
| $\alpha, \beta$              | Angles                           |                                             |                                                          |
| β                            | Coefficient of thermal expansion | K-1                                         | $\Theta^{-1}$                                            |
| Г                            | Diffusion coefficient            | $\mathrm{kg}\mathrm{m}^{-1}\mathrm{s}^{-1}$ | $M L^{-1} T^{-1}$                                        |
| $\gamma$                     | Ratio of specific heats          |                                             |                                                          |
| δ                            | Viscous sublayer thickness       | m                                           | L                                                        |
| $\delta_{ij}$                | Kronecker delta                  |                                             |                                                          |
| $\Delta$                     | Difference                       |                                             |                                                          |
| $\overline{\Delta}$          | Filter cutoff length             | m                                           | L                                                        |
| $\epsilon$                   | Strain rate tensor               | s <sup>-1</sup>                             | $T^{-1}$                                                 |
| $\epsilon$                   | Error                            |                                             |                                                          |
| $\overline{\epsilon}$        | Extrapolated standard deviation  |                                             |                                                          |
| $\theta$                     | Angle                            |                                             |                                                          |
| $\kappa$                     | Von Kármán Constant              |                                             |                                                          |
| $\lambda$                    | Coefficient of bulk viscosity    | Pas                                         | $M L^{-1} T^{-1}$                                        |
| $\lambda$                    | Interpolation factor             |                                             |                                                          |
| $\mu$                        | Dynamic viscosity                | Pas                                         | $\rm ML^{-1}T^{-1}$                                      |
| ν                            | Kinematic viscosity              | $m^2 s^{-1}$                                | $L^2T^{-1}$                                              |
| ξ                            | parameter                        |                                             |                                                          |
| ho                           | Density                          | $\mathrm{kg}\mathrm{m}^{-3}$                | $M L^{-3}$                                               |
| <u></u>                      | Stress tensor                    | $\mathrm{kg}\mathrm{m}^{-1}\mathrm{s}^{-2}$ | $\mathrm{M}\mathrm{L}^{\text{-1}}\mathrm{T}^{\text{-2}}$ |
| σ                            | Standard deviation               |                                             |                                                          |
| $\sigma(x)$                  | Sigmoid function                 |                                             |                                                          |
| <u> </u>                     | Sub-grid scale stress tensor     | $m^2 s^{-2}$                                | $L^2T^{-2}$                                              |
| au                           | Stress                           | $\mathrm{kg}\mathrm{m}^{-1}\mathrm{s}^{-2}$ | $M L^{-1} T^{-2}$                                        |
| $	au_w$                      | Wall shear stress                | $\mathrm{kg}\mathrm{m}^{-1}\mathrm{s}^{-2}$ | $M L^{-1} T^{-2}$                                        |
| $\Phi$                       | Dissipation function             | $ m N~s^{-1}$                               | $M L T^{-3}$                                             |
| $\overline{oldsymbol{\psi}}$ | Arbitrary vector                 |                                             |                                                          |
| $\psi$                       | Arbitrary intensive property     |                                             |                                                          |

| $\mathrm{d}\Omega$   | Rotation vector |                |       |
|----------------------|-----------------|----------------|-------|
| Ω                    | Control volume  | $\mathrm{m}^3$ | $L^3$ |
| $\underline{\omega}$ | Vorticity       | $s^{-1}$       | T-1   |

## **Dimensionless quantities**

| Symbol     | Description              | Definition                                       |
|------------|--------------------------|--------------------------------------------------|
| Co         | Courant number           | $\Delta t \sum_{i=1}^{3} \frac{u_i}{\Delta x_i}$ |
| Pe         | Péclet number            | $\frac{\rho U \Delta x}{2\Gamma}$                |
| Re         | Reynolds number          | $\frac{UL}{\nu}$                                 |
| $Re_w$     | Boundary Reynolds number | $\frac{u_{\tau}k_{l}}{\nu}$                      |
| $u^+$      | Dimensionless velocity   | $\frac{u}{u_{	au}}$                              |
| $u_{\tau}$ | Shear velocity           | $\sqrt{\frac{\tau_w}{\rho}}$                     |
| $y^+$      | Wall distance            | $\frac{yu_{\tau}}{\nu}$                          |

## Subscripts

| Symbol | Description                   |
|--------|-------------------------------|
| 0      | Initial value                 |
| 0      | Zero value                    |
| d      | Duct                          |
| eff    | Effective quantity            |
| g      | Gap                           |
| l      | Length related quantity       |
| M      | Mechanical                    |
| max    | maximum                       |
| min    | minimum                       |
| 0      | Offset                        |
| op     | operating point               |
| p      | Pressure                      |
| S      | Sphere                        |
| sgs    | Sub-grid scale                |
| t      | Tangential                    |
| t      | Turbulent                     |
| tot    | Total                         |
| au     | Shear stress related quantity |
| v      | Viscous                       |
| w      | Wall related quantity         |

Nomenclature

### Superscripts

| Symbol           | Description            |
|------------------|------------------------|
| +                | Wall coordinate        |
| *                | Deviatoric component   |
| D                | Dimensionless quantity |
| 1mm              | 1 mm sphere            |
| 8mm              | $8\mathrm{mm}$ sphere  |
| $40 \mathrm{mm}$ | $40\mathrm{mm}$ sphere |
| diff             | diffusive              |
| num              | numerical              |
| p                | prototype              |
| real             | realistic              |
| T                | Transpose              |

### Operations

| Operation                                              | Description                                                                                           | Definition                                                                                                   |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $\nabla s$                                             | Gradient of $s$                                                                                       | $\frac{\partial s}{\partial x_i} \mathbf{\underline{e}}_i$                                                   |
| $\nabla \mathbf{\underline{v}}$                        | Gradient of $\underline{\mathbf{v}}$                                                                  | $\frac{\partial v_i}{\partial x_j} \left( \underline{\mathbf{e}}_i \otimes \underline{\mathbf{e}}_j \right)$ |
| $\nabla \cdot \mathbf{\underline{v}}$                  | Divergence of $\underline{\mathbf{v}}$                                                                | $\frac{\partial v_i}{\partial x_i}$                                                                          |
| $ abla^2 s$                                            | Laplacian of $s$                                                                                      | $\frac{\partial}{\partial x_i} \frac{\partial s}{\partial x_i}$                                              |
| $\mathbf{\underline{v}}\otimes \mathbf{\underline{w}}$ | Outer product of $\underline{\mathbf{v}}$ and $\underline{\mathbf{w}}$                                | $T_{ij} = v_i w_j$                                                                                           |
| $tr(\underline{\mathbf{T}})$                           | Trace of $\underline{\underline{\mathbf{T}}}$                                                         | $T_{kk}$                                                                                                     |
| $\underline{\mathbf{T}}^*$                             | Deviatoric component of $\underline{\underline{T}}$                                                   | $T_{ij} - T_{ii}\delta_{ij}$                                                                                 |
| $\underline{\mathbf{T}}$ : $\underline{\mathbf{U}}$    | Double inner product of $\underline{\underline{\mathbf{T}}}$ and $\underline{\underline{\mathbf{U}}}$ | $T_{ij}U_{ij}$                                                                                               |

### Abbreviations

| Acronym | Description                 |
|---------|-----------------------------|
| 1D      | One-dimensional             |
| 2D      | Two-dimensional             |
| 3D      | Three-dimensional           |
| CDS     | Central differencing scheme |
| DNS     | Direct Numerical Simulation |
| FDM     | Finite Difference Method    |
| FEM     | Finite Element Method       |
| FVM     | Finite Volume Method        |
| LES     | Large Eddy Simulation       |
|         | Laige Laay Simulation       |

| LHS    | Left hand side                    |
|--------|-----------------------------------|
| LUDS   | Linear Upwind Differencing Scheme |
| RANS   | Reynolds-averaged Navier-Stokes   |
| RHS    | Right hand side                   |
| sgs    | Subgrid scale                     |
| rpm    | Revolutions per minute            |
| UDS    | Upwind differencing scheme        |
| w.r.t. | With respect to                   |
|        |                                   |

xvi

# **List of Figures**

| $1.1 \\ 1.2$                                                     | Grinding force depending on axis orientation                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{2}{3}$              |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2.1<br>2.2<br>2.3                                                | Stresses $\sigma_{ij}$ acting on a control volume $\ldots \ldots \ldots$<br>Distortion of a moving fluid element (as seen in [Whi05]) $\ldots \ldots \ldots$                                                                                                                                   | 10<br>11<br>17             |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6                           | Discretisation on a computational grid in x-direction (cp. [Nol93])<br>FVM control volume (cp. [Nol93])                                                                                                                                                                                                                                                                                                                                                                              | 26<br>27<br>30<br>31<br>32 |
| 3.7                                                              | Approximation of $f(t)$ integrated over $\Delta t$ . (i) explicit Euler, (ii) implicit<br>Euler, (iii) midpoint rule, (iv) trapezoidal rule. (cp. [FP96])<br>Symbolic representation of the energy spectrum decomposition in Large<br>Eddy Simulation where k is the wave number and $E(k)$ is the associated<br>energy                                                                                                                                                              | 36<br>47                   |
| 3.8                                                              | Law of the wall: layer transitions                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                         |
| $ \begin{array}{r} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \end{array} $ | Magnetic bearing aligned around the grinding sphere $\ldots$ $\ldots$ $\ldots$ Variable parameters for the parametric study $\ldots$ $\ldots$ $\ldots$ $\ldots$ Side view of the mesh used for the parametric study (clipped along $y = 0$ )<br>Top view of the mesh used for the parametric study (clipped along $y = 0$ )<br>The four main mesh domains: (i) inlet basin, (ii) duct, (iii) spherical gap,<br>(iv) outlet basin (clipped along $y = 0$ ) $\ldots$ $\ldots$ $\ldots$ | 56<br>57<br>60<br>60<br>61 |
| 4.6<br>4.7                                                       | Timeline for simulations in the parametric study                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62<br>65                   |
| 4.8                                                              | Dimensionless velocity profiles for individual cases in part one of the para-                                                                                                                                                                                                                                                                                                                                                                                                        | 67                         |
| 4.9                                                              | Dimensionless pressure distribution for individual cases in part one of the parametric study                                                                                                                                                                                                                                                                                                                                                                                         | 68                         |
| 4.10                                                             | Mach number distribution for individual cases in part one of the parametric study                                                                                                                                                                                                                                                                                                                                                                                                    | 69                         |

xvii

| 4.11  | Results from the second part of the parametric study: Tangential force $F_t$<br>and normal forces $F_t = F_t$ and $F_t$ | 71  |
|-------|-------------------------------------------------------------------------------------------------------------------------|-----|
| 4 1 2 | Mesh refinement inside the spherical gap (clipped along $y = 0$ )                                                       | 73  |
| 4 13  | Timeline for simulations done for the <i>GrindBall</i> prototype                                                        | 74  |
| 4 14  | Temperature distribution in [K] for the case $\dot{V}_{x} = 9 \text{ m}^3 \text{ h}^{-1}$ $f = 100 \text{ Hz}$          | 76  |
| 4 15  | Forces $F^p$ and $F^p$ for all simulations conducted for the prototype                                                  | 77  |
| 4 16  | Mean forces $\overline{F}^p$ and $\overline{F}^p$ averaged over rotation frequency f for the prototype                  | 77  |
| 4.17  | Tangential force $F_x^p$ over rotation frequency f with fitted regression lines                                         | ••• |
| 1.11  | for each standard volumetric flow rate $\dot{V}_N$ for the <i>GrindBall</i> prototype                                   | 78  |
| 4.18  | Stationary force transfer $F_{t,0}^p$ and idle rotation frequency $f_0^p$ over volumetric                               |     |
|       | flow rate $\dot{V}_N$ for the <i>GrindBall</i> prototype                                                                | 79  |
| 4.19  | Flow profiles for $f = 0$ Hz, $\dot{V}_N = 8 \text{ m}^3 \text{h}^{-1}$                                                 | 80  |
| 4.20  | Flow profiles for $f = 50$ Hz, $\dot{V}_N = 8 \text{ m}^3 \text{h}^{-1}$                                                | 80  |
| 4.21  | Flow profiles for $f = 100 \text{Hz}, \dot{V}_N = 8 \text{m}^3\text{h}^{-1}$                                            | 81  |
| 4.22  | Flow profiles for $f = 300 \text{Hz}, \dot{V}_N = 8 \text{m}^3\text{h}^{-1}$                                            | 81  |
| 4.23  | Tangential force $F_t^p$ depending on rotation frequency f and standard volu-                                           |     |
|       | metric flow rate $\dot{V}_N$ for the <i>GrindBall</i> prototype                                                         | 82  |
| 4.24  | Grinding power $P_G^p$ and $P_{G,\max}^p$ over rotation frequency $f$ with fitted curves                                |     |
|       | for each constant volumetric flow rate $\dot{V}_N$ for the <i>GrindBall</i> prototype                                   | 84  |
| 4.25  | Grinding power $P_G^p$ depending on rotation frequency $f$ and volumetric flow                                          |     |
|       | rate $\dot{V}_N$ for the <i>GrindBall</i> prototype                                                                     | 85  |
| 5.1   | Experiment devised to validate fluid-to-solid force transfer                                                            | 87  |
| 5.2   | Experimental setup for the dynamometer validation                                                                       | 88  |
| 5.3   | Computational grid for the dynamometer validation (2D slice) $\ldots$ .                                                 | 89  |
| 5.4   | Computational grid for the dynamometer validation (3D view)                                                             | 89  |
| 5.5   | Isosurfaces with $\overline{U} = 40 \text{ m/s}$ for flow angles $\gamma$ (from left) 90°, 60°, and 45°                 | 90  |
| 5.6   | Normal forces for a flow angle of $90^{\circ}$                                                                          | 91  |
| 5.7   | Normal and tangential forces for a flow angle of $60^{\circ}$                                                           | 91  |
| 5.8   | Normal and tangential forces for a flow angle of $45^{\circ}$                                                           | 92  |
| 6.1   | Geometric parameters for the 8 mm <i>GrindBall</i>                                                                      | 96  |
| 6.2   | Tangential force and normal force plotted over viscosity for three test runs                                            | 96  |
| 6.3   | Tangential force and normal force plotted over gap height                                                               | 98  |
| 6.4   | Further geometric parameters for the 8 mm <i>GrindBall</i>                                                              | 99  |
| 6.5   | Tangential force and normal force for varying co-duct configurations                                                    | 99  |
| 6.6   | Tangential force and normal force plotted over duct diameter                                                            | 100 |
| 6.7   | Tangential force and normal force plotted over main duct offset $\ldots$ .                                              | 101 |
| 6.8   | Tangential force and normal force plotted over the angle $\phi$                                                         | 101 |
| 6.10  | Tangential force and normal force plotted over duct diameter                                                            | 102 |
| 6.9   | Tangential force and normal force plotted over main duct offset                                                         | 102 |

| 6.11 | 8 mm <i>GrindBall</i> module (top left) and its interior represented by CAD                                                                                                 |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | imagery (top right and bottom)                                                                                                                                              | 104 |
| 6.12 | Computational domain for the final <i>GrindBall</i> geometry                                                                                                                | 106 |
| 6.13 | Grids tested for the final <i>GrindBall</i> geometry. (i) base, (ii) mod 1, (iii)                                                                                           |     |
|      | $mod 2$ , (iv) $mod 3$ , (v) $mod 4$ , (vi) $base 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                                                       | 107 |
| 6.14 | Results of the mesh test for air                                                                                                                                            | 107 |
| 6.15 | Results of the mesh test for oil                                                                                                                                            | 108 |
| 6.16 | Pressure and Cavitation number and velocity magnitude for $\dot{V} = 71 \mathrm{min^{-1}}$                                                                                  | 110 |
| 6.17 | Forces $F_x^{\text{oil}}$ and $F_n^{\text{oil}}$ for all simulations conducted for 8 mm oil $\ldots \ldots$                                                                 | 110 |
| 6.18 | 3D forces $F_x^{\text{oil}}$ and $F_n^{\text{oil}}$ over rotation frequency $f$ and flow rate $\dot{V}$                                                                     | 111 |
| 6.19 | Pressure distribution for two different rotation frequencies $f$ at constant                                                                                                |     |
|      | flow rate $\dot{V}$                                                                                                                                                         | 111 |
| 6.20 | Tangential force $F_t^{\text{oil}}$ over rotation frequency $f$ with fitted regression lines                                                                                |     |
|      | for each volumetric flow rate $\dot{V}$ for 8 mm oil $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                                                     | 112 |
| 6.21 | Stationary force transfer $F_{t,0}^{\text{oil}}$ and idle rotation frequency $f_0^{\text{oil}}$ over volumet-                                                               |     |
|      | ric flow rate $\dot{V}$ for 8 mm oil $\ldots \ldots \ldots$ | 113 |
| 6.22 | Tangential force $F_t^{\text{oil}}$ depending on rotation frequency $f$ and volumetric                                                                                      |     |
|      | flow rate $\dot{V}$ for 8 mm oil $\ldots \ldots \ldots$     | 114 |
| 6.23 | Grinding power $P_G^{\text{oil}}$ and $P_{G,\max}^{\text{oil}}$ over rotation frequency $f$ with fitted curves                                                              |     |
|      | for each constant volumetric flow rate $\dot{V}$ for 8 mm oil $\ldots \ldots \ldots \ldots$                                                                                 | 115 |
| 6.24 | Grinding power $P_G^{\text{oil}}$ depending on rotation frequency $f$ and volumetric                                                                                        |     |
|      | flow rate $V$ for 8 mm oil $\ldots \ldots \ldots$           | 116 |
| 7.1  | Timeline for simulations done for the <i>GrindBall</i> prototype                                                                                                            | 118 |
| 7.2  | Mean pressure distribution inside the spherical gap across three scales                                                                                                     | 122 |
| 7.3  | Forces $F_r$ and $F_z$ for all simulations conducted for 40 mm, 8 mm, and 1 mm                                                                                              | 123 |
| 7.4  | Mean forces $\overline{F}_r$ and $\overline{F}_r$ averaged over rotation frequency f for 40 mm,                                                                             | -   |
|      | 8 mm, and 1 mm                                                                                                                                                              | 124 |
| 7.5  | Tangential force $F_t^{40\text{mm}}$ over rotation frequency f with fitted regression                                                                                       |     |
|      | lines for each standard volumetric flow rate $\dot{V}_N$ for 40 mm air                                                                                                      | 125 |
| 7.6  | Tangential force $F_{\star}^{8mm}$ over rotation frequency f with fitted regression lines                                                                                   |     |
|      | for each standard volumetric flow rate $\dot{V}_N$ for 8 mm air $\ldots \ldots \ldots$                                                                                      | 126 |
| 7.7  | Tangential force $F_t^{1\text{mm}}$ over rotation frequency f with fitted regression                                                                                        |     |
|      | curves for each standard volumetric flow rate $\dot{V}_N$ for 1 mm air $\ldots$                                                                                             | 127 |
| 7.8  | Stationary force transfer $F_{t,0}^{40\text{mm}}$ and idle rotation frequency $f_0^{40\text{mm}}$ over                                                                      |     |
|      | volumetric flow rate $\dot{V}_N$ for 40 mm, 8 mm, and 1 mm                                                                                                                  | 128 |
| 7.9  | Tangential force $F_t^{40\text{mm}}$ for a 40 mm pneumatic sphere                                                                                                           | 130 |
| 7.10 | Tangential force $F_t^{8mm}$ for an 8 mm pneumatic sphere                                                                                                                   | 130 |
| 7.11 | Tangential force $F_t^{1\text{mm}}$ for a 1 mm pneumatic sphere                                                                                                             | 131 |
| 7.12 | Grinding power $P_G^{40\text{mm}}$ and $P_{G,\text{max}}^{40\text{mm}}$ for a 40 mm pneumatic sphere                                                                        | 132 |
| 7.13 | Grinding power $P_C^{8\text{mm}}$ and $P_C^{8\text{mm}}$ for an 8 mm pneumatic sphere                                                                                       | 132 |