Holger Spahr

AC-OLEDs unter Verwendung passiver, oxidbasierter Dünnschichtelektronik -Die OLED an der Steckdose

AC-OLEDs unter Verwendung passiver, oxidbasierter Dünnschichtelektronik - Die OLED an der Steckdose

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. 2

AC-OLEDs unter Verwendung passiver, oxidbasierter Dünnschichtelektronik -Die OLED an der Steckdose

Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

Dissertation

von Dipl.-Phys. Holger Spahr aus Bad Segeberg

Eingereicht am: Mündliche Prüfung am: 21. Oktober 201317. Dezember 2013

Referenten:

Prof. Dr.-Ing. habil. Wolfgang Kowalsky Prof. Dr. rer. nat. habil. Andreas Waag

$\mathbf{2014}$

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Aufl. - Göttingen: Cuvillier, 2014
 Zugl.: (TU) Braunschweig, Univ., Diss., 2014

978-3-95404-613-3

© CUVILLIER VERLAG, Göttingen 2014 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage 2014 Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

978-3-95404-613-3

Inhaltsverzeichnis

Sy	Symbolverzeichnis V				
Vo	orwor	t und [Danksag	ung	XI
Κι	ırzfas	sung			XIII
Ab	ostrac	ct			XV
Eiı	nleitu	ing			1
1	Gru 1.1	dlager Oxidba 1.1.1 1.1.2	h und St asierte Ele Elektrisc Elektrisc 1.1.2.1 1.1.2.2 1.1.2.3 1.1.2.4 1.1.2.5 1.1.2.6 Dielektri 1.1.3.1 1.1.3.2	and des Wissens <pre>ektronik</pre>	3 4 5 7 8 9 13 14 20 23 26 27 30
	1.2 1.3	1.1.4 Organi 1.2.1 1.2.2 Zusam	Dielektri ische Elek Elektrisc Lichtemi menfassu	sche Eigenschaften dünner Oxide	32 38 38 40 45
2	Proz 2.1	zesstec Depos 2.1.1	hnologie itionstech Thermise	und Bauteilcharakterisierung nologien	47 48 48

|||

\bigtriangledown

INHALTSVERZEICHNIS

		2.1.2	Kathoder	nzerstäubung	. 50
		2.1.3	Atomlage	enabscheidung	. 52
	2.2	Prober	npräparati	on	. 55
	2.3	Elektri	sche Char	rakterisierung	. 57
		2.3.1	Impedanz	zspektroskopie	. 57
		2.3.2	Kennlinie	enaufnahme	. 58
		2.3.3	Leitfähigl	keitsbestimmung mit der Vierpunktmethode	. 60
	2.4	Messve	erfahren z	ur Schichtdickenkontrolle	. 61
		2.4.1	Ellipsome	etrie	. 61
		2.4.2	Oberfläcł	henprofilometrie	. 63
	2.5	Zusam	menfassu	ng: Prozesstechnologie und Bauteilcharakterisierung	. 64
3	Oxio	le für r	esistive (und kapazitive Anwendungen	65
	3.1	Indium	-Zinnoxid	und Zink-Zinnoxid als resistive Dünnschichten	. 66
	3.2	Oxidba	sierte Dü	nnschichtkondensatoren	. 72
		3.2.1	Dielektris	sche Eigenschaften von Dünnschichtkondensatoren auf Basis ALD-	
			prozessie	rter Oxiddielektrika	. 72
		3.2.2	Bestimm	ung der maximalen Energiedichte von ALD-prozessierten Dünn-	
			schichtko	ondensatoren auf Oxidbasis	. 76
		3.2.3	Durchbru	chverhalten von ALD-prozessiertem Aluminiumoxid	. 81
	3.3	Elektri	scher Stro	om durch Oxide	. 84
		3.3.1	Raumlad	ungsbegrenzter Strom (SCLC) als limitierender Leitungsmecha-	
			nismus in	n dünnen Schichten	. 84
		3.3.2	Leitungsr	mechanismen bei nicht-ohmscher Ladungsinjektion	. 88
			3.3.2.1	Schottky-Barriere und thermionische Emission	. 89
			3.3.2.2	Fowler-Nordheim-Tunneln als limitierender Leitungsmechanismus	
				im Hochfeldbereich	. 94
			3.3.2.3	Der Poole-Frenkel-Effekt als stromlimitierender Leitungsmechanism	us 100
			3.3.2.4	Konkurrierende Leitungsmechanismen bei sehr dünnen Aluminium-	
				oxid-Dielektrika	. 103
	3.4	Zusam	menfassu	ng: Oxide für resistive und kapazitive Anwendungen	. 107
4	OLE	D, Wi	derstand	und Kondensator - die AC-OLED	109
	4.1	Die ka	ltweiß emi	ittierende OLED	. 111
	4.2	Implen	nentierung	g von Widerstand und Kondensator	. 116
	4.3	Simula	tion zur [Dimensionierung eines AC-OLED-Moduls	. 120
5	Zusa	ammen	fassung	und Ausblick	129
Lit	terati	urverze	ichnis		135
Be	etreut	te Arbe	eiten Stu	dierender	149
1	Dala	الم محمد		oit ontstandana Varöffantlichungan	151
111		men d	eser ArD	en entstandene veronentlichungen	101

Symbolverzeichnis

Symbol	Beschreibung
AHI	Anode Hole Injection (Anodenseitige Lochinjektion)
ALD	Atomic Layer Deposition
EM	Emittermaterial
EQE	External Quantum Efficiency
ET	Elektrontransporter
НОМО	Highest Occupied Molecular Orbital
HT	Lochtransporter
IIR-Modell	Impakt-Ionisations-Rekombinations-Modell
ITO	Indium Tin Oxide
LUMO	Lowest Unoccupied Molecular Orbital
MM	Matrixmaterial
MSTAT	Multi Step Trap Assisted Tunneling
NLAT	Nanolaminat Aluminiumoxid Titandioxid
NLAZ	Nanolaminat Aluminiumoxid Zirkoniumdioxid
OMBD	Organic Molecular Beam Deposition
PLZT	$Pb_{0,92}La_{0,08}Zr_{0,95}Ti_{0,05}O_3$
SCLC	Space Charge Limited Current
SILC	Stress Induced Leakage Current
TAT	Trap Assisted Tunneling
тсо	Transparent Conductive Oxide
TDMATi	Tetrakisdimethylamino-Titan
TDMAZr	Tetrakisdimethylamino-Zirkonium
TFL	Trap Filled Limit
TMA	Trimethylaluminium
TTA	Triplett-Triplett-Annihilation
VRS	Voltage Ramp Stress
ZTO	Zinc Tin Oxide
TiO_2	Titandioxid
TiO_{2-x}	nicht-stöchiometrisches Titandioxid
$A \ \ldots \ldots \ldots$	Fläche (eines Plattenkondensators)
A^*	angeregter Akzeptorzustand
A^0	Akzeptorgrundzustand

SYMBOLVERZEICHNIS

<i>a</i> ₀	Defektdurchmesser
A_i	Leuchtfläche eines OLED-Pixels
α	Polarisierbarkeit
$\alpha_{\rm C}$	charakteristische Lebensdauer
α _e	Elektronenvervielfachungskoeffizient
$\alpha(i)$	Polarisierbarkeit einer Einzelschicht
Ā	effektive Richardson-Konstante
\vec{A}	Vektorflächenelement
β	Vorfaktor beim Poole-Frenkel-Effekt
β_{Poole}	Vorfaktor nach Poole
$\beta_{\rm W}$	Weibull-Slope
<i>C</i>	Kapazität
C_{start}	Kapazität des Al_2O_3 -Dünnschichtkondensators vor Inbetriebnahme
	des AC-OLED-Moduls
C_{final}	Kapazität des Al_2O_3 -Dünnschichtkondensators nach Inbetriebnahme
	des AC-OLED-Moduls
<i>d</i>	Schichtdicke
D^*	angeregter Donatorzustand
D^0	Donatorgrundzustand
$d_{Al_2O_3}$	Al ₂ O ₃ -Schichtdicke des AC-OLED-Demonstrators
\tilde{d}	Schichtdickeparameter
δ	Segmentlänge; Mittelwert der Zellhöhe aller Einzeldefekte
$D_i \ \ldots \ldots \ldots$	Elemente der OLED-Reihenschaltung
$d=z_2-z_1 \ldots \ldots$	Tunnelstrecke
D(W)	Tunnelwahrscheinlichkeit bzw. Durchlässigkeit
$d_{\rm ZTO}$	ZTO-Schichtdicke des AC-OLED-Demonstrators
<i>E</i>	elektrische Feldstärke
<i>e</i>	Elementarladung
$E_{\rm bd}$	Durchschlagfestigkeit
$E_{\rm C}$	Energie des Leitungsbandes
$\Delta E_{\rm C}$	Bandabstand bezogen auf Silizium
$E_{\rm F}$	Fermi-Energie
$E_{\rm FQ}$	Quasi-Fermi-Niveau im nicht-thermischen Gleichgewicht
$E_{\rm h}$	Parameter im Durchbruchmodell
E_i	zum Zustand i gehörige Energie
$E_l(i)$	dimensionslos normiertes, lokales elektrisches Feld
\dot{E}_{lokal}	lokale elektrische Feldstärke
E_{\max}	konstanter Feldstärkeverlauf im Schottky-Modell
$E_{\rm P}$	elektrisches Feld der sphärischen Polarisationsladungen
ϵ_0	Dielektrizitätskonstante
<i>ϵ</i>	Permittivität
ϵ_r	relative Permittivität
$\epsilon_{rAl_2O_3}$	relative Permittivität Aluminiumoxid
ϵ_{rSiO_2}	relative Permittivität Siliziumdioxid

VI

ϵ_{rTiO_2}	relative Permittivität Titandioxid
ϵ_{rZrO_2}	relative Permittivität Zirkoniumdioxid
$E_{\rm t}$	Energieniveau der Haftstelle
$E_{\rm V}$	Energie des Valenzbandes
E_{Vak}	Vakuumenergieniveau
\vec{E}	elektrischer Feldstärkevektor
<i>F</i>	kumulative Fehlerwahrscheinlichkeit
f	Frequenz
f _{bd}	Wahrscheinlichkeit, dass ein bestimmter Perkolationspfad am Durch-
	bruch teilnimmt
F_{cell}	Fehlerverteilung einer Defektzelle
$F_i = \frac{A}{A+B}$	Flickerindex
$F_m \ldots \ldots \ldots$	Anteil an fehlerhaften Proben
$F_{\rm PF}$	Fallenterm im SCLC-Modell mit Poole-Frenkel-Erweiterung
$F_{\rm PFmodern}$	Fallenterm im SCLC-Modell mit Poole-Frenkel-Erweiterung und Berück-
	sichtigung der Fermi-Dirac-Verteilung
<i>G</i>	elektrischer Leitwert
$h\nu$	Photonenenergie
h	Plancksches Wirkungsquantum
$\hbar = h/2\pi$	reduziertes Plancksches Wirkungsquantum
<i>I</i>	Stromstärke
I_{CR_p}	durch den Parallelwiderstand $\mathbf{R}_{\mathbf{p}}$ fließender Strom
I_{CR_s}	durch den Serienwiderstand \mathbf{R}_{s} fließender Strom
$I(\lambda)$	Emissionsspektrum
i	imaginäre Einheit
I_{R_p}	Gesamtstrom durch Parallelwiderstand
I_{R_s}	Gesamtstrom durch Serienwiderstand
I_{UR_p}	durch den Parallelwiderstand R_p fließender Strom
I_{UR_s}	durch den Serienwiderstand R_s fließender Strom
<i>j</i>	Stromdichte
$j_{\rm DT}$	Stromdichte direktes Tunneln
$j_{\rm FN}$	Fowler-Nordheim-Tunnelstromdichte
j_{s}	Stromdichte bei Schottky- bzw. thermionischer Emission
\mathcal{J}	Stromdichtevektor
$K_1 \dots \dots \dots$	Tunnelkoeffizient 1
$K_2 \dots \dots \dots$	Tunnelkoeffizient 2
Λ_3	Tunnelkoeffizient 3
$\kappa_{\rm B}$	Boltzmann-Konstante
$\kappa(\lambda)$	Imaginartell des komplexen Brechungsindex
L	
λ	weitemange Eilementlänge
$\frac{\Lambda_{\rm F}}{\Sigma}$	r namentiange
λ	inittiere irele weglange
$L_{\rm vdW}$	van der waals-Kadlus
m	Steigung im linearen Fit

Q

SYMBOLVERZEICHNIS

$m_{\rm e}$	Elektronenmasse
$m^*_{\text{eff.c}}$	effektive Masse des Elektrons im Leiter
$m_{\rm eff,d}$	effektive Masse des Elektrons im Dielektrikum
$m_{\rm eff,e}$	effektive Masse der Elektronen
$m_{\rm eff,h}$	effektive Masse der Löcher
$m_{\rm eff,i}$	effektive Masse der Ladungsträgerspezies i
<i>M</i> _m	Molmasse
$m_{\rm eff.ox}$	effektive Masse im Oxid
μ	Beweglichkeit
μ_c	chemisches Potential
<i>n</i>	mittlere Dichte
$N = A/\sigma_{\rm D}$	Flächenskalenfaktor
<i>n</i> _{ALD}	ALD-Zykluszahl
$N_{\rm def}$	Defektdichte
<i>N</i> _{bd}	kritische Defektdichte
<i>N</i> _C	Zustandsdichte im Leitungsband
n_{c}	Dichte der Ladungen im Leitungsband
n_d	Länge einer Defektzelle
<i>n</i> _{dip}	Dipoldichte
N_e^{unp}	Anzahl Elektronen
<i>N</i> _{<i>i</i>}	Zahl der Teilchen im Zustand i
$n_{\rm ITO}(p_{\rm e})$	Ladungsträgerdichte ITO in Abhängigkeit von p_e
$N(\lambda)$	komplexer Brechungsindex
$n(\lambda)$	Realteil des komplexen Brechungsindex
N _{ges}	Gesamtzahl der Teilchen
N _t	Zustandsdichte der Haftstellen
<i>n</i> _t	Dichte der in Haftstellen fixierten Ladungen
n(x)	Dichte der Elektronen
$n_{\rm ZTO}(p_{\rm e})$	Ladungsträgerdichte ZTO in Abhängigkeit von $p_{\rm e}$
ω	Kreisfrequenz
<i>p</i>	Druck
P/A	Leistungsdichte Sputtern
<i>p</i> _e	Anteil spiegelnd gestreuter Elektronen
$P_{\rm g}$	Generierungswahrscheinlichkeit der Defektdichte pro injiziertem Elektron
P_{ges}	vom Gesamtdevice aufgenommene elektrische Leistung
Φ	Aktivierungspotential
ϕ	Phasenwinkel der Impedanz
Φ_0	reduzierte Höhe der Schottky-Barriere
$\Delta \Phi_{\rm B} \ \ldots \ldots \ \ldots$	Schottky-Barriereverringerung
$\Phi_{\rm FN}$	Fowler-Nordheim-Energiebarriere
$\Phi^*_{\rm FN}$	reduzierte Fowler-Nordheim-Barriere
$\Phi_I \dots \dots \dots \dots \dots \dots \dots \dots \dots $	elektrischer Wirkungsgrad
$\Phi_{\rm L}$	photometrischer Wirkungsgrad
$\Phi_{\rm SC}$	Höhe des Kastenpotentials beim Schottky-Kontakt
$\Phi_t \dots \dots \dots \dots \dots \dots \dots \dots \dots $	Tiefe einer Haftstelle

VIII

SYMBOLVERZEICHNIS

T	absolute Temperatur
$\tan \Psi$ und $\cos \Delta$	ellipsometrische Parameter
τ	charakteristische Lebensdauer
τ_{01}	charakteristische Vibrationszeit
<i>τ</i> _D	mittlere Exzitonenlebensdauer
$T_{\rm bd}$	Time To Breakdown
Θ	Fallenterm im SCLC-Modell (Boltzmann-Verteilung)
Θ_{modern}	Fallenterm im SCLC-Modell (Fermi-Dirac-Verteilung)
$T_{\rm R}$	Raumtemperatur
U	elektrische Spannung
U_{AC}	Wechselspannung
$U_{AC}(t)$	zeitabhängige Quellspannung (Netzspannung)
$U_{\rm bd}$	Durchbruchspannung
U_C	Spannung am Kondensator
\hat{U}	Spannungsamplitude
$U_{\rm ext}$	externe Spannung
U_{+-} bzw. U_{-+}	Spannungsabfall Vierpunktmethode
V	potentielle Energie beim Fowler-Nordheim-Dreieckpotential
v_z	Geschwindigkeit der Elektronen in Feldrichtung
$W_0 = 2/3 \pi R_0^3 \mu$	Fitparameter im Durchbruchmodell
W/A	Flächenenergiedichte
$W_{\rm A}$	Austrittsarbeit
$W_{Al_2O_3}$	Bandlücke Aluminiumoxid
ΔW	Verringerung der Energiebarriere beim Poole-Frenkel-Effekt
W_{Gap}	Bandlücke
$W_{\rm HL}$	Bandlücke eines Halbleiters / Isolators
$W_{\rm ITO}$	Austrittsarbeit ITO
$W_{\rm Me}$	Bandlücke eines Metalls
W_N	Weibull-Statistik
WPE	Wall Plug Efficiency (elektrische Effizienz des Gesamtbauteils)
$W_{\rm SiO_2}$	Bandlücke Siliziumdioxid
W/V	Volumenenergiedichte
W_z	Energie der Elektronen in Feldrichtung
<i>x</i>	x-Koordinate im kart. Koordinatensystem bzw. beliebige Variable
<i>y</i>	y-Koordinate im kart. Koordinatensystem bzw. beliebige Variable
y_0	y-Achsenabschnitt im linearen Fit
<i>z</i>	z-Koordinate im kartesischen Koordinatensystem
$Z(\omega)$	Impedanzspektrum

2

Vorwort und Danksagung

IE vorliegende Arbeit entstand während meiner vierjährigen Beschäftigung als wissenschaftlicher Mitarbeiter am Institut für Hochfrequenztechnik der Technischen Universität Braunschweig. Die in dieser Arbeit gezeigten Ergebnisse sind zum Teil in den von mir bearbeiteten Projekten TOPAS 2012 und KOBALT 2015 entstanden. Bei beiden handelt es sich um vom Bundesministerium für Bildung und Forschung geförderte Kooperationsprojekte, wobei das Institut für Hochfrequenztechnik als Unterauftragnehmer der Philips GmbH in Aachen aufgetreten ist. Das Institut für Hochfrequenztechnik unter der Leitung von Prof. Dr.-Ing. Wolfgang Kowalsky beherbergt mittlerweile einen reichhaltigen Wissensfundus zum Thema organische Elektronik aber auch Dünnschichttechnologie im Allgemeinen und Oxidtechnologie im Speziellen. Mein erster Dank soll daher an dieser Stelle an Prof. Dr.-Ing. Wolfgang Kowalsky gehen, der mir die Möglichkeit zur Promotion in diesem vielseitigen und anspruchsvollen Themenkomplex ermöglicht hat. Weiterhin möchte ich sehr herzlich meinem aktuellen Arbeitsgruppenleiter Dr. Hans-Hermann Johannes danken. Hans-Hermann hat als stets motivierender und einfallsreicher Vorgesetzter maßgeblich zu dem Gelingen dieser Arbeit aber vielmehr noch der von mir betreuten Projekte und verfassten Publikationen beigetragen. Nicht unerwähnt bleiben soll auch mein vorheriger Arbeitsgruppenleiter Dr.-Ing. Sami Hamwi, dem ich wegen seiner vielen Ideen und zahllosen Denkanstöße zu Dank verpflichtet bin.

Im folgenden werde ich bei ehemaligen und aktuellen Kollegen auf die Erwähnung der akademischen Grade verzichten - man möge es mir nachsehen. In der Riege der ehemaligen Kollegen am IHF gilt mein allergrößter Dank Hassan Gargouri. Hassan hat mich zu Beginn meiner Zeit am IHF mit viel Motivation, Fachwissen und Geduld mit der organischen Elektronik, der OMBD sowie jedem am IHF eingesetzten Messinstrument vertraut gemacht. Zwei sehr gute Kollegen hatte und sehr gute Freunde habe ich immer noch mit Thomas Winkler und Markus Tilgner. Mit ihnen wurde es bei fachlichen und fachfremden Gesprächen nie langweilig - unvergessen bleiben die tiefgreifenden Gespräche zum Mittagessen. Besonders und mit tiefer Verbeugung zu danken habe ich Johannes Reinker, der nach Hassans Wechsel in die Industrie dessen Sitzplatz geerbt und wie Hassan vor ihm die Position der guten Seele in Büro 1 übernommen hat. Johannes ist ein wahrer Tausendsassa und viele Ideen, die auch in dieser Arbeit ihren Platz gefunden haben, wären

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. ohne die Diskussionen mit ihm nie entstanden. Ein großer Dank gilt ihm insbesondere für die Unterstützung bei der Herstellung der AC-OLED-Demonstratormodule, wodurch mir das ein oder andere graue Haar erspart geblieben ist. Zu großem Dank verpflichtet bin ich allen (ehemaligen) Studenten, die mich dadurch geehrt haben, sie bei ihren Abschlussarbeiten betreuen zu dürfen. Besonders hervorheben möchte ich Felix Hirschberg, Christine Nowak und Markus Jakob, die sich ungeachtet ihrer hohen fachlichen Kompetenz als zwar kurzzeitige, dafür aber sehr gute Kollegen herausgestellt haben. Allen weiteren studentischen Abschlussarbeitern und studentischen Hilfskräften danke ich für ihren Einsatz, der nicht zuletzt einen Beitrag zum Gelingen dieser Arbeit hatte.

Für zahlreiche wissenschaftliche Gespräche und erhellende Kaffeemomente danke ich allen aktuellen und ehemaligen Kollegen aus dem Chemikerbüro. Besonders hervorheben möchte ich Björn Wiegmann, Matthias Böttger und Fabian Albrecht für ihre Bereitschaft, sich aus wissenschaftlicher Neugier heraus auch meiner Themen anzunehmen und vertieft zu diskutieren. Auf die Frage, wie viele Proben, Messungen und Demonstratoren es ohne Justyna Rodziewicz und Kathleen Möhring gegeben hätte, gibt es eine klare Antwort keine Einzige. Ihnen ist der stets zuverlässige Nachschub an Substraten sowie der von ihnen im Hintergrund garantierte, reibungslose Betrieb im LEO zu verdanken. Vielen Dank dafür. Für die zuverlässig hochqualitative Arbeit der feinmechanischen Werkstatt gilt stellvertretend für alle Werkstattmitarbeiter ein großer Dank an Olaf Flechtner.

Um nicht allen weiteren Mitarbeitern am IHF einzeln einen Absatz zu widmen, möchte ich mich nun bei allen weiteren aktuellen und ehemaligen Kollegen und Weggefährten, die nicht explizit aufgeführt sind, auf einmal bedanken: Vielen Dank! Weiterhin danke ich allen Korrekturlesern dieser Arbeit, und allen anderen, die in irgendeiner Weise zum Gelingen dieser Arbeit beigetragen haben.

Ein besonderer Dank gilt meiner Familie. Meinen Eltern danke ich für ihr fortwährendes Interesse an meiner Arbeit und ihre außerwissenschaftliche Unterstützung. Zum Abschluss gilt der allerhöchste Dank meiner Freundin Katrin, die während meiner Promotionszeit immer für mich da war und mich stets von Neuem unterstützt und motiviert hat.

Holger Spahr, im Dezember 2013

Kurzfassung

N dieser Arbeit werden materialwissenschaftliche Fragestellungen und technologische Herangehensweisen zur Verwendung von organischen Leuchtdioden (OLEDs) bei 230 $\rm V$ Netzwechselspannung behandelt. OLEDs sind auf organischen Halbleitermaterialien basierende, lichtemittierende Bauteile. Sie benötigen je nach Aufbau eine Betriebsspannung zwischen 3V und 12V zur hinreichenden Lichtabgabe. Damit die gesamte Netzspannungsamplitude zur Vermeidung von Effizienzeinbußen ausgenutzt werden kann, ist eine Reihenschaltung der OLED-Pixel erforderlich. Durch den Verzicht auf schaltelektronische Komponenten und die Wahl passiver, dünnschichtbasierter Widerstände und Kondensatoren kann die für OLEDs charakteristische, flache Bauform beibehalten werden. Dünnschichtwiderstände werden durch die Sputterdeposition der transparenten, leitfähigen Oxide Indium-Zinnoxid (ITO, Indium Tin Oxide) und Zink-Zinnoxid (ZTO, Zinc Tin Oxide) hergestellt. Zur Anwendung von ITO und ZTO als Dünnschichtwiderstand wird die Abhängigkeit ihres spezifischen Widerstandes von der Schichtdicke gemessen und anhand des Fuchs-Sondheimer-Gesetzes erläutert. Es zeigt sich, dass sich ITO und ZTO analog zu dünnen Metallschichten verhalten und ihr spezifischer Widerstand eine deutliche Abhängigkeit von der Schichtdicke aufweist. Darüber hinaus werden die ALD-prozessierbaren Oxide Al₂O₃, ZrO₂ und TiO₂ als Dielektrika für Dünnschichtkondensatoren hergestellt. Die resultierenden Dielektrika basieren sowohl auf reinem Al₂O₃ als auch auf gestapelten Subschichten, sogenannten Nanolaminaten, aus Al_2O_3 und ZrO_2 beziehungsweise Al_2O_3 und TiO_2 . Die Dielektrika werden elektrisch hinsichtlich ihrer relativen Permittivität durch Impedanzspektroskopie sowie der in ihnen dominierenden Leckstrommechanismen durch ansteigende Spannungsbelastung untersucht. Wird die Spannung bis zur Zerstörung des Dielektrikums erhöht, so findet der dielektrische Durchbruch statt. Am Beispiel von reinem Al₂O₃ wird die Schichtdickenabhängigkeit der Durchbruchfeldstärke oder Durchschlagfestigkeit mit Hilfe literaturbekannter Modelle erklärt. Sowohl aus der Identifizierung der Leckstrommechanismen als auch aus der Modellierung des Durchbruchverhaltens können Materialparameter, wie beispielsweise die relative Permittivität, extrahiert werden. Diese dienen zum einen der Verifizierung der vorherrschenden Leckstrommechanismen und zum anderen der Extraktion von Materialeigenschaften. Der letzte Abschnitt dieser Arbeit beschreibt die Integration von OLED-Reihenschaltung, ZTO-Vorwiderstand und Al₂O₃-

Dünnschichtkondensator. Es wird ein kaltweiß emittierendes AC-OLED-Modul vorgestellt, dessen Flickerindex durch Verwendung eines Dünnschichtkondensators signifikant verringert werden konnte. Am Beispiel eines rot emittierenden AC-OLED-Moduls wurde unter Verwendung eines Dimensionierungsalgorithmus eine weitere Verbesserung des Flickerindex erreicht.

Abstract

HIS work deals with topics from material science and technological approaches regarding the usage of organic light emitting diodes (OLEDs) at mains voltage of 230 V. OLEDs are light emitting devices, based upon organic, semiconducting materials. Depending on their structure, OLEDs need a voltage of 3V to 12V for a sufficient amount of emitted light. To use the entire amplitude of the mains voltage and avoid efficiency loss, a serial connection of the OLED-pixels is necessary. By waiving switching electronic components and the choice of passive, thin film based resistors and capacitors, the typical flat design of OLEDs can be preserved. This film resistors are deposited by sputtering of transparent conductive oxides such as Indium Tin Oxide (ITO) and Zinc Tin Oxide (ZTO). In order to use ITO and ZTO as thin film resistors, their specific resistance depending on the layer thickness is measured and explained by the Fuchs-Sondheimer-Law. It is shown that ITO and ZTO behave analogous to thin metal layers and their specific resistance exhibits a significant dependence on the layer thickness. Furthermore the ALD-producible oxides Al_2O_3 , ZrO_2 und TiO_2 are used as dielectrics in thin film capacitors. The resulting dielectrics are both based on pure Al_2O_3 as well as stacked sublayers, called nanolaminates, consisting of Al_2O_3 and ZrO_2 or Al_2O_3 and TiO_2 , respectively. The dielectrics are electrically examined regarding their relative permittivity and their dominating leakage current mechanisms. The dielectric breakdown occurs by increasing the voltage until the destruction of the dielectric occurs. Using Al_2O_3 as an example, the thickness dependency of the breakdown electric field or disruptive strength is explained by applying a model known from literature. The identification of leakage current mechanisms as well as modeling of the breakdown behavior allows for obtaining material parameters. These parameters serve on the one hand for the verification of the actual leakage current mechanisms and on the other hand for extraction of material properties. The last section of this work describes the integration of the OLED serial connection, the ZTO current-limiting resistor and the Al₂O₃-thin film capacitor. A cold white emitting AC-OLED-module is presented which has a significantly reduced flickering index by usage of a thin film capacitor. Taking a red emitting AC-OLED-module as an example, a further reduction of the flickering index is reached by usage of an algorithm for dimensioning.