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Abstract

Guideposts and traffic signals are important devices for controlling inner-city traf-
fic and their optimized operation is essential for efficient traffic flow without con-
gestion. In this thesis, we develop a mathematical model for guideposts and traffic
signals in the context of network flow theory. Guideposts lead to confluent flows
where each node in the network may have at most one outgoing flow-carrying arc.
The complexity of finding maximum confluent flows is studied and several poly-
nomial time algorithms for special graph classes are developed. For traffic signal
optimization, a cyclically time-expanded model is suggested which provides the pos-
sibility of the simultaneous optimization of offsets and traffic assignment. Thus, the
influence of offsets on travel times can be accounted directly. The potential of the
presented approach is demonstrated by simulation of real-world instances.

Zusammenfassung

Vorwegweiser und Lichtsignalanlagen sind wichtige Elemente zur Steuerung in-
nerstädtischen Verkehrs und ihre optimale Nutzung ist von entscheidender Bedeu-
tung für einen staufreien Verkehrsfluss. In dieser Arbeit werden Vorwegweiser und
Lichtsignalanlagen mittels der Netzwerkflusstheorie mathematisch modelliert. Vor-
wegweiser führen dabei zu konfluenten Flüssen, bei denen Fluss einen Knoten des
Netzwerks nur gebündelt auf einer einzigen Kante verlassen darf. Diese konfluenten
Flüsse werden hinsichtlich ihrer Komplexität untersucht und es werden Polynomial-
zeitalgorithmen für das Finden maximaler Flüsse auf ausgewählten Graphenklassen
vorgestellt. Für die Versatzzeitoptimierung von Lichtsignalanlagen wird ein zyklisch
zeitexpandiertes Modell entwickelt, das die gleichzeitige Optimierung der Verkehrs-
umlegung ermöglicht. So kann der Einfluss geänderter Versatzzeiten auf die Fahr-
zeiten direkt berücksichtigt werden. Die Leistungsfähigkeit dieses Ansatzes wird mit
Hilfe von Simulationen realistischer Szenarien nachgewiesen.
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Introduction

Urban traffic congestion is increasing day by day. Examples can be found around the
world. Growing cities and increasing population doubled the traffic volume in the last two
decades in Europe and North America and an even higher rise has to be expected for the
urban regions in Asia or South America in the next years. In Germany, the population
travels about 1000 billion kilometers every year, and 85 percent of this distance is covered
by individual motor car traffic [25, 56]. The city of São Paulo, Brazil, is famous for its
record-breaking traffic jams. The 20 million inhabitants own about six million vehicles.
On an evening in June 2009, the traffic congestion the city reached a new record of
293 kilometers in total [47]. In August 2010, there was a 60-mile, nine-day traffic jam
near Beijing, China, that even made headlines in Europe.

Traffic congestion causes delays which add up to huge costs for society and business.
The urban mobility report 2009 [136] states a total loss of 4.2 billion hours and
87.2 billion dollars for the 439 urban areas in the United States in only one year.
Wasted fuel of 2.8 billion gallons, noise, and pollution accumulate. A huge problem has
to be solved.

But what can mathematics do to support the quest for stress-free, environment-friendly,
and safe traveling? In this thesis we will have a close look at two familiar systems
for traffic control–guideposts and traffic signals. If you do not like traffic jams you are
invited to read on and find out how an optimization of guideposts and traffic signals can
be used to direct and improve inner-city traffic flow.

Guideposts. Guideposts have been used for a long time. They provide guidance, es-
pecially in unfamiliar regions. With increasing mobility, we cannot imagine traveling
without guideposts and we can find them everywhere. Even modern GPS-based satellite
navigation systems can be seen as small, virtual guideposts inside our cars. Everything
seems clear–just follow the guideposts!

But we missed an important question. Where should we install these guideposts? And
what consequences arise from our choice?

Assume we want to find a certain point of interest in an unfamiliar network. Fortu-
nately, this network is equipped with guidepost pointing towards our destination wher-
ever a routing decision has to be made. Further, we may assume that these guideposts
point in an unique direction, i.e. they exclude all but one road at each intersection.
Nothing would be more confusing than two guidepost naming the same destination but
pointing in two different directions. Most likely, other traffic participants with the same
destination will follow these guideposts, too. If we meet one of them, she will make
the same routing decisions just like us. Thus, we will travel on the same route until we
reach our destination. Consequently, a group of road users starting at the same origin
will share the same path, even if there would exist several alternatives. The capacity of
this path limits the amount of traffic participants that can reach the common destina-
tion. With road users starting all over the network, a bad choice of guideposts may lead
to congestion, although the traffic flow in the network is far away from the network’s

capacity at free route choice.
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Traffic signals. With increasing car traffic, traffic signals managing the right of way at
intersections became more and more important. However, the red traffic light seems to
be dominant. But sometimes, we arrive at a traffic signal and it switches to green just
in time, so that we can go on without stopping. And once in a blue moon1, we get even
four or five green lights in a row.

Such a traffic signal coordination is a difficult task. Of course, coordinating one road
in one direction is rather easy, but with traffic in the opposite direction or traffic in a
whole street network it becomes considerably harder.

Even more, changing the coordination also means changing travel times. After a
while road users will learn about the fastest routes in the network and they will switch
to these routes. This new distribution of traffic in the network may completely disturb
our fine-tuned coordination.

Obviously, guideposts and traffic signals are important tools for controlling traffic and
traffic control is the backbone in the management of traffic flows in our cities. The
optimal use of these signals is essential when we are going to resolve traffic congestion.
However, it is sometimes not even clear what ‘optimal’ means in this context. Guide-
posts are often installed with respect to the shortest distance towards the destination.
Their influence on congestion is poorly studied. In contrast, traffic signal coordination
has been investigated for a long time and many approaches and models have been pro-
posed. But these models also recommend various definitions of optimality. The two
most common objectives are minimizing the delay/waiting time of vehicles facing red
lights and minimizing the number of stops. Furthermore, the majority of the approaches
reveal some deficits like unrealistic modeling of inner-city traffic flows or no guarantee
for an optimal solution.

Contribution

In this thesis, we tackle traffic congestion with the help of network flow theory from
two sides. First, we advance guideposts from a theoretical point of view and introduce
confluent flows. A flow is called confluent if the flow uses at most one outgoing arc at
each node. Unlike previous results we consider heterogeneous arc capacities. We will
focus on NP-hardness results for maximum confluent flows, an approximation algorithm
for graphs with treewidth bounded by a constant k, and polynomial time-algorithms for
special graph classes.

Second, we advance traffic signals. Since this discussion is actually a practical one –
most results presented in this part are an outcome of the ADVEST project that emerged

1A blue moon refers to the third full moon in a season with four full moons. A season with four full
moons is very rare, this happens only once every 2 or 3 years.
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between BTU Cottbus, TU Berlin, TU Braunschweig, and PTV AG2 – we start our
contribution with a new model for the simultaneous optimization of traffic signal coordi-
nation and traffic assignment. This combined approach accounts the feedback between
red lights and route choices. We answer the time dependance of traffic signals by a
cyclically time-expanded network. This time expansion will also allow capturing several
other characteristics of inner-city traffic like platoons of cars and exact arrival times of
these platoons at the intersections. Still, viewing inner-city traffic as a periodic process
limits the time horizon of the expansion and leads to a compact formulation of the prob-
lem as a mixed-integer program. Solving the MIP yields a guarantee or at least bounds
for the optimal solution. We investigate our approach with the help of real-world data
and state-of-the-art simulation tools.

Outline of the thesis

In Chapter 1 we will fix the notation and terminology and present basic definitions.
We assume the reader to be familiar with the basic concepts in graph theory, complexity
theory as well as linear programming. However, for later reference and as a short refresh-
ing of knowledge we recall some of the most important facts. For additional information
we refer to [2, 66, 100, 122, 147].

In Chapter 2 we will derive the concept for flows in networks with guideposts. For
that, we will introduce confluent flows and conclude some basic properties, e.g. the
underlying tree structure. We will study complexity result for both the transshipment
and the maximum flow variant. We also present arc-confluent flows and discuss cuts for
confluent flows.

Afterwards, we present polynomial time algorithms for restricted graph classes,
e.g. trees, planar graphs with at most k terminals on the boundary, and graphs with-
out K2,3 as a minor in Chapter 3. The relation between confluent flows and trees will
lead to a pseudo-polynomial time solution for maximum confluent flows on graphs with
treewidth bounded by a constant k. We use this result to develop a fully polynomial time
approximation scheme (FPTAS) for confluent flows on this kind of graphs.

Due to the various approaches for traffic signal optimization we start with a short
survey on this topic in Chapter 4. We will use this survey to make the reader familiar
with concepts in traffic engineering and with terms related to traffic signals. We will
also discuss the advantages and disadvantages of the considered approaches to motivate
our new model. Herewith, the ground for the next two chapters should be prepared.
Additional information can be found, e.g., in [69, 141].

In Chapter 5 we use the concept of dynamic flows and the periodicity of traffic signals
to develop a cyclically time-expanded network. The model is completed by modeling
intersections, traffic signals and traffic assignment. As a main result of this chapter
we show how this model can be used to optimize traffic signal coordination and traffic
assignment simultaneously. Aiming for a realistic modeling we also discuss the conse-

2PTV AG is a traffic planning company from Karlsruhe, Germany. It is well known for its traffic
planning and simulation software VISUM and VISSIM.
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quences of our approach to travel times and link performance in detail and derive further
properties of the model.

Finally, Chapter 6 is designated for the simulation of inner-city traffic and the practi-
cal evaluation of the proposed model. We introduce the reader to two traffic simulation
tools, namely VISSIM and MATSim. In detail, we consider the real-world inner-city
networks of Cottbus, Braunschweig, Portland, and Denver. In particular, we empha-
size the advantages of our simultaneous optimization of signal coordination and traffic
assignment by comparing to a decomposed successive version of our approach.

About this thesis

A lot of results in this thesis were obtained during the ADVEST project, granted
by the German ministry of education and research (BMBF). This also reflects in the
thesis. First, some results were already published, see [53, 52, 98, 96, 97]. Second, the
aims of the project lead to different kinds of results. On the one hand confluent flows
were studied theoretically and are better understood now. But due to the combinatorial
complexity practical applicability is – in the moment – poor. One the other hand, in a
more experimental approach, a new model for simultaneous traffic signal coordination
and traffic assignment was created, implemented, improved and tested with help of
simulation tools. Hereby, a model of high practicability was developed, but it is difficult
to prove the impact of the model also mathematically. Hence, the first part of the thesis
will perhaps be more interesting for readers who focus on combinatorial optimization.
The second part may more appeal to readers who are interested in the modeling of real
world problems.
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1 Basic Definitions and Notation

In this chapter we introduce and fix the basic notation for this thesis. Many fields of
discrete mathematics are touched. First, we introduce the graph notation and we present
some classical graph problems that we will refer to later. Due to the wide area of graph
theory this description cannot be complete. For an introduction to graph theory we
suggest, e.g., [152] or [49]. A good textbook on network flows is, for example, [2]. Good
textbooks, covering network flows and other combinatorial optimization strategies, are
[36, 100, 138]

Furthermore, we fix the notations for algorithms, complexity and approximation.
Again, we can only give a short overview. For additional information, we refer to [66]
and [9].

Linear Programming and Integer Programming are two basic approaches to solve
network flow problems and combinatorial optimization problems. We will introduce
both techniques in section 1.4 and suggest [147, 153] for further reading.

Please note that the following chapters also provide their own introductions and terms
specific to these chapters are defined there.

1.1 Graphs

In this work we consider finite graphs G = (V,E) where V = V (G) is the vertex set
and elements v ∈ V are called vertices or nodes. E = E(G) is the edge set of G. We
consider both undirected and directed graphs (digraphs). In the case of undirected, loop
free graphs the edge set is a subset of V 2, i.e. E ⊆ {{u, v} : u, v ∈ V, u �= v}.

To denote directed edges, we also call them arcs. E is termed arc set A. A consists
of ordered pairs of nodes, i.e. A ⊆ V × V = {(u, v) : u, v ∈ V }. Therefore, each arc
a ∈ A, a = (u, v) is directed from its tail(a) = u to its head(a) = v. For v ∈ V , we use
δ−(v) = {a ∈ A : v = head(a)} for the set of incoming arcs and δ+(v) = {a ∈ A : v =
tail(a)} for the set of outgoing arcs. A graph is called bi-directed if it contains for each
arc a = (u, v) also the arc in the opposite direction a′ = (v, u). A directed graph can be
made undirected by simply deleting the directions of the arcs. To make an (undirected)
graph a bi-directed one we add both directions for each edge/arc.

The cardinalities of the node and edge sets are denoted by n = |V | and m = |E|. A
graph with n vertices that contains all possible edges, is called a complete graph and
denoted by Kn. Obviously, the complete graph has m =

(
n
2

)
= n(n−1)

2 edges. Sometimes,
a graph is allowed to contain multi-edges, i.e., parallel edges. Hence, E, or A respectively,
is defined as a multi-set in this case and G is called multi-graph. The induced subgraph
on a vertex set V ′ ⊆ V is denoted by G[V ′]. The induced arc set of G[V ′] is denoted by
A[V ′].

A sequence W = (a1, . . . , ak), ai ∈ A, of arcs is called a walk if it fits head to tail,
i.e. head(ai) = tail(ai+1) ∀i ∈ {1, . . . , k − 1}. For short, we will use tail(W ) := tail(a1)
and head(W ) := head(ak). V [W ] is used for the set of vertices that occur in the arcs
of W . To simplify matters, we use a ∈ W to denote that the arc a is contained in the
sequence of arcs in walk W . A path P is a walk which passes through every vertex at
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most once. A walk/path where the tail of the first arc and the head of the last arc
coincide is called cycle/circuit . For u, v ∈ V , Pu,v denotes the set of all paths with tail u
and head v. The length of a path (with respect to unit edge lengths) is the number of arcs
in its sequence. Two paths P1 and P2 are (arc) disjoint if A[V [P1]]∩A[V [P2]] = ∅. They
are node disjoint if V [P1] ∩ V [P2] = ∅. The composition of two paths P1 = (a1, . . . , ak)
and P2 = (b1, . . . , bl) is defined as P1 ◦ P2 = (a1, . . . , ak, b1, . . . , bl).

Similarly, walks, paths, cycles, and circuits can be defined for undirected graphs.

A graph is strongly connected if for each pair of vertices (u, v) there exists a path P
from u to v, i.e. tail(P ) = u and head(P ) = v. A graph is weakly connected if its corre-
sponding bi-directed graph is strongly connected. A node set U ⊆ V is (strongly/weakly)
connected if the induced graph G[U ] is (strongly/weakly) connected. The inclusion max-
imal (strongly/weakly) connected subgraphs of G are called (strongly/weakly) connected
components.

A cut in G is an arc set C such that G\C = (V,A\C) has at least one connected
component more than G. The value of a cut is simply the number of arcs in the cut.
An s-t-cut is defined as a partition of V into two subsets C1 and C2, such that s ∈ C1

and t ∈ C2. Let C = {a ∈ A : tail(a) ∈ C1 ∧ head(a) ∈ C2} then there exists no directed
path from s to t in G\C. The value of the s-t-cut is |C|, i.e. the number of forward arcs
from C1 to C2.

1.2 Flows and Networks

Flows have been a major planning tool for many applications ever since Ford and Fulk-
erson [58] studied them. Before considering flows with additional routing constraints in
the following sections, standard flow is introduced here.

1.2.1 Definitions

Although there is consens what a flow in a network should be, we will use a slightly
different and modular approach for defining flows3.

A flow function is a non-negative function on the arc set x : A → R+
0 . In most

practical applications the maximal flow on each arc is limited by a capacity bound, i.e.,
a maximal flow value that cannot be exceeded on this arc. The capacities are given by
a function u : A → R+

0 ∪ {∞}. A flow is feasible if 0 ≤ x(e) ≤ u(e) ∀e ∈ A holds.
A graph together with capacities is called a network G = (V,A, u). For some results
in this thesis, we will limit the capacity function to integer values, i.e., u : A → N0.
This is no restriction for most applications, since rational values can simply be scaled to
integer values and irrational numbers cannot exactly be represented in our computers
anyway4.Furthermore, a flow function is integral if it has only integral values.

3In some of the algorithms especially in Section 3, we will not be able to fulfill all requirements of a
flow at once. A modular definition admits step-by-step procedures. For example, we will define and
derive preflows with a slightly different flow conservation constraint.

4Irrational input may yield a unexpected behavior, the algorithm of Ford and Fulkerson is a prime
example.


