

LithoRecRecycling von Lithium-Ionen-Batterien

gefördert durch das:

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Lith ORec

Recycling von Lithium-Ionen-Batterien

Abschlussbericht des Verbundprojektes

Laufzeit des Vorhabens:

01. September 2009 - 30. September 2011

Gemeinsamer Abschlussbericht folgender Einzelvorhaben

16EM0012 I+ME ACTIA GmbH 16EM0013 Audi AG 16EM0014 Electrocycling GmbH 16EM0015 H.C. Starck GmbH 16EM0016 Chemetall GmbH 16EM0017 Westfälische Wilhelms-Universität Münster 16EM0018 Süd-Chemie 16EM0019 Recylex GmbH 16EM0020 Volkswagen AG 16EM0021 **Evonik Litarion GmbH** Fränkisches Recycling Zentrum 16EM0022 16EM0023 Technische Universität Braunschweig

Braunschweig, 02.04.2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2012

978-3-95404-112-1

© CUVILLIER VERLAG, Göttingen 2012

Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0

Telefax: 0551-54724-21

www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2012

Gedruckt auf säurefreiem Papier

978-3-95404-112-1

Autorenliste

Prof. Arno Kwade (Institut für Partikeltechnik, TU Braunschweig) wissenschaftliche Projektleitung

Gunnar Bärwaldt (Niedersächsisches Forschungszentrum Fahrzeugtechnik) *Projektkoordination*

Koordinatoren der beteiligten industriellen Partner

Tobias Meinfelder (AUDI AG)

Martin Steinbild (Chemetall GmbH)

Kai Kramer (Electrocycling GmbH)

Dr. Robert Barenschee (Evonik Litarion GmbH)

Dr. Markus Weinmann (H.C.Starck GmbH)

Axel Schober (I+ME actia GmbH)

Matthias Walch (Fränkisches Recyclingzentrum)

Peter Brandes (Recylex GmbH)

Dr. Nikolas Tran (Süd-Chemie AG)

Dr. Marko Gernuks (Volkswagen AG)

Beteiligte wissenschaftliche Einrichtungen

apl. Prof. Christoph Herrmann, Stefan Andrew

(Institut für Werkzeugmaschinen und Fertigungstechnik, TU Braunschweig)

Prof. Michael Kurrat, Hannes Haupt

(Institut für Hochspannungstechnik und Elektrische Energieanlagen, TU Braunschweig)

Prof. Arno Kwade, Christian Hanisch, Stephan Olliges

(Institut für Partikeltechnik, TU Braunschweig)

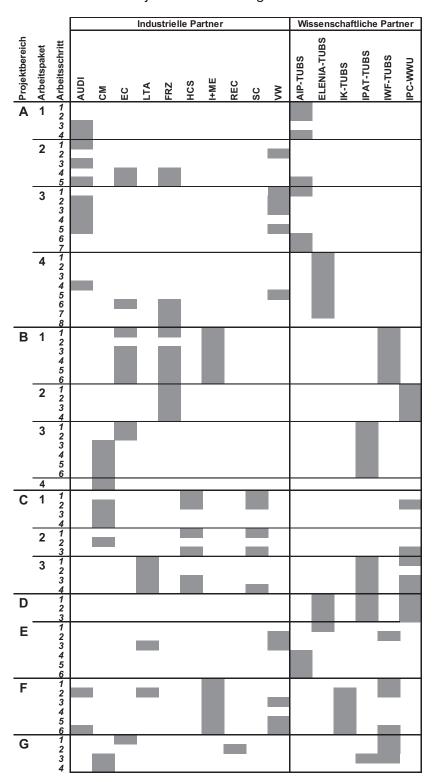
Prof. Thomas Spengler, Claas Hoyer

(Institut für Automobilwirtschaft und industrielle Produktion, TU Braunschweig)

Prof. Thomas Vietor, Dennis Wedler

(Institut für Konstruktionstechnik, TU Braunschweig)

Prof. Martin Winter, Dr. Sascha Nowak


(Institut für physikalische Chemie, WWU Münster)

Allgemeine Kontaktadresse:

Technische Universität Braunschweig Niedersächsisches Forschungszentrum Fahrzeugtechnik Langer Kamp 19 38106 Braunschweig 0531-391 7980 nff@tu-braunschweig.de

Übersicht der an den einzelnen Projektbereichen mitgewirkten Partner:

Für die Ergebnisse und Aussagen innerhalb der einzelnen Arbeitsschritte sind die jeweils beteiligten Partner verantwortlich.

Inhaltsverzeichnis

I	Inhaltsvei	zeichnis	I
II	Abbildung	gsverzeichnis	.VIII
Ш	Tabellenv	verzeichnis	.XIII
1	Kurzzusa	mmenfassung	1
	1.1 Weser	ntliche Ergebnisse in den einzelnen Projektbereichen	2
	1.1.1	Projektbereich A	2
	1.1.2	Projektbereich B	3
	1.1.3	Projektbereich C	3
	1.1.4	Projektbereich D	4
	1.1.5	Projektbereich E	4
	1.1.6	Projektbereich F	5
	1.1.7	Projektbereich G	5
	1.2 Veröffe	entlichungen	6
	1.3 Begriff	sbestimmungen	8
Α	Analyse ι	und Entwicklung logistischer Sammel- und Rückführungsprozesse	9
	A.1 Analys	e des Altbatterieaufkommens	9
	A.1.1	Identifikation und Analyse der für den Rückfluss von Li-Ionen Altbatterien relevanten Einflussgrößen	9
	A.1.2	Entwicklung eines Simulationsmodells zur Abschätzung des Rückflusses von Li-Ionen Altbatterien	10
	A.1.2.	Beschreibung der Module	10
	A.1.3	Erarbeitung von Szenarien zur langfristigen Absatzentwicklung und zur Nutzung von Elektrofahrzeugen im Zeitverlauf	12
	A.1.3.1	Grundlegende Annahmen	12
	A.1.3.2	2 Annahmen der Szenarien	12
	A.1.4	Durchführung einer Simulationsstudie zum Altbatterierücklauf mit expliziter Berücksichtigung unsicherer Einflüsse	15
	A.1.4.	Szenario "Pessimistisch"	15
	A.1.4.2	2 Szenario "Politisch"	16
	A.1.4.3	S Szenario "Realistisch"	16

A.1.4.4	4	Vergleich der Szenarien	16
A.1.4.	5	Sensitivitätsanalyse	19
A.1.4	.5.	1 Vorgehensweise	19
A.1.4	.5.	2 Zusammenfassung der Ergebnisse	19
A.2 Analys	se	und Gestaltung von Informationsflüssen	22
A.2.1		nalyse und Anpassung der Informationsangebots- und -bedarfs für die rozesse Ausbau und Prüfung	22
A.2.2		nalyse und Anpassung der Informationsangebots- und -bedarfs für den rozess Transport	24
A.2.3		nalyse und Anpassung der Informationsangebots- und -bedarfs für den rozess Lagerung/Sammlung	26
A.2.4		lentifikation von Informationen aus vorangehenden Prozesse, die während es Recyclingprozesses benötigt werden	28
A.2.5	В	onzeption eines Instrument zur bedarfsgerechten Erfassung und ereitstellung von Informationen sowie eines Konzepts zur Umsetzung des estruments in einer Softwarelösung	29
A.2.5.	1	Informationsfluss entlang der Prozesskette	29
A.2.5.2	2	Optionen zur Erfassung und bedarfsgerechten Bereitstellung von Informationen	30
A.2.5.3	3	Anforderungen an ein Informationsinstrument	31
A.2.5.4	4	Auswahl und Struktur eines geeigneten Informationsinstruments	32
A.2.5	5.4.	Prozessorientierte zentrale Datenbanklösung	32
A.2.5	5.4.	2 Produktorientierte bedarfsgerechte Individuallösung	33
A.3 Entwice	cklu	ung von Sammelkonzepten	35
A.3.1		nforderungsanalyse an potentielle Netzwerke zum Recycling von Li-Ionen- atterien	35
A.3.1.	1	Definition der Systemgrenzen	35
A.3.1.2	2	Ermittlung von Netzwerkkonstellationen	39
A.3.1	.2.	Netzwerkkonstellation A – einstufiges Sammlungskonzept	39
		Netzwerkkonstellation B – zweistufiges Sammlungskonzept mit integrierter age und Aufbereitung	40
		Netzwerkkonstellation C – zweistufiges Sammlungskonzept mit elter Demontage und Aufbereitung	40
A.3.1.3	3	Ableitung eines Anforderungskatalogs	41

LithoRec Inhaltsverzeichnis

A.3.2	Entwicklung und Bau von Prototypenwerkzeugen sowie Konzeption verschiedener Batterie-Ausbaukonzepte mit Hilfe entsprechender Ausbaustudien	43
A.3.3	Entwicklung und Umsetzung eines Verpackungssystems sowie Konzeption eines Befestigungssystems	44
A.3.4	Entwicklung und Umsetzung eines Systems zur Lagerung und Konzeption eines Lagers	46
A.3.5	Wirtschaftlichkeitsberechnung des gesamten Sammelkonzeptes	48
A.3.6	Entwicklung eines Entscheidungsunterstützungsinstruments zur Gestaltung von Netzwerken	50
A.3.6.	1 Modellierung des geographischen Raums	51
A.3.6.2	2 Modellierung des Altbatterieaufkommens	51
A.3.6.3	3 Modellierung der Prozesse	51
A.3.6.	4 Modellierung von Kapazitäten	53
A.3.6.	5 Modellierung der Stoffströme	53
A.3.7	Ableitung von Handlungsempfehlungen zur Gestaltung der Netzwerkstruktur	54
A.3.7.	1 Fallstudie Politisch/VW-OTLG	55
A.3.7.	2 Fallstudie Realistisch/VW-OTLG	59
A.3.7.	3 Fallstudie Realistisch/VG-10	61
A.3.7.	4 Fallstudie Robust/VW-OTLG	61
A.3.7.	5 Ableitung von Handlungsempfehlungen	63
A.4 Entwice	cklung von Entladeprozessen für Li-Ionen Batterien	66
A.4.1	Recherche von Sekundärmärkten für Lithium-Ionen-Batteriemodule	66
A.4.2	Erstellung technischer Spezifikationen für die Sekundärmärkte	67
A.4.3	Analyse existierender Batteriemodule bezüglich der Reparaturtiefe	68
A.4.4	Entwicklung einer Bewertungsmethodik für Batteriemodule und Einzelzellen	70
A.4.5	Technische Entwicklung eines teilautomatisierten Testverfahrens	72
A.4.6	Verfahrensentwicklung für das Endladewerkzeug	72
A.4.7	Technische Entwicklung eines teilautomatisierten Endladewerkzeuges	74
A.4.8	Erprobung des Prototypen	75
Entwicklu	ing von Demontage- und Recyclingprozessen	76
B.1 Mecha	anische Demontage in Einzelkomponenten	77

В

	B.1.1	Produktanalyse und Strukturierung der Demontage	77
	B.1.2	Konzepte für teilautomatisierte Demontageschritte	81
	B.1.3	Entwurf alternativer Demontagesysteme (Layout, Verkettung von Arbeitsstationen/-plätzen)	87
	B.1.4	Ausgestaltung der Elemente des Demontagesystems	95
	B.1.5	Durchführung von Demontageversuchen / Erprobung	. 100
	B.1.6	Ableitung von Anforderungen für eine demontage- und automatisierungsgerechte Batteriegestaltung	. 106
	B.2 Aufbe	reitung und Verwertung von Elektrolyten	. 108
	B.2.1	Entwicklung von Öffnungskonzepten	. 108
	B.2.2	Trockenlegung der nassen Batteriezelle	. 109
	B.2.3	Prozessentwicklung eines geeigneten Destillationsverfahrens für die Elektrolytrückgewinnung	. 110
	B.2.4	Prozessentwicklung der alkalischen Rekristallisation der Leitsalze	. 111
	B.3 Mecha	anische, thermische und chemische Aufbereitung der Einzelkomponenten	. 112
	B.3.1	Demontage der trockenen Zellen und Sortieren	. 112
	B.3.2	Aufbereitung und Verwertung von Zellgehäuse, Separator und metallischen Komponenten	. 112
	B.3.3	Verfahrensentwicklung der trockenen Separation der Aktivmaterialien vom Stromsammler	. 114
	B.3.4	Verfahrensentwicklung der nassen mechanischen Abtrennung der Elektrodenbeschichtungen vom Stromsammler und deren mechanische Trennung	. 118
	B.3.5	Aufbereitung hochkonzentrierter, partikulärer Aktivmaterialsuspensionen	. 121
	B.3.6	Extraktion der Bindersysteme aus Elektrodenmaterialien in Abhängigkeit der Trennungsalternativen	. 123
	B.4 Hydro	metallurgische Aufbereitung und Verwertung von NE-Metallen	. 124
	B.4.1	Laborarbeiten zu den hydrometallurgischen Extraktions- und Reinigungsverfahren	. 125
	B.4.2	Pilotanlage für säurebasierte Extraktionen und fluorfreie Leitsalzherstellung	. 134
	B.4.3	Pilotanlage für Aufreinigung mittels Ionenaustauscher und Salzspaltung mittels Elektrodialyse	. 139
С	Entwicklu	ung von Herstellungsprozessen für "Recycling-Batterien"	. 146
	C.1 Chara	kterisierung der recycelten Grundstoffe	. 147

Inhaltsverzeichnis

LithoRec Inhaltsverzeichnis

	C.1.1	durch die Aktivmaterialhersteller	. 147
	C.1.2	Bewertung der recycelten Lithium- und Übergangsmetallsalze im Vergleich von kommerziellen und recycelten Primärrohstoffe	. 150
	C.1.3	Übergreifende Analyse von chemischen und physikalischen Materialparametern und Bewertung der potentiellen Weiterverwendung	. 151
	C.1.4	Bewertung der Verwendungsmöglichkeiten für unterschiedliche Qualitäten der zurück gewonnenen Rohstoffe	
	C.2 Synthe	ese und Charakterisierung von recycelten Aktivmaterialien	. 153
	C.2.1	Synthese von Aktivmaterialien aus recycelten Rohstoffen	. 153
	C.2.2	Herstellung von Leitsalzen aus Laborrecycling Stoffen und Vergleich mit kommerziellen Leitsalzen	. 154
	C.2.3	Charakterisierung der Aktivmaterialien – Produktausgangskontrolle	. 155
		ellung und Charakterisierung neuer Elektroden und Testzellen aus recycelten naterialen	. 159
	C.3.1	Standardisierte Elektroden- und Zellfertigung aus kommerziellen Referenzmaterialien und elektrochemische Charakterisierung	. 159
	C.3.2	Standardisierte Elektroden- und Zellfertigung aus rekonditionierten Aktivmaterialien und elektrochemische Charakterisierung	. 162
	C.3.3	Standardisierte Elektroden- und Zellfertigung aus recycelten Aktivmaterialien gewonnen aus formierten Zellen und elektrochemische Charakterisierung	. 164
	C.3.4	Standardisierte Elektroden- und Zellfertigung aus recycelten Aktivmaterialien gewonnen aus gealterten Zellen und elektrochemische Charakterisierung	. 167
D	Analyse o	des Alterungsverhaltens von Li-Ionen Batterien	. 173
		nme der Performance und Analyse der Alterung von konventionell erhältlichen naterialien anhand einer Standardzelle (LiFePO4 und Schichtoxide)	. 174
	und m	nme der Performance und Analyse der Alterung von recycelten Aktivmaterialier ehrfach recycelten Aktivmaterialien anhand einer Standardzelle (LiFePO4 und atoxide)	
	-	se der Mechanismen von Alterung im Vergleich konventioneller und recycelter naterialien	. 193
Ε		sche und ökologische Bewertung von Recycling-Konzepten für Li-Ionen	. 194
	E.1 Erheb	ung und Prozesssimulation des Energiebedarfs	. 194
	E.2 Ökobil	anzierung der gesamten Recyclingprozesskette	. 196
	E.3 Entwice	klung eines Stoffstrommodells für Kobalt und Lithium, Verfügbarkeitsstudie	. 196

	E.4 – E.6 Ö	konomische Bewertung des LithoRec-Verfahrens	197
	E.4.1	Modularisierung und Bildung von Referenzanlagen	198
	E.4.2	Schätzung von Investitionen und Fixkosten	200
	E.4.2.1	Umschlaglager	200
	E.4.2.2	Demontagewerk	203
	E.4.2.3	Mechanisches Aufbereitungswerk	206
	E.4.2.4	Hydrometallurgisches Aufbereitungswerk	207
	E.4.3	Schätzung von Prozessdeckungsbeiträgen	208
	E.4.3.1	Definitionen und Vorgehensweise	208
	E.4.3.2	Deckungsbeitrag in der Demontage	211
	E.4.3.3	Deckungsbeitrag in der Mechanischen Aufbereitung	214
	E.4.3.4	Deckungsbeitrag in der Hydrometallurgischen Aufbereitung	216
	E.4.3.5	Gesamtprozessdeckungsbeitrag und Sensitivitätsanalyse	218
	E.4.4	Gewinnschwellen	222
	E.4.4.1	Durchsatzbezogene Gewinnschwellen	223
	E.4.4.2	Zeitbezogene Gewinnschwellen	231
	E.4.5	Zusammenfassung	232
=		g von demontagefreundlichen Batteriesystemen und lebenszyklusorientierten skonzepten	
		lung eines Werkzeuges für integrierte Recycling- und Umweltbewertung von	236
		teristische Demontage, Recyclingkenngrößen und demontagefreundliches dendesign	239
		Ermittlung einer charakteristischen Demontage und Bestimmung von Recyclingkenngrößen für repräsentative Batteriebaukonzepte	239
	F.2.2	Ermittlung eines demontagefreundlichen Designs für Elektroden	241
		lung von Gestaltungs- und Konstruktionsrichtlinien für die agefreundliche Entwicklung/Fertigung von Batterien	243
	Simulati	tung von Werkzeugen (CAD Tools, KKataloge) für die Konstruktion und ion von Gesamtbatteriekonzepten, mit Berücksichtigung der gegenseitigen se von Batterie, Peripherie und Fahrzeugtechnik	247
		ng lebenszyklusorientierter Sicherheitskonzepte, speziell für Rückbau, tage und Recycling von Lithium-Ionen-Batterien	250

LithoRec Inhaltsverzeichnis

			7

	F.6 Entwicklung von Dokumentations- (mindest-) Standards für die fachgerechte Behandlung, Rückbau, Demontage und das Recycling	252
G	Konzeptionierung einer Recycling-Pilotanlage	255
	G.1 Entladung der Batterien und Demontage der Systemkomponenten	256
	G.2 Separation der Aktivmaterialien	258
	G.3 Planung des Gesamtsystems und Auslegung der Prozessschritte	266
Н	Literaturverzeichnis	272
l	Anhang	273

II Abbildungsverzeichnis

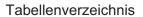
Abbildung A-1: Konzept des Modells zur Abschätzung des Altbatterieaufkommens	10
Abbildung A-2: Vergleich des Altbatterieaufkommensverlauf (Masse) der drei Szenarien .	17
Abbildung A-3: Vergleich des Altbatterieaufkommens (Masse) nach Batterievarianten der	
drei Szenarien	18
Abbildung A-4: Einfluss ausgewählter Parameter auf das Altbatterieaufkommen	20
Abbildung A-5: Einfluss der Batterienutzungsdauer auf das Altbatterieaufkommen (kg/a).	21
Abbildung A-6: Schematische Darstellung des Recyclinginformationssystems	34
Abbildung A-7: Netzwerkkonstellation A – einstufiges Sammlungskonzept	39
Abbildung A-8: Netzwerkkonstellation B – zweistufiges Sammlungskonzept mit integrierte	er:
Demontage und Aufbereitung	40
Abbildung A-9: Netzwerkkonstellation C – zweistufiges Sammlungskonzept mit entkoppe	lter
Demontage und Aufbereitung	41
Abbildung A-10: HV - Batteriedemontage-KIT	43
Abbildung A-11: Einwegkartonverpackung Sanyo Batteriesystem für Audi Q5	44
Abbildung A-12: Batteriepaloxe (Akkukasten aus starrem Kunststoff)	46
Abbildung A-13: Kennzeichnung von Lagerein- und Ausgängen	48
Abbildung A-14: Modulbildung aus Prozessen	52
Abbildung A-15: Dezentrale Sammlung in der Fallstudie "Politisch/VW-OTLG", zweite	
Planungsperiode 2015 bis Ende 2017	57
Abbildung A-16: Dezentrale Sammlung in der Fallstudie "Politisch/VW-OTLG", Dritte	
Planungsperiode 2018 bis Ende 2020	58
Abbildung A-17: Stark dezentralisierte Sammlung und Demontage in der Fallstudie	
"Politisch/VW-OTLG", vierte Planungsperiode 2021 bis Ende 2025	59
Abbildung A-18: Dezentrale Sammlung und Demontage in der Fallstudie "Realistisch/VW	'-
OTLG" von 2021 bis Ende 2025	60
Abbildung A-19: Vergleich der Strukturen in Periode III aus den Fallstudien "Realistisch/V	/W-
OTLG" (a) und "Politisch/VW-OTLG" (b) mit derjenigen aus der Fallstudie	
"Robust/VW-OTLG" (c)	62
Abbildung A-20: Vergleich der Strukturen in Periode IV aus den Fallstudien "Realistisch/\	/W-
OTLG" (a) und "Politisch/VW-OTLG" (b) mit derjenigen aus der Fallstudie	
"Robust/VW-OTLG" (c)	62
Abbildung A-21: Sekundärmärkte	66
Abbildung A-22: Prüfschema technische Zustände Module und Zellen	71
Abbildung A-23: Schematischer Aufbau des Entladeverfahrens von Batteriesystemen	73

Abbildung A-24: Aktuelle Zellentladung und Greiferlösung	74
Abbildung A-25: Prinzip Schaltbild Entladewerkzeug	74
Abbildung A-26: Zellspannungsverlauf während der Entladung	75
Abbildung B-1: Eindrücke der Testdemontage des Batteriesystems A	77
Abbildung B-2: Eindrücke der Testdemontage des Batteriesystems B,	78
Abbildung B-3: Verbindungsgraph	79
Abbildung B-4: Demontagevorranggraph	80
Abbildung B-5: Beispielhafte Bewertung der Automatisierbarkeit	81
Abbildung B-6: Beispielhafte Bewertung der Demontage	82
Abbildung B-7: Kriterienkatalog (Englisch)	83
Abbildung B-8: Portfoliodarstellung zur Bewertung der Automatisierbarkeit für den	
Einzelschritt	84
Abbildung B-9: Prinzip der Greifvorrichtung (links); Parameter zur Motorauslegung (oben	
rechts) und Steuerungsarchitektur (unten rechts)	87
Abbildung B-10: Schema der allgemeinen Demontage von Batteriesystemen	89
Abbildung B-11: Layout eines Demontagesystems für Szenario "2015 realistisch"	92
Abbildung B-12: Layout eines Demontagesystems für Szenario "2030 realistisch"	94
Abbildung B-13: Diagnosegerät Multi-DIAG	96
Abbildung B-14: Greifersystem mit einzelnen Subsystemen und Komponenten	98
Abbildung B-15: Bedienkonzept des Greifersystems	99
Abbildung B-16: Screenshots der Visualisierung	100
Abbildung B-17: Auswertung der Messungen	104
Abbildung B-18: Elektroden-Stack (IPC-WWU)	109
Abbildung B-19: Untersuchung der 1. Fraktion des Destillationsprozesses mittels GC-MS	
(IPC-WWU)	110
Abbildung B-20: Untersuchung der 2. Fraktion des Destillationsprozesses mittels GC-MS	
(IPC-WWU)	111
Abbildung B-21: Prozessfließbild der Trockenen Separation	115
Abbildung B-22: Mechanische Separation in der Schneidmühle	115
Abbildung B-23: Anteil der Feinfraktionen nach Beanspruchung in Schneidmühlen bei	
variierter Rotordrehzahl für die Klassierung (Siebung) bei verschiedenen	
Trennkorngrößen (6-Scheiben-Rotor, 2mm Trapezlochsieb)	116
Abbildung B-24: Verfahrensfließbild Nasschemische Separation der Beschichtung von	
Batterie-Elektroden	118
Abbildung B-25: Recyclingquote über Anzahl der Batch-Lösevorgänge	119
Abbildung B-26: Wirkmechanismus Batch-Filtration (oben), Fahrweise mit Lösungsmittel-	
Kreislauf (unten)	120

Abbildung B-27: Verfahrensfließbild zu Prozessalternativen der Nasschemischen Separa	ıtion
der Beschichtung von Batterie-Elektroden	.120
Abbildung B-28: Partikelgrößenverteilung der wiedergewonnenen Beschichtung nach	
Desagglomeration in Prallmühle	.122
Abbildung B-29: Aufkonzentrierung und weitere Aufarbeitung nach der nasschemischen	
Separation	.122
Abbildung B-30: Projektschema Hydrometallurgisches Batteriematerialrecycling	.124
Abbildung B-31: Hauptprozesskomponenten	.136
Abbildung B-32: Feststoffhandling	.137
Abbildung B-33: Funktionsweise einer Elektrolyse mit monopolarer Membran	.140
Abbildung B-34: Funktionsweise einer Elektrodialyse mit bipolarer Membran	.140
Abbildung B-35: Ursprüngliches und verbessertes Verfahrenskonzept	.142
Abbildung B-36: EDBM-Anlage	.144
Abbildung B-37: Behandlung Salzlösung	.144
Abbildung C-1: Geänderter Recycling Zyklus	.146
Abbildung C-2: REM-Aufnahmen der Precursor aus recycelten Lösungen bei 200-, 1.000)_
und 5.000-facher Vergrößerung	.156
Abbildung C-3:REM-Aufnahmen des Referenzmaterials und der LNCAO-Materialien aus	
recycelten Lösungen bei 200-, 1.000- und 5.000-facher Vergrößerung	.156
Abbildung C-4: Zyklisierkurve von LiFePO ₄ bei Raumtemperatur	.160
Abbildung C-5: DC-Ratentest von LiBF4 in EC/DMC	.160
Abbildung C-6: Elektrochemischer Zyklentest einer Referenzelle aus Neumaterialien –	
Stromstabilitätstest (Zyklen 1-30) und Zyklenstabilität bei 3C (Zyklen 30-500	1)
	.161
Abbildung C-7: Elektrochemischer Zyklentest einer Referenzelle aus Neumaterialien –	
Charakterisierung der Stromstabilität bei variierter Laderate	.162
Abbildung C-8: Elektrochemische Kapazitätsverläufe von Referenz und zyklisierten	
Materialien	.163
Abbildung C-9: Strombelastbarkeitstest rekonditionierter Materialien	.163
Abbildung C-10: Sekundärelektronenmikroskopische Aufnahmen der Oberfläche von	
rekonditionierten Elektroden, Winkel 60°(Quelle: IPC-WWU und iPAT-TUBS	5)
	.164
Abbildung C-11:Referenz (links) und leichte Verunreinigung (rechts)	.165
Abbildung C-12: CV Test	.165
Abbildung C-13: C-Ratentest V21 und Referenz	.166
Abbildung C-14: Performance V21 und Referenz	.167
Abbildung C-15: XRD Messungen	.169

Abbildung	C-16: Ansicht der Primärpartikel bei der Referenz (links) und starke	
	Verunreinigung (rechts)	169
Abbildung	C-17: CV Daten aller drei Materialien	170
Abbildung	C-18: Zyklenstabilität	170
Abbildung	C-19: C-Ratentest V5-Z und Referenz	171
Abbildung	C-20: Performance V5-Z und Referenz	172
Abbildung	D-1: Zyklisierkurve von LiFePO4 bei 40°C	174
Abbildung	D-2: Zyklisierkurve von NMC bei 40°C	174
Abbildung	D-3: Temperaturmatrix 1CCC mit LiBF4 in EC/DMC	175
Abbildung	D-4: Temperaturmatrix 3CCC mit LiBF4 EC/DMC	175
Abbildung	D-5: Entladung der zu charakterisierenden Standardzellen	176
Abbildung	D-6: Ladung der zu charakterisierenden Standardzellen	177
Abbildung	D-7: Sprungantwort der Gesamtspannung des Systems	177
Abbildung	D-8: Sprungantwort der Einzelzellspannungen	178
Abbildung	D-9: Zellspannungsverlauf während der Zyklisierung	180
Abbildung	D-10: Performance von Standard-Schichtoxid-Zellen bei 1C Laderate	181
Abbildung	D-11: Performance von Standard-Schichtoxid-Zellen bei 3C Laderate	182
Abbildung	D-12: C-Ratentest bei unterschiedlichen Temperaturen	182
Abbildung	D-13: Haftkraftmessung an zyklisierten Zellen (Standard)	183
Abbildung	D-14: Nanoindentationsmessungen an NMC-Standardmaterial	184
Abbildung	D-15: SEM-Aufnahmen von NMC Standardmaterial	185
Abbildung	D-16: C-Ratentest NMC bei 21°C	187
Abbildung	D-17: C-Ratentest NMC bei 45°C	188
Abbildung	D-18: Performance NMC bei 21°C und 3C	188
Abbildung	D-19: Performancetest NMC bei 45°C und 3C	189
Abbildung	D-20: Haftkraftuntersuchung von NMC-Material bei unterschiedlichen Laderate	n
	und Temperaturen	189
Abbildung	D-21: SEM-Aufnahmen von NMC Recyclingmaterial bei 1C-Laderate	190
Abbildung	D-22: Nanoindentation von Recyclingmaterial. Laderate 3C, Temperatur 21°C.	191
Abbildung	D-23: Nanoindentation von Recyclingmaterial. Laderate 3C, Temperatur 45°C.	191
Abbildung	E-1: Energieinhalt der rücklaufenden Batteriesysteme	195
Abbildung	E-2: LithoRec-Prozesskette mit alternativen Prozesspfaden	197
Abbildung	E-3: Massenzusammensetzung des zugrundegelegten Batteriegemischs	
	[t System]	210
Abbildung	E-4: Stoffflussbezogener Deckungsbeitrag in der Demontage	212
Abbildung	E-5: Prozessdeckungsbeitrag in der Demontage	214

Abbildung E-6: Stoff- und energieflussbezogener Deckungsbeitrag in der Mechanischen	
Aufbereitung	215
Abbildung E-7: Prozessdeckungsbeitrag in der Mechanischen Aufbereitung	216
Abbildung E-8: Deckungsbeitrag in der Hydrometallurgischen Aufbereitung für NMC- und	
LFP-Systeme	218
Abbildung E-9: Sensitivitätsanalyse bezüglich der Prozessdeckungsbeiträge (K-NMC)	220
Abbildung E-10: Sensitivitätsanalyse bezüglich der Prozessdeckungsbeiträge (G-NMC)2	220
Abbildung E-11: Sensitivitätsanalyse bezüglich der Prozessdeckungsbeiträge (K-LFP)	221
Abbildung E-12: Sensitivitätsanalyse bezüglich der Prozessdeckungsbeiträge (G-LFP)2	221
Abbildung E-13: Relative Abweichungen der Szenarien vom Referenz-GDB	222
Abbildung E-14: Gewinnschwellendiagramm für Hydrometallurgische Aufbereitung bei	
unterschiedlicher Zusammensetzung des Altbatterieaufkommens	225
Abbildung E-15: Gewinnschwellendiagramm des Gesamtprozesses für NMC-Systeme	226
Abbildung E-16: Gewinnschwellendiagramm des Gesamtprozesses für LFP-Systeme	227
Abbildung E-17: Gewinnschwellendiagramm des Gesamtprozesses für gemischtes	
Aufkommen	228
Abbildung E-18: Jährliches Ergebnis in Abhängigkeit von Durchsatz und Zusammensetzu	ng
des Altbatterieaufkommens	229
Abbildung E-19: Gewinnschwellen in Abhängigkeit der Szenarien und prozentuale	
Abweichung der Extremszenarien vom Referenzszenario	230
Abbildung E-20: Zeitbezogene Gewinnschwellen der Einzelprozesse in Abhängigkeit der	
Szenarien zum Altbatterieaufkommen	232
Abbildung E-21: Zeitbezogene Gewinnschwellen der Gesamtprozesse in Abhängigkeit de	r
Szenarien zum Altbatterieaufkommen	232
Abbildung F-1: Modelleingabe bei ProdTect am Beispiel Li-Ionen Batterie	236
Abbildung F-2: Erweiterung der Recyclingdatenbank in ProdTect	237
Abbildung F-3: ProdTect Ergebnis-Visualisierung	238
Abbildung F-4: Gesamtsystem Batterie mit allen notwendigen Komponenten	244
Abbildung F-5: Aufbau eines Konstruktionskataloges	247
Abbildung F-6: Beispiel für die Bewertungsmöglichkeit	253
Abbildung F-7: Beispiele für die Umsetzbarkeit in IDIS	254
Abbildung G-1: Verfahrensfließbild mechanische Aufbereitung	265
Abbildung G-2: Layout der Aufbereitungsanlage für Lithium-Ionen-Batterien	267
Abbildung G-3: Sankey-Diagramm zum Materialfluss in den Prozessen	268


LithoRec Tabellenverzeichnis

III Tabellenverzeichnis

Tabelle A-1: Beschreibung der Annahmen der Szenarien zur Markt- und	
Technologieentwicklung	13
Tabelle A-2: Szenarioparametrierung, Marktentwicklung Antriebskonzept (A1 – A5)	14
Tabelle A-3: Szenarioparametrierung, Verhältnis der verwendeten Batterievarianten (C	1)14
Tabelle A-4: Szenarioparametrierung, Nutzungsdauer der Batterien nach Antriebskonze	ept
(C3)	14
Tabelle A-5: Szenarioparametrierung, Wieder-/Weiterverwendung außerhalb des Syste	ms
(D1 und D2)	15
Tabelle A-6: Untersuchte Parameter in der Sensitivitätsanalyse und ihre möglichen	
Ausprägungen	19
Tabelle A-7: Qualifikationsgrade für Arbeiten an Hochvoltkomponenten	22
Tabelle A-8: Erforderliche Qualifikation je nach Tätigkeit und Gefährdungspotential	23
Tabelle A-9: Empfehlungen für zu treffende Regelungen	24
Tabelle A-10: Auflistung berufsgenossenschaftliche Vorschriften / Arbeitsschutzregelung	gen
	27
Tabelle A-11: Anforderungskatalog auf Netzwerk- und Prozessebene und mögliche Akt	eure
	42
Tabelle A-12: Vergleich der Kapitalwerte in szenariospezifischer und robuster Optimier	ung 63
Tabelle A-13: Anwendungen in Sekundärmärkten	66
Tabelle A-14: Zellparameter	67
Tabelle A-15: Eignung des Batteriesystems für die identifizierten Anwendungen	68
Tabelle A-16: Reparaturtiefe Batteriesystem A	69
Tabelle A-17: Reparaturtiefe Batteriesystem B	69
Tabelle A-18: Reparaturtiefe Batteriesystem C	70
Tabelle A-19: Batterieeigenschaften	73
Tabelle B-1: Dokumentation von Demontageprozessen (Beispiel)	78
Tabelle B-2: Zusammenstellung der Konzepte für die Handhabung eines Batteriesyster	ns
vom Anlieferungsort zum Demontageplatz	85
Tabelle B-3: Auszug aus der Anforderungsliste für die Greifvorrichtung	86
Tabelle B-4: Rücklaufmengen der Batteriesysteme (Stückzahl) für die Szenarien "2015	
realistisch" und "2030 realistisch"	90
Tabelle B-5: Morphologischer Kasten der Demontagesysteme für Szenario "2015 realis	tisch"
	91

Tabelle B-6:	Morphologischer Kasten der Demontagesysteme für Szenario "2030 realistisch	
Tabelle B-7:	Rücklaufmengen der Batteriesysteme (Stückzahl) für das Szenario "2030	
	politisch"	
	Fraktionen nach der Demontage der Batterien10	
Tabelle C-1:	Spezifikationen der NiSO4- / CoSO4-Lösungen für LNCAO (links) und LNMCO	
	(rechts)14	
	Spezifikationen für LiOH•H2O14	
	Spezifikationen für Li2CO314	
Tabelle C-4:	Rohstoffspezifikation von Lithiumhydroxid Monohydrat15	50
Tabelle C-5:	Konzentrationen und pH-Werte der Lösungen von LNCMO V21 vs. LNCMO V5 Z15	
Tabelle C-6:	Simulation der Lösungen (Metallsalz in g/l Lösung)15	53
Tabelle C-7:	Simulation der Lösungen für den exakten Drittelmix mit Ni:Co:Mn = 1:1:115	54
Tabelle C-8:	Chemische Zusammensetzung der Aktivmaterialien [Masse-%]15	57
Tabelle C-9:	Lade- und Endladekapazitäten von jeweils zwei Zellen des Referenz-LNCMO	
	und V21 bzw. V5-Z15	57
Tabelle C-10	D: Chemische, physikalische und elektrochemische Eigenschaften der LiFePO4	
	Materialien, welche aus sekundären Li-Rohstoffen hergestellt wurden15	58
Tabelle C-1	1: Vergleich der Zusammensetzung der Reaktionslösung von V5-Z aus dem	
	ursprünglichen (Klein-) Versuch und dem dritten Synthesezyklus16	86
Tabelle D-1:	Matrix der Alterungsuntersuchungen17	75
Tabelle E-1:	Typische Kapazitäten von Automotive-Batteriesystemen19) 4
Tabelle E-2:	Ermittelte Energieverbräuche19	9 5
Tabelle E-3:	Funktionelle Einheiten [t Systeme] und [BEV-Äq.] sowie Umrechnung in PHEV-	-
	u. HEV-Systeme21	12
Tabelle E-4:	Berechnung der Lohnkosten	13
Tabelle E-5:	Lohnkosten in der Mechanischen Aufbereitung21	15
Tabelle E-6:	Zusammensetzung der Übergangsmetallsalzlösung21	17
Tabelle E-7:	Fallunterscheidungen und Gesamtprozessdeckungsbeiträge21	18
Tabelle E-8:	Durchsatzbezogene Gewinnschwellen aller Einzelprozesse und des	
	Gesamtprozesses	24
Tabelle F-1:	unterschiedliche Möglichkeiten der Gehäuseteilung24	10
Tabelle F-2:	Konzepte der demontagefreundlichen Batteriemodulgestaltung24	16
Tabelle F-3:	Darstellung für die Umsetzung in CAD	19
Tabelle F-4:	Minimaile Modulzahl24	19
Tabelle F-5:	Unterschiedliche Hinweismöglichkeiten25	51

LithoRec Tabellenverzeichnis

630	

Tabelle G-1: Bedarfsrechnung Zerlege- und Entladungsstationen	257
Tabelle G-2: Durchschnittliche Zusammensetzung von Lithium-Ionen-Akkumulatorzellen	.258
Tabelle G-3: Verteilung wesentlicher Masseströme für die Aufbereitung von 700 kg	
Zellmasse je Stunde	258
Tabelle G-4: Abschätzung der erforderlichen Entstaubungsluftmengen	.263
Tabelle G-5: Berechnung des Lagerbedarfs für die Batterietypen	.269
Tabelle G-6: Abschätzung des Lagerplatzbedarfs für die Produkte	.270
Tabelle G-7: Liste der Maschinen und Ausrüstungen	270

A 1 Kurzzusammenfassung

In dem Projekt "LithoRec – Recycling von Lithium-Ionen-Batterien" wurden mehrere Verfahrenswege zum Recycling von Traktionsbatterien evaluiert. Die Planung der Demontage der Batteriesysteme in LithoRec umfasste neben der reinen Systemplanung auch erste Untersuchungen der Automatisierbarkeit der Demontageschritte, u. a. mit der prototypischen Realisierung eines Greifersystems zur Entnahme von Batteriezellen. Prozesse für das Zerlegen der Zellen und das Abtrennen der Aktivmaterialien von den Metallfolien wurden im Labor sowie hinsichtlich des Shredderns der Zellen auch im Technikumsmaßstab etabliert und untersucht. Zur hydrometallurgischen Aufbereitung separierter Beschichtungspulver aus Lithium-Ionen-Batterien wurde in LithoRec eine Pilotanlage realisiert. Ökologische und ökonomische Bilanzen auf Basis der im Labor- oder Technikumsmaßstab durchgeführten Untersuchungen zeigten positive Ergebnisse. Zur Auftrennung der Batteriesysteme bis auf die Ebene des eingesetzten kathodischen Aktivmaterialpulvers wurde ein schlüssiges Konzept entwickelt, das in Laborapparaturen sehr gute Ergebnisse zeigte.

Die meisten konventionellen Verfahren zum Batterierecycling fokussieren auf die Rückgewinnung der Wertmetalle Kobalt und Nickel durch ein im Wesentlichen pyrometallurgisches Verfahren, das zur Rückgewinnung des Lithiums mit hydrometallurgischen Verfahren kombiniert werden muss. Die Rückgewinnung eines signifikanten Anteils an Lithium ist mit diesen Verfahren nur mit extrem hohem Aufwand möglich. In LithoRec konnte hingegen ein Verfahren entwickelt werden, in welchem auf mechanischem und hydrometallurgischem Wege je nach Aktivmaterial 85 bis über 95 %* des Lithiums wiedergewonnen werden kann. Ein weiterer Vorteil des "LithoRec-Prozesses" ist, dass die zurückgewonnenen Materialien bei mechanischer Aufbereitung im Labormaßstab nachgewiesenermaßen Batteriequalität aufweisen und somit ein geschlossener Kreislauf der strategisch wichtigen Batterierohstoffe erfolgt. So wurde aus Lithiumeisenphosphat Lithiumhydroxid gefällt und aus Lithiumnickelmangankobaltoxid (NCM) wieder neues NCM in Batteriequalität hergestellt.

Die Automatisierung der Demontage von Lithium-Ionen-Batteriesystemen wurde ebenfalls in LithoRec theoretisch untersucht. Es konnte hierbei gezeigt werden, dass einzelne dedizierte Demontageschritte wie z. B. die Entnahme der Batteriezellen ein ausgeprägtes Automatisierungspotenzial aufweisen. Ferner wurde beispielhaft ein Greifer zur Zellhandhabung mit integrierter Zustandsbestimmung (Spannungsmessung und Innenwiderstandsbestimmung) entwickelt. Eine durchgängige Automatisierung von Demontagesequenzen von Batteriesystemen ist jedoch aufgrund der Umgebungsbedingungen in Demontagefabriken, der Variantenvielfalt bzw. fehlender Standardisierung der Systeme und der Qualifikationsvoraussetzungen auch langfristig nur eingeschränkt realisierbar.

Bei der maschinellen Zerlegung, insbesondere der Zerkleinerung von Batteriesystemen, -zellen und -elektroden, treten - abhängig vom Aufbereitungsverfahren - Verunreinigungen in den zurückgewonnenen Aktivmaterialien auf, die Probleme bei der Synthese neuer Aktivmaterialien bereiten können. So zeigten sich in LithoRec bei der Synthese von LNCMO aus gezielt mit nennenswerten Mengen von Aluminium verunreinigten Lösungen Prozessschwierigkeiten: Das im hydrometallurgischen Prozess bei der Übergangsmetallabtrennung mitgefällte Aluminiumhydroxid führte zum Verkleben der sphärischen Übergangsmetallhydroxid-Partikel, die nach der Kalzination stark aggregiert vorlagen und ohne Zerstörung

-

bezogen auf separiertes Kathodenmaterial als Rohstoff für das hydrometallurgische Recycling

der vorher gezielt eingestellten Morphologie nicht mehr aufzumahlen waren. Zudem wurde eine verunreinigungsbedingte Veränderung der Partikelmorphologie nach der erneuten Ausfällung aus verunreinigten Übergangsmetallsalzlösungen registriert.

Des Weiteren wurden in LithoRec neue Ansätze zur Elektrolytrückgewinnung (Lösungsmittel und Leitsalz) identifiziert. Erste Erfolge zeigten sich auf den Wegen der Unterdruck-Kondensation und der Extraktion mittels überkritischem Kohlenstoffdioxid im kleinsten Labormaßstab.

Erste ökologische Bewertungen geben einen Überblick über die vollständige Prozesskette (Cradle-to-grave) mit Fokus auf Lithium-Ionen-Batterien. Im Rahmen der beiden gerade abgeschlossenen BMU-geförderten Projekte LIBRI und LithoRec wurden die Recyclingtechnologien für Lithium-Ionen-Batterien ökologisch bewertet. Des Weiteren konnte die potentielle Wirtschaftlichkeit des Recyclings großer Mengen Altbatterien in LithoRec nachgewiesen werden.

A.1 Wesentliche Ergebnisse in den einzelnen Projektbereichen

Im Folgenden werden die wesentlichen Ergebnisse aus den einzelnen Projektbereichen in stichpunktartigen Sätzen dargestellt. Eine detaillierte Diskussion erfolgt in den jeweiligen Arbeitsschritten.

A.1.1 Projektbereich A

- Bei Realisation des vom Nationalen Entwicklungsplan Elektromobilität vorgegebenen Ziels eines deutschlandweiten Bestands von einer Million Elektrofahrzeuge bis 2020 sind im gleichen Jahr bereits 11.000 Tonnen Altbatterien zu behandeln (Szenario "Politisch"). Vorausgesetzt wird, dass die schnelle Marktdurchdringung zu nur minimalen Fortschritten in der Lebensdauer der Batterien führt. (AP A.1)
- Die wesentlichste recyclingrelevante Information ist die in Batteriesystemen und Zellen verwendete Zellchemie. Farbig gekennzeichnete Aufkleber auf Batteriesystemen, Modulen und Zellen sollen Aufschluss über die Zellchemie geben (z. B. "NCA", "NMC", "LFP"). Zudem sollte die BattG-Melderegisternummer nach UBA oder der Herstellername selbst angegeben werden, damit der Hersteller im Sinne des BattG eindeutig identifiziert werden kann. (AP A.2)
- Die Bereitstellung der für die Demontage benötigten Anweisungen kann über eine Erweiterung des bereits etablierten System IDIS erfolgen. (AP A.2)
- Da zunächst ein zentrales einstufiges Sammelkonzept anzustreben ist, sollte ein erstes Demontagewerk mit einer Verarbeitungskapazität in der Größenordnung bis 5.000 BEV-Äquivalente/Jahr in der unmittelbaren Nähe eines Zellaufbereitungswerks errichtet werden.
- Langfristig (ab ca. 2020) ist ein Übergang zur dezentralen zweistufigen Sammlung und Demontage empfehlenswert.

A.1.2 Projektbereich B

- Batterieerkennungs- und Visualisierungssoftware für Mehrmarkenwerkstattdiagnosegerät programmiert und aufgespielt
- Maschineller Aufschluss kompletter Zellverbünde ist möglich → Inertisierung allerdings notwendig
- Mechanische Demontage von verschiedenen Batteriesystemen und Erstellung von Demontagereihenfolgen sowie –zeiten inkl. der notwendigen Dementagewerkzeuge
- Methodische Bewertung der Demontage hinsichtlich Demontagefreundlichkeit und Automatisierbarkeit
- Konzeptionierung von Automatisierungslösungen auf Basis der genannten Bewertungsmethodik (Handhabung der Batteriesysteme, -module und Zellen)
- Entwurf alternativer Layouts und Verkettungen von Demontagesystemen mit rein manuellen Demontagestationen, sowie gemischt manuell und automatisierten Demontagestationen
- Ausgestaltung eines Greifers für das automatisierte handhaben von Batteriezellen mit integrierter Spannungs- und Innenwiderstandsbestimmung
- Erprobung durch Greifen und SPS basierte Messdatenerfassung von drei verschiedenen Pouch-Batteriezellen
- Ableitung von Anforderungen an das Design von Batteriesystemen gemäß dem Design for Recycling und Design for Environment
- Aufschluss, Sortierung und Klassierung im industriellen Maßstab sind möglich
- Nasse, Lösungsmittelbasierte Separation von Stromsammlerfolie und Aktivmaterial ist möglich, aber aufwendig
- Trockene, Mechanische Separation ist großtechnisch in hoher Aktivmaterial-Reinheit und mit hohen Ausbeuten umsetzbar
- Prozess zur sortenreinen Trennung von Beschichtung und Stromsammlerfolie in Reinheit >99 % entwickelt
- Bedarf an Realisierung im Pilotmaßstab zur vollständigen Charakterisierung des Prozesses

A.1.3 Projektbereich C

- Aus rekonditionierten Aktivmaterialien lassen sich grundsätzlich Elektroden und Zellen (Labormaßstab) mit ausreichend guter elektrochemischer Performance herstellen.
- Prozess zur direkten Wiederbeschichtung von Trägerfolien mit Material aus Produktionsausschuss entwickelt
- Direkt wiederbeschichtete Materialien aus Ausschuss haben gleiche elektrochemische Qualität wie Neumaterialien → keine Resynthese nötig

- Aktivmaterialsynthese aus schwach verunreinigter Übergangsmetallsalzlösung mit vergleichbarer elektrochemischen Performance erfolgreich
- Aktivmaterialsynthese aus verunreinigter Übergangsmetallsalzlösung erfolgreich, aber bei stärkerer Verunreinigung schlechtere elektrochemische Performance
- Bedarf an nachträglicher Aufreinigung besonders hinsichtlich einer Abreicherung von Aluminium oder hochreiner Separation (entwickelt in **PB B**)
- Bedarf an weiterer Aufklärung des Einflusses von Verunreinigungen auf die Qualität von Recycling-Elektroden
- Bedarf an Pilotanlage zur tatsächlichen Herstellung von Recyclingmaterialien (ohne Simulation der Verunreinigungen)

A.1.4 Projektbereich D

- Untersuchung der mechanischen Alterungsmechanismen (Haftkraft, Elastizität der Elektrodenschicht) an Standardmaterial
- Untersuchung an zwei unterschiedlich verunreinigten NMC-Aktivmaterialien.
- Schwach verunreinigtes NMC-Material zeigt ähnlich gute elektrochemische Performance wie Ursprungsmaterial
- Stark NMC-verunreinigtes Material zeigt deutlich geringere Performance als Standard
- Verunreinigungen in NMC-Aktivmaterial verursachen verstärkte Partikelbrüche nach Zyklisierung

A.1.5 Projektbereich E

- Die ökologische Auswertung des LithoRec-Prozesses im Rahmen der vom Öko-Institut durchgeführten Ökobilanz nach ISO 14040/14044 ergibt in den betrachteten ökologischen Wirkungskategorien teils deutliche Nettogutschriften in sämtlichen untersuchten Prozessschritten. Das Recycling der Batterien mit Hilfe des LithoRec-Prozesses ist somit als ökologisch sinnvoll zu betrachten.
- Die ökonomische Bewertung zeigt, dass der LithoRec-Recyclingprozess in Kombination mit einer mechanischen Aufbereitung ab einem jährlichen Aufkommen von ca. 4.500 t Systemen bzw. 15.000 Stück BEV-Systemen wirtschaftlich betrieben werden könnte. Ein solches Aufkommen wäre bei starker Marktdurchdringung von Elektrofahrzeugen und bei Erreichung der Ziele des Nationalen Entwicklungsplans Elektromobilität ein Bestand von einer Million Elektrofahrzeugen im Jahr 2020 zwischen 2018 und 2020 erreicht.
- Die ursprünglich angedachte manuelle Öffnung und Separation von Batteriezellen, die in Konkurrenz zu der mechanischen Aufbereitung steht, ist als unwirtschaftlich zu bezeichnen.
- Neben der Menge des Altbatterieaufkommens ist dessen Zusammensetzung wesentlicher Treiber eines sich finanziell selbst tragenden Recyclingprozesses. Werden zu-

künftig vorwiegend Lithiumeisenphosphatbatterien in Elektrofahrzeugen verwendet, wird die Gewinnschwelle des Gesamtprozesses erst bei ca. 6.800 t Systeme bzw. 21.000 BEV-Systeme erreicht.

- Die Wirtschaftlichkeit der Einzelprozesse kann dabei durch bestimmte Faktoren wesentlich beeinträchtigt werden. Größter Faktor sind sinkende Preise für die zurückgewonnenen Wertstoffe, aber auch zusätzlich benötigte Einsatzstoffe (z. B. Stickstoff).

A.1.6 Projektbereich F

- Entwicklung eines ProdTect-Produktmodells für ein Lithium-Ionen-Batteriesystem
- Identifizierung von Anforderungen für die allgemeine Batteriegestaltung mit folgender Erarbeitung von Gestaltungsregeln für die demontagefreundliche Batteriegestaltung
- Aufstellen von Konstruktionskatalogen für Verbindungstechniken, Fügen von Körpern und den Formen der Wärmeübertragung
- Die Abhängigkeiten zwischen Batterie und Fahrzeug sind ohne Normung nicht genau präzisierbar bzw. zu stark von den jeweiligen Herstellern abhängig.
- Vordefinierte/genormte Bauräume erleichtern dem Batteriehersteller modulare Systeme zu erarbeiten.
- Mit wenigen Grundmodulen ist es möglich alle Elektrifizierungsgrade abzudecken
- Definition von Ansätzen die eine vollständige Umsetzung in CAD erfordern mit prototypischer CAD-Umsetzung.
- Erarbeitung eines Konzeptes zum sicheren Umgang mit Hochvoltkomponenten des Batteriesystems
- Identifizierung von schnell realisierbaren Sicherheitskonzepten für die Aspekte Transport und Demontage
- Zusammenstellung der Rechtsvorschriften für eine fachgerechte Demontage und das Recycling sowie Ableitung von Vorschlägen für die Dokumentation in IDIS sowie als Recyclingpass

A.1.7 Projektbereich G

- Konzeptionierung einer möglichen Recycling-Pilotanlage aus den Einzelschritten der vorangegangenen Projektbereiche
- komplett neue Anlage auf der "grünen Wiese"
- Zusammenführung der Ergebnisse aus den anderen Projektbereichen
- Grundrisskonzept einer Anlage zur Verarbeitung von 700 kg Zellmaterial
- Ein Verfahrensfließbild wurde erstellt
- Einzelne Anlagenteile, Maschinen und Geräte wurden ausgelegt und mögliche Lieferanten bestimmt

A.2 Veröffentlichungen

Publikationen

[Schmitt, 2011] Schmitt, J.; Haupt, H.; Kurrat, M.; Raatz, A.: Disassembly Automation for Lithium-lon Battery Systems Using a Flexible Gripper. In: Proc. 15th

IEEE International Conference on Advanced Robotics (ICAR), Tallinn,

Estland, 2011, ISBN 978-1-4577-1157-2

[Hanisch, 2011] Hanisch, C., Haselrieder, W., Kwade, A.. (2011). Recovery of active

materials from spent lithium-ion electrodes and electrode production rejects in: Hesselbach, J.:, Herrmann, C.(Hrsg.): Globalized Solutions for Sustainability in Manufacturing, Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, May 2nd - 4th, 2011, Sprin-

ger-Verlag, Berlin, Heidelberg, 85-89

[Hanisch, 2012] Hanisch, C., Haselrieder, W., Kwade, A.. (2012). "Recycling von Lithi-

um-Ionen-Batterien – das Projekt LithoRec" in: Thomé-Kozmienski, K.J.:, Goldmann, D.(Hrsg.): Recycling und Rohstoffe, Band 5, ISBN

978-3-935317-81-8, TK Verlag, Neuruppin, S. 691-698

[Herrmann, 2012] Hermann, C.; Raatz, A.; Mennenga, M.; Schmitt, J.; Andrew, S.: As-

sessment of Automation Potentials for the Disassembly of Automotive Lithium Ion Battery Systems. In: Proc. 19th CIRP International Confe-

rence on Life Cycle Engineering, Berkeley, USA, 2012

[Hoyer, 2011a] Hoyer, C.; Kieckhäfer, K.; Spengler, T. (2011): Strategische Planung

des Recyclings von Lithium-Ionen-Traktionsbatterien, in: Sucky, E.; Asdecker, B.; Dobhan, A.; Haas, S.; Wiese, J. (Hrsg.): Logistikmanagement: Herausforderungen, Chancen und Lösungen, Band II, Tagungsband der Logistikmanagement 2011, University of Bamberg

Press, Bamberg, S. 399–419.

[Hoyer, 2011b] Hoyer, C.; Kieckhäfer, K.; Spengler, T. (2011): A Strategic Framework

for the Design of Recycling Networks for Lithium-Ion Batteries from Electric Vehicles, in: Hesselbach, J.; Herrmann, C. (Hrsg.): Globalized Solutions for Sustainability in Manufacturing, Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, May 2nd - 4th,

2011, Springer-Verlag, Berlin, Heidelberg, 79-84

Vorträge und Präsentationen

 12. Doktorandenworkshop Nordost (April 2010, Cottbus): "Netzwerk- und Prozessgestaltung für das Recycling von Lithium-Ionen-Traktionsbatterien" (Claas Hoyer)

• 5. Tagung der Autoverwerter (November 2010, Hohenroda):

"LithoRec - Recycling von Lithium-Ionen-Batterien" (Gunnar Bärwaldt)

- Batterietag in Aachen, (Februar 2011, Aachen):
 "Recycling von Lithium-Ionen Batterien am Beispiel von LithoRec" (Arno Kwade)
- Kraftwerk Batterie, (März 2011, Aachen):
 "LithoRec Aufbereitung von Lithium-Ionen-Batterien zur hydro-metallurgischen Rückgewinnung von Lithium und Übergangsmetallen" (Arno Kwade)
- EUROFORUM-Konferenz "Rohstoffe für E-Mobilität" (Mai 2011, Stuttgart):
 "Das LithoRec Projekt: Recycling von EV-Batterien" (Arno Kwade)
- 6. Tagung der Autoverwerter (November 2011, Hohenroda):
 "LithoRec Recycling von Lithium-Ionen-Batterien Die Ergebnisse" (Stefan Andrew)
- Materialica Materials for Batteries Congress (November 2011, München):
 "Sustainability Recycling of Lithium-Ion-Batteries" (Christian Hanisch)
- "Von Akku bis Zink-Kohle Entwicklungen in der Batterieentsorgung", (November 2011, Potsdam):
 "Recycling von Lithium-Ionen-Batterien" (Christian Hanisch)
- Advanced Battery Power, (März 2012, Münster):
 "Recycling of Lithium Ion Batteries" (Christian Hanisch)

Poster

- B. Hoffmann, S. Krüger, H. C. Wagner, F. Schappacher, S. Nowak, S. Passerini, M. Winter "Recycling von Lithium Ionen Batterien Analyse und Methoden", Kraftwerk Batterie Lösungen für Automobil und Energieversorgung, Aachen, 01. 02.03.2011.
- S. Krüger, C. Hanisch, W. Haselrieder, S. Nowak, S. Passerini, A. Kwade, M. Winter "Recycling Of Lithium-Ion Batteries", 118th International Conference on Solid State Ionics, Warschau, Polen, 03. 08.07.2011.
- H. Haupt, D. Wedler, "Ansätze zur demontagefreundlichen Batteriegestaltung", Kraftwerk Batterie Lösungen für Automobil und Energieversorgung, Aachen, 01. 02.03.2011.

Presseartikel

- "Lithium Ein Spannungsmacher auf Kreislaufkurs", Artikel VDI nachrichten, 07.01.2011 basierend auf Interview mit Professor Kwade.
- "Wiederverwertung Recycling im Elektro-Zeitalter", Süddeutsche Zeitung, 27.04.2011, basierend auf Interview mit Christian Hanisch

 "Nachweislich grün", Recyclingmagazin, Ausgabe 05/12 basierend auf Ökobilanz und Interview Christian Hanisch

A.3 Begriffsbestimmungen

Hybridfahrzeuge (Hybrid Electric Vehicles, HEV) sind Personenkraftwagen, die sowohl durch einen konventionellen Verbrennungsmotor als auch durch einen Elektromotor angetrieben werden können. Die Versorgung mit elektrischer Energie erfolgt aus einem Akkumulator, der beispielsweise durch Rekuperation (Bremskraftrückgewinnung) geladen wird. Ein rein elektrischer Antriebsmodus ist keine Bedingung.

Plug-In-Hybridfahrzeuge (Plug-In Hybrid Electric Vehicles, PHEV) sind → Hybridfahrzeuge, deren Akkumulatoren unabhängig von dem eingebauten Verbrennungsmotor durch Anschluss an stationäre Ladevorrichtungen geladen werden können. Die Möglichkeit eines rein elektrischen Betriebs für kurze bis mittlere Strecken (~ 40 km) ist Bedingung.

Reine Elektrofahrzeuge (Battery Electric Vehicles, BEV) sind Personenkraftwagen, die ausschließlich über einen elektrischen Antrieb verfügen. Die Versorgung mit elektrischer Energie erfolgt aus einem Akkumulator, der durch Anschluss an stationäre Ladevorrichtungen geladen werden kann.

Unter dem Begriff Elektrofahrzeug werden PHEV und BEV zusammengefasst.

Batterie-Management-Systeme (BMS) sind elektronische Systeme die die funktionale Sicherheit eines Batteriesystems gewährleisten. Zusätzliche Funktionen können eine Betriebsdatenerfassung und Verarbeitung umfassen. Die Ausgestaltung ist herstellerabhängig.

Als **Package** bezeichnet man in der Fahrzeugtechnik die geometrische Anordnung von Bauteilen eines Gesamtsystems zueinander. Die Positionen können durch sogenannte Packagemaße beschrieben werden.

Die **Modularisierung** beschreibt die Möglichkeit, unterschiedliche Gesamtsysteme aus der Variation kleiner Grundkörper aufzubauen. Die Grundkörper benötigen dafür definierte Schnittstellen

Templates sind im CAD-System eine Vorlage für einen geometrischen Körper, in dem modellierungsschritte hinterlegt sein können. Anhand von Eingabeparametern kann auf diese Weise schnell eine bekannte Geometrie erzeugt werden.

LithoRec Arbeitspaket A.1

A Analyse und Entwicklung logistischer Sammel- und Rückführungsprozesse

A.1 Analyse des Altbatterieaufkommens

Zielsetzung des AP A.1 ist es, das Aufkommen von Lithium-Ionen-Altbatterien aus Elektrofahrzeugen über die Zeit zu analysieren und abzuschätzen, um eine Planungsgrundlage für nachfolgende Untersuchungen in den einzelnen Projektbereichen zu schaffen. Aufgrund der hohen Unsicherheiten werden drei Szenarien entwickelt, die das erwartete Spektrum der Markt- und Technologieentwicklung in ihrer Breite wiedergeben. Diese Szenarien, die unter anderem den Elektrofahrzeugmarktbestand für zukünftige Zeitpunkte sowie die durchschnittliche Nutzungsdauer von Traktionsbatterien vorgeben, werden anschließend genutzt, um mit Hilfe eines neu entwickelten systemdynamischen Simulationsmodells das Altbatterieaufkommen über die Zeit abzuschätzen.

A.1.1 Identifikation und Analyse der für den Rückfluss von Lilonen Altbatterien relevanten Einflussgrößen

Ziel des Arbeitsschritts ist die Identifikation und Untersuchung derjenigen Einflussfaktoren, die das Altbatterieaufkommen bestimmen. Diese Arbeiten wurden von <u>AIP-TUBS</u> in Zusammenarbeit mit <u>AUDI</u> durchgeführt. Die identifizierten Faktoren können in exogene und endogene unterteilt werden. Wesentliche exogene Faktoren sind (vgl. Anhang 1): Die Marktentwicklung für Kraftfahrzeuge, die eine Lithium-Ionen-Traktionsbatterie verwenden (A1 – A4), die Lebensdauer dieser Fahrzeuge (A5), die Lebensdauer der Batterien im mobilen Betrieb (C3) und die Weiterverwendung gebrauchter Batterien außerhalb des Systems (D1, D2).

Die Einflussfaktoren sind für die im Projekt untersuchten Batterievarianten und Antriebskonzepte getrennt zu betrachten, da das Altbatterieaufkommen maßgeblich hiervon abhängt. Des Weiteren ist im Bereich des Marktpotenzials zu beachten, dass das mittelfristige und langfristige Marktpotenzial eines Antriebskonzepts differieren kann. Die weiteren Faktoren B1 bis B4 sowie C1 und C2 (im Folgenden *Behelfsfaktoren*) haben zwar keinen unmittelbaren Einfluss auf das gesamte Batterieaufkommen, tragen jedoch dem Sachverhalt Rechnung, dass dieses aufgrund unterschiedlicher chemischer Zusammensetzungen der Batterievarianten nicht als homogene Masse behandelt werden kann. Vielmehr unterscheiden sich die Batterievarianten beispielsweise hinsichtlich ihrer Energie- und/oder Leistungsdichte, ihrer Zyklenfestigkeit und kalendarischen Alterung und damit ihrer Lebensdauer sowie der Reife der Technologie.

Je nach Fragestellung kann mithilfe der Behelfsfaktoren das Altbatterieaufkommen unterschiedlich spezifiziert werden. So sind für den Transport der Batterien eher die Masse und das Volumen bezogen auf das Batteriesystem relevant, während für die Bestimmung von Kapazitäten im Verwertungsprozess eher die Masse bezogen auf die Zellen entscheidend ist. Im Rahmen der Untersuchungen in **AS A.1.4** wurden nur die Anzahl der Systemeinheiten und die Masse des Altbatterieaufkommens erhoben.