Schriftenreihe des Lehrstuhls für Kontinuumsmechanik und Materialtheorie der Technischen Universität Berlin

Herausgegeben von Prof. Dr. rer. nat. Wolfgang H. Müller

UPGRADED METALLURGICAL SILICON FOR

APPLICATION IN THE PHOTOVOLTAIC INDUSTRY

UPGRADED METALLURGICAL SILICON FOR APPLICATION IN THE PHOTOVOLTAIC INDUSTRY

von Samo Semenič

Von der Fakultät V, Verkehrs- und Maschinensysteme Der Technischen Universität Berlin Zur Verleihung des akademischen Grades - Doktor-Ingenieur (Dr.-Ing.) -

genehmigte Dissertation

PROMOTIONSAUSSHUSS

Vorsitzender: Erster Gutachter: Zweiter Gutachter: Dritter Gutachter: Prof. Dr. U. von Wagner Prof. Dr. rer. nat. W. H. Müller Dr. rer. nat. habil. W. Weiss Dr. rer. nat. C. Bornhauser

Tag der Einreichung der Dissertation:	9. November, 2011
Tag der wissenschaftlicher Ausprache:	2. Dezember, 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2012

Zugl.: (TU) Berlin, Univ., Diss., 2011

978-3-95404-008-7

© CUVILLIER VERLAG, Göttingen 2012 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage, 2012
Gedruckt auf säurefreiem Papier

978-3-95404-008-7

Preface

The present thesis reflects my work during the last four years at the Solarvalue AG in Berlin. During this time I was supported by many persons who inspired me in various discussions. Furthermore, they gave me their advice, and I always enjoyed the friendly atmosphere at the Solarvalue AG as well as the intensive scientific cooperation with the research group Von Ardenne GmbH in Dresden, Retech Systems LLC in Ukiah, California and to TU Berlin, Fakultät V – Verkehrs- und Maschinensysteme, Institut für Mechanik in Berlin.

First of all, would especially like to thank my supervisors. Prof. Dr. rer. nat. W. H. Müller and Dr. rer. nat. habil. W. Weiss (WIAS), for their scientific support. In this context I will not forget the uncountable, often controversial discussions on one side and the friendly and pleasant conversations on the other side. Their support and help enabled me to finish the Ph.D. thesis in the present form. Secondly, I am deeply grateful to Dr. rer. nat. C. Bornhauser for helping by research work. Furthermore, I want to express my thanks to my family, in particular to my wife and to my children. They continuously supported me during my study time and always gave me a warm and safe home.

Special thanks also to my colleagues and friends, especially to H. Müller (Glasbläserei), Dr. H. Seibt (Actensa), Dr. W. R. Imler (Squirrel Hill Associated), Dr. F. C. Lissalde (Cyberstar), Dr. L. Sylla (Cyberstar), Dr. K. Sporbert (Steremat Electrowärme), Prof. Dr. D. Lynch (STRC), Dr. T. Skotheim (Intex), R. E. Haun (Retech), L. Ullmann (Von Ardenne), and A. Kokalj, who inspired me during many discussions, made suggestions and gave useful advice.

Berlin, 9. November 2011

Samo Semenič

Contents

	Prefac	ce		iii
	List of	f Tables	\$	ix
	List of	f Figure	S	X
	List of	f Abbrev	viations	xiii
1	Intro	oductior	٦	1
	1.1	History	,	1
	1.2	Applica	ations	2
	1.2.	1 Ap	plications in the aluminum industry	2
	1.2.	2 Ар	plications in chemistry	2
	1.	.2.2.1	Silicones	2
	1.	.2.2.2	Synthetic silica	2
	1.	.2.2.3	Functional silane	3
	1.2.	3 Se	miconductor silicon	3
	1.	.2.3.1	Mono-crystalline silicon	4
	1.	.2.3.2	Multi-crystalline silicon	5
	1.2.	4 Th	in film solar cell	6
	1.3	Market		8
	1.4	Trends		11
	1.4.	1 Pro	oduction increase	11
	1.4.	2 Up	graded metallurgical silicon	11
	1.4.	3 Pri	cing impact	12
	1.4.	4 Co	st reduction opportunities	12
	1.4.	5 Sili	icon photovoltaic efficiency	13
	1.4.	6 Th	inner wafers	14
	1.4.	7 So	lar economics	15
	1.4.	8 Ph	otovoltaic thin film	15
	1.	.4.8.1	Amorphous silicon (a-Si)	16
	1.	.4.8.2	Copper Indium Gallium Diselenide (CIGS)	16
	1.	.4.8.3	Cadmium Telluride (CdTe)	16
	1.5	Conclu	sions	17
2	Phy	vsical pr	operties of silicon	19
	2.1	The ph	otovoltaic effect	21
	2.2	Materia	al properties and requirements for photovoltaic application	22
	2.3	Photov	oltaic cell efficiency	
	2.4	Lifetim	е	25

	,	2.4	4.1		Med	chanisms of recombination	27
	2.	5	E	Effe	ct o	f various impurities	28
		2.	5.1		Ato	ms from Group IIIa (B, Al, Ga,…) or Va (N, P, As, Sb,…)	29
			2.5	5.1.1	1	Carbon	29
			2.5	5.1.2	2	Oxygen	30
	2.0	6	F	Res	istiv	ity and carrier transport parameter in silicon	31
		2.6	6.1		Res	sistivity, mobility and diffusivity for n-type and p-type doped silicon .	31
		2.6	6.2		Res	sistivity, dopant levels in solar grade silicon	32
		2.6	6.3		Eleo	ctron and Hole Minority Carrier Lifetime and Diffusion Lengths	35
	2.	7	۵	Сор	ing	of silicon	37
	2.8	8	E	Elec	ctrica	al resistivity	38
	2.9	9	(Con	clus	sions	39
3		Pr	OC	ess	cha	ain from quartz to high purity silicon	40
	3.	1	F	Red	ucti	on of quartz to metallurgical grade silicon in the arc furnace	40
		3.′	1.1		The	submerged arc furnace process and technical implementations	40
		3.′	1.2		Inpu	ut materials	41
			3.1	.2.	1	Quartz	42
			3.1	.2.2	2	Carbon	43
			3.1	.2.3	3	Wood chips	44
		3.′ sil	1.3 ico	n a	Tec nd p	hnological limitations regarding the purity of metallurgical grade process optimization	44
		3.′	1.4		Ene	ergy and material balance of the submerged arc furnace process	46
	3.2	2	(Obta	ainir	ng solar grade silicon from metallurgical grade silicon	48
		3.2	2.1		Che	emical routes	50
			3.2	2.1.1	1	Wacker Chemie AG	50
			3.2	2.1.2	2	Tokuyama Corporation	50
			3.2	2.1.3	3	REC Group – REC silicon	51
		3.2	2.2		Met	allurgical routes	51
			3.2	2.2.	1	SOLSILC	51
			3.2	2.2.2	2	Elkem Solar	51
			3.2	2.2.3	3	Kawasaki Steel Corporation	52
			3.2	2.2.4	4	Apollon Solar – Photosil project	52
			3.2	2.2.	5	UNICAMP	53
			3.2	2.2.6	6	TIMMINCO	54
			3.2	2.2.	7	6N-Calisolar Inc	54
	3.3	3	(Con	clus	sions	55
4		Ρι	urif	icat	ion	of the metallurgical grade silicon	56

4.1	The	"Siemens process"	56
4.2	The	silane production process	59
4.3	The	pyrolysis process	61
4.4	Cry	stallization	62
4.	4.1	Segregation coefficients	62
4.	4.2	The mathematical theory of directional coarsening	63
	4.4.2.	1 The Scheil equation for impurity reduction	64
	4.4.2.	2 Lever model of impurity reduction	66
	4.4.2.	3 Comparison of the Scheil and the lever model	67
	4.4.2.	4 Crystallization and potential applications	69
	4.4.2.	5 Burton model	82
	4.4.2.	6 Segregation coefficient in low impurity concentration	83
4.5	Czo	ochralski method	85
4.	5.1	Technological realization	85
4.6	Dire	ectional solidification	86
4.	6.1	Technological realization	87
4.7	Red	luction of boron	89
4.	7.1	Slag treatment	89
4.	7.2	Gas treatment	91
	4.7.2.	1 Treatment with O ₂ atmosphere	91
	4.7.2.	2 Treatment with H_2O-O_2 mixture atmosphere	94
4.	7.3	Plasma torch treatment	96
4.	7.4	Acid treatment	98
	4.7.4.	1 Annealing and acid treatment - leaching	99
4.8	Red	luction of phosphorus1	01
4.	8.1	Evaporation of silicon and the dissolved substances in vacuum 1	01
	4.8.1.	1 Evaporation of clean silicon 1	03
	4.8.1.	2 Evaporation of silicon and the dissolved substances 1	04
4.	8.2	Material equations for the vapor pressure and the activity coefficient. 1	06
4.	8.3	Possibility of Si-P alloys separation 1	09
4.	8.4	Phase diagram of vapor-liquid equilibrium 1	10
4.	8.5	Vacuum induction refining 1	11
4.	8.6	Electron beam refining 1	12
4.9	Cor	nclusions1	13
5 E	xperin	nental results	14
5.1	Rec	luction of quartz (SiO ₂) with carbon in a specifically designed arc furnace	11
		1	14

5.2 Reduction of boron	116
5.2.1 Slag treatment	116
5.2.2 Oxidative gas treatment	118
5.2.2.1 Plasma torch treatment	118
5.2.2.2 Gas blowing into the liquid silicon with a lance	121
5.3 Reduction of phosphorus at high temperature in vacuum	123
5.3.1 Reduction of phosphorus in the induction furnace	123
5.3.2 Reduction of phosphorus with electron beam technology	y 126
5.4 Unidirectional solidification (UDS), final cleaning by segregation	of impurities
	130
5.4.1 Crystal grow equipment	131
5.4.2 Fused silica crucible	132
5.4.3 Process preparation	132
5.4.4 Process and working procedure	133
5.5 Conclusions	134
6 A vertically integrated production process	136
6.1 Production cost	139
7 Summary	141
8 Bibliography	142

List of Tables

Table 1.1:	General properties of silicon.	1
Table 1.2:	Impurity concentration in different silicon grades	4
Table 1.3:	Silicon savings	. 14
Table 2.1:	Thermal and mechanical properties of silicon.	. 21
Table 2.2:	Target composition.	. 23
Table 2.3:	Photovoltaic cell efficiency by material.	. 24
Table 2.4:	Electron properties in n-type silicon at 300 K.	. 32
Table 2.5:	Hole properties in p-type silicon at 300 K.	. 32
Table 2.6:	Parameters for mobility calculation	. 33
Table 2.7:	Lifetimes and diffusion lengths of holes minority carriers.	. 36
Table 2.8:	Lifetimes and diffusion lengths of electron minority carriers.	. 36
Table 3.1:	Quartz analysis from different sources	. 42
Table 3.2	High purity quartz analysis from different sources	42
Table 3.3	Typical low ash coal analysis	43
Table 3.4	Typical ash analysis of low ash coal	43
Table 3.5:	Wood chips typical ash analysis	44
Table 3.6:	Production normative – material flow	47
Table 3.7	Production normative – energy consumption	48
Table 3.8:	Worldwide photovoltaic silicon production capacity from 2004 - 2010	49
Table 3.9:	Behavior of P. Al and Ca in the process developed by Hazanawa	52
Table 4 1	Boiling points of silane	57
Table 1.7	Segregation coefficients k , for selected elements in silicon	. 07 63
Table 4.2.	Eused silica crucible square type	. 00
	Poactions for Si B O system	00
Table 4.4 .	Reactions between SiO ₂ and [B]	02
Table 4.5.	Reactions among $B_{-}H_{0}\Omega_{-}\Omega_{0}$ system	01
Table 4.0 .	Appealing and leaching	100
	Vaporization time for $M_{(0)} = 5$ ppmw silicon 1770 and 1820 K	100
	The value pressure of elements	103
	Floctric are furnace parameters	111
	Chemical analysis of raw material for test in electric are furnace	114
	Chemical analysis of faw material for test in electric arc furnace	110
	Chemical analysis silicon produced in electric arc furnace	
Table 5.4.	chemical analysis of standard metallurgical grade silicon used for the	5 116
Table 5 5:	Chamical composition of avida mixture and ration alkalinity/acid	110
	Chemical composition of oxide mixture and ration arkaimity/acid	117
Table 5.0.	treatment with different evide mixtures	110
Table 5 7:	Chamical analysis of motally raised grade silison	110
	Chemical analysis of metalluligical grade sincon	120
	Chemical analysis of treated silicon metal within 1, 2 and 3 hours	120
Table 5.9.	treatment	100
Table 5 10	Chamical analysis of matallurgical grade silicon before and offer	123
	Chemical analysis of metallurgical grade silicon before and alter	105
Table C 11.	vacuum treatment.	120
	Results from electron beam experiments.	ιZŎ
Table 5.12:	tompared to Silicon Eversus time and	100
Table C 1.	Cuartz and earbon qualities and mass helenes	129
	Quartz and carbon qualities and mass balance	130
i able 6.2:	Impunity mass balance calculation	131

List of Figures

Figure 1.1:	Silicon metal	. 1
Figure 1.2:	Czochralski ingot grows	. 4
Figure 1.3:	Float zone ingot grows .	. 5
Figure 1.4:	Multi-crystalline ingot	. 6
Figure 1.5:	Amorphous silicon thin film photovoltaic cell	7
Figure 1.6:	Copper, Indium, Gallium, and Selenium (CIGS) thin film photovoltaic	
0	cell	. 7
Figure 1.7:	World energy consumption.	. 8
Figure 1.8:	Energy demand by fuel type	9
Figure 1.9:	Production chain	. 9
Figure 1.10:	Silicon market demand	11
Figure 1.11:	Sun power cost reduction targets	13
Figure 1 12	Development in wafer thickness	14
Figure 1 13:	Total primary energy supply from suplight	15
Figure 2.1	Crystal silicon planes	19
Figure 2.2	Periodic table of the elements	20
Figure 2.2.	Schematic of a simple of simple conventional solar cell	20
Figure 2.5.	Doping with B and B dramatically improves its photovoltaic properties	21
1 igule 2.4.	Doping with B and F diamatically improves its photovoltaic properties	າາ
Eiguro 2 5	Impurity contant of M Si and required impurity contant for SoC Si	22
Figure 2.5.	Future viold of multifunction photovoltais colla	20
Figure 2.0.	Puture yield – IJ of multifunction photovoltaic cells	24
Figure 2.7.	Meterial quality contauts of lifetime versus depart concentration	20
Figure 2.8:	The three recerching tion mechanisms in eiliger	20
Figure 2.9:	I ne three recombination mechanisms in silicon	21
Figure 2.10:	Resistivity relation versus ingot neight.	34
Figure 2.11:	Right proportion (P:B) and influence on resistivity versus ingot neight.	34
Figure 2.12:	Resistivity in chemical cleaned silicon doped with boron versus ingot	~ -
	height	35
Figure 2.13:	Change of resistivity by 0.075 ppmw phosphorus doping	35
Figure 2.14:	Change over from <i>p</i> - to <i>n</i> - type silicon	38
Figure 2.15:	Resistivity versus impurity concentration for Si at 300 K.	39
Figure 3.1:	Drawing of a submerge electrode arc furnace for production of	
	metallurgical grade silicon.	40
Figure 3.2:	Ellingham - Gibbs diagrams of oxides.	45
Figure 3.3:	Energy pattern in a submerged arc furnace.	47
Figure 3.4:	General scheme of the two processing routes.	48
Figure 3.5:	SOLSILC production process	51
Figure 3.6:	Elkem Solar production process	52
Figure 3.7:	The Photosil consortium and project organization	53
Figure 3.8:	Process flow of silicon purification.	53
Figure 3.9:	Process flow of silicon purification made by Timminco	54
Figure 3.10:	6N production process flow.	54
Figure 3.11:	Low temperature solidification refining of solar grade silicon using Si-Al	
-	solvent	55
Figure 4.1:	Schematic representation of the Siemens process	57
Figure 4.2:	Schematic representation of the Siemens reactor	58
Figure 4.3:	Schematic representation of the Union Carbide process	60
Figure 4.4:	Segregation coefficients	62
-		

Figure 4.5:	Scheil model	64
Figure 4.6:	Phase diagram of impurities in silicon.	66
Figure 4.7:	Lever model of infinitely fast impurity diffusion.	66
Figure 4.8:	Phase diagram at low concentration of impurities in silicon	67
Figure 4.9:	Phosphorus reduction	67
Figure 4.10:	Boron reduction.	68
Figure 4.11:	Sample position in ingot and place where the chemical analyses were	è
C C	done.	68
Figure 4.12:	Scheil model for phosphorus and the test results	69
Figure 4.13:	"Freezing tube".	69
Figure 4.14:	Process of solidification for proving the Scheil model	70
Figure 4.15:	Silicon in the carbon crucible before melting.	70
Figure 4.16:	Cleaning level after the first step.	71
Figure 4.17:	Schematic presentation of the two-step process.	71
Figure 4.18:	Cleaning level after the second step	72
Figure 4.19:	Two stage process with the reuse of silicon.	72
Figure 4.20:	Two-step process with reuse of silicon and equations of the process.	73
Figure 4.21:	Calculation of two stage process with the reuse of silicon	74
Figure 4.22:	Result after the first freeze.	74
Figure 4.23:	Result after the second freeze	74
Figure 4.24:	Three step freezing process with reuse	75
Figure 4.25:	Stationary three step process with prescribed parameters and 16	
0	unknowns.	76
Figure 4.26:	Stationary three step cleaning process by $f_c^1 = f_c^2$	77
Figure 4.27:	Stationary three step cleaning process $f_c^1 = 0.5$	78
Figure 4.28:	Freeze and unfreeze process cascade for cleaning (principle sketch).	78
Figure 4.29:	Impurity boron in phosphorus in the first stage of cleaning	79
Figure 4.30:	Impurity phosphorus - illustration of principles	79
Figure 4 31	Relation between volume fractions and vield for boron ($k_{\rm p} = 0.8$)	80
Figure 4.32:	Effect of boron cleaning	80
Figure 4.33:	Yield versus final boron concentration	81
Figure 4.34:	Effect of phosphorus cleaning.	81
Figure 4.35:	Yield versus final phosphorus concentration.	82
Figure 4.36:	Burton model of impurity concentration changes by solidification	82
Figure 4.37:	Si–P phase diagram	83
Figure 4.38:	Solid solubility of phosphorus in silicon	84
Figure 4.39:	The phase diagram in low concentration of phosphorus.	84
Figure 4.40:	Bridgman process of crystallization.	87
Figure 4.41:	Block-casting process.	88
Figure 4.42:	Mass ratio of B in slag (wt. % B) versus that in molten Si (wt. % B)	
0	plotted as a function of the slag composition expressed in mole	
	fractions.	90
Figure 4.43:	ΔG of oxides versus temperature for Si-B-O system (reacting gas: O_2)).
i igure i i ioi		.92
Figure 4 44	ΛG of reactions between SiO ₂ and [B] versus temperature	92
Figure 4 45	Partial pressure of $B_{\nu}O_{\nu}$ versus temperature	94
Figure 4 46	ΛG of chemical hydrates versus temperature	95
Figure 4 47	Partial pressure of B ₂ H ₂ O ₂ versus temperature	96
Figure 4 48	Main boron gaseous species.	97
3	Jeres	

Figure 4.49: Volatility of HBO(g) by reaction of water vapor with B dissolved in Figure 4.51: Grinding mill. 100 Figure 4.54: Vapor rate for $M_{\rm P}(0) = 2000$ ppmw silicon and 2000 K..... 105 Figure 4.55: Vapor rate for $M_{\rm P}(0) = 5$ ppmw silicon and various height of liquid... 106 Figure 4.58: Vapor-liquid phase equilibrium composition diagram of Si-P alloy. ... 111 Figure 5.1: Figure 5.2: The copper crucible filed with the mixture of oxides and silicon before Figure 5.3: Figure 5.4: Torch, Liquid silicon surface in contact with the plasma and solidified Figure 5.5: The experimental principle of boron removal with plasma...... 120 Figure 5.6: Figure 5.7: Relation between the process time and the reduction of boron...... 121 Figure 5.8: Figure 5.9: Figure 5.10: Furnace construction and position of elements inside the furnace.... 124 Figure 5.11: Schematic process of tests A and B. 124 Figure 5.12: Temperature profile of tests A and B. 125 Figure 5.13: Phosphorus reduction and metals segregation with electron beam technology in vacuum. 126 Figure 5.14: Vacuum chamber with electron beam gun on the top and the water Figure 5.15: Trace of the electron beams for melting and keeping the silicon liquid. Figure 5.18: Phosphorus reduction versus temperature for various time frames... 130 Figure 6.1: Vertically integrated process from guartz to solar grade silicon bricks. Figure 6.2: Figure 6.3: Figure 6.4:

List of Abbreviations

- λ Wavelength
- E_{λ} Photon energy
- *H* Planck's constant
- c Speed of light
- E_G Semiconductor band gap
- τ_{Aug} Auger-limit lifetime
- C_{Aug} Auger coefficient
- τ_{SRH} Shockley-Read Hall lifetime
- $\tau_{\rm Rad}$ Radiative lifetime
- $N_{\rm A}$ Dopant concentration
- $X_{\rm S}$ Solid solubility of impurities
- k_0 Segregation (distribution) coefficient
- *C*_S Solid solubility limit at the melting point
- k Boltzmann constant
- *L* Solubility
- ΔS Entropy change
- ΔH Enthalpy change
- T Temperature
- J_n Current density of electrons
- q Charge
- *u_n* Mobility
- *E* Electric field
- *k*_n Segregation coefficient of n-type impurities
- *k*^p Segregation coefficient of p-type impurities
- n^{r} Carrier concentration
- p Resistivity
- *N*_a Acceptors density
- *N*_d Donors density
- *L*_e Electron minority carrier diffusion length
- *u*_e Electron mobility
- τ_{e} Electron minority carrier lifetime
- *L*_h Hole diffusion length
- *u*_h Hole mobility
- $\tau_{\rm h}$ Hole lifetime
- *N*_P Density of phosphorus
- $N_{\rm B}$ Density of boron
- ρ_{Si} Mass density of silicon
- $m_{\rm P}$ Mass of phosphorus atom
- *X*_P Phosphorus concentration in ppmw
- *X*_B Boron concentration in ppmw
- ρ Static resistivity
- *E* Magnitude of the electric field
- J Magnitude of the current density
- *R* Electrical resistance of the material
- l Length
- A Cross-section
- σ Conductivity

- ΔG Gibbs energy
- *k*₀ Segregation coefficient
- $X_{\rm S}$ Concentration of impurities in the solid stage
- $X_{\rm L}$ Concentration of impurities in the liquid stage
- $T_{\rm L}$ Liquidus temperature
- $T_{\rm S}$ Solidus temperature
- X_0 Initial concentration of the impurity
- f_S Volume fraction of solid phase
- $f_{\rm B}$ Coefficient of activity
- *p* Partial pressures
- p^* Vapor pressure
- a Activity
- N Molar concentration
- *p*_A Actual vapor pressure of component A
- $p_{\rm B}$ Actual vapor pressure of component B
- $a_{\rm A}$ Activity of component A
- *a*_B Activity of component B
- $p_{\rm A}^*$ Saturation vapor pressure of component A
- $p_{\rm B}^*$ Saturation vapor pressure of component B
- *N*_A Concentration of component A
- $N_{\rm B}$ Concentration of component B
- γ_A Activity coefficients of component A
- $\gamma_{\rm B}$ Activity coefficients of component B
- β_A Ratio of the concentrations of components in the two phases