Pearl Ghaemmaghami

the Psychobiological Stress Response and

the Conversion of Cortisol to Cortisone

in Human Pregnancy

Cuvillier Verlag Göttingen Internationaler wissenschaftlicher Fachverlag

Pearl Ghaemmaghami

the Psychobiological Stress Response and

the Conversion of Cortisol to Cortisone in Human Pregnancy

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. 1. Aufl. - Göttingen : Cuvillier, 2011

Zugl.: Zürich, Univ., Diss., 2011

978-3-86955-934-6

This thesis was accepted as a doctoral dissertation by the Faculty of Arts of the University of Zurich in the autumn semester 2011 on the recommendation of Prof. Dr. rer. nat. Ulrike Ehlert and Prof. Dr. med. Roland Zimmermann.

Cover Image C Lev Dolgatsjov / Fotolia.com

© CUVILLIER VERLAG, Göttingen 2011 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2011

Gedruckt auf säurefreiem Papier

978-3-86955-934-6

TABLE OF CONTENTS

ACK	NOW	LEDGMENTS AND DEDICATION	I
ABS	ГRAC	Т	IV
TAB	LES		VI
FIGU	JRES.		. VII
ARR	REVL	ATIONS	VIII
1.		RODUCTION	
PAR	ГΙ	THEORETICAL BACKGROUND	3
2.	The	PSYCHOBIOLOGY OF STRESS	3
	2.1	The Definition of Stress and Its Related Concepts	3
	2.2	The Psychobiological Stress Response	7
	2.2.1	The Hypothalamus-Pituitary-Adrenal Axis	
	2.2.2	The Autonomic Nervous System	14
	2.3	Summary	20
3.	Eff	ECTS OF PREGNANCY ON PHYSIOLOGICAL STRESS SENSITIVE SYSTEMS	22
	3.1	The Hypothalamus-Pituitary-Adrenal Axis During Pregnancy	22
	3.1.1	Corticotropin-Releasing Hormone	22
	3.1.2	Adrenocorticotropin	24
	3.1.3	Cortisol	25
	3.2	The Autonomic Nervous System During Pregnancy	27
	3.2.1	Heart Rate	28
	3.2.2	Heart Rate Variability	28
	3.2.3	Salivary Alpha-Amylase	30
	3.3	Summary	30
4.	The	PSYCHOBIOLOGICAL STRESS RESPONSE DURING PREGNANCY	31
	4.1	Investigated Stressors During Pregnancy	31
	4.1.1	Natural Occurring Stressors	31
	4.1.2	Standardized Laboratory Stressors	35
	4.2	Pregnant Women's Stress Response and the Hypothalamus-Pituitary-Adrenal Axis	37
	4.3	Pregnant Women's Stress Response and the Autonomic Nervous System	40
	4.4	Summary	47
5.	THE	ROLE OF 11B-HYDROXYSTEROID DEHYDROGENASE TYPE 2 DURING HUMAN PREGNANCY	48
	5.1	Characteristics, Biological Function and Tissue Distribution of 11β -Hydroxysteroid Dehydrogenase	49
	5.2	Placental 11β-Hydroxysteroid Dehydrogenase Type 2 and Maternal Prenatal Stress	55
	5.3	The Regulation of Placental 11 β -Hydroxysteroid Dehydrogenase Type 2	56
	5.4	11β -Hydroxysteroid Dehydrogenase Type 2 in the Salivary Glands and The Maternal Stress	
		Response	
	5.5	Summary	
6.	SUN	IMARY OF THE THEORETICAL BACKGROUND, STUDY IDEAS AND HYPOTHESES	60

PART II	EMPIRICAL STUDIES	2
	LIVARY CORTISOL TO CORTISONE CONVERSION AS A MARKER OF THE STRESS RESPONSE DURING	
	ANIOCENTESIS CORRESPONDS WITH THE CONVERSION OF CORTISOL TO CORTISONE IN THE AMNIOTIC	
	UID	
7.1	Introduction	
7.2	Methods	
7.2.1	Study Participants	
7.2.2		
7.2.3	Outcome Measures	
7.2.4	Data Analyses	
7.3	Results	
7.3.1	Sample Characteristics	
7.3.2	<i>Effect of the Amniocentesis</i>	0
7.4	Discussion	3
	IE ASSOCIATION BETWEEN THE ACUTE AUTONOMIC STRESS RESPONSE AND AMNIOTIC FLUID	_
	ORTISOL AND CORTISONE DURING THE SECOND TRIMESTER OF HUMAN PREGNANCY	
8.1	Introduction	
8.2	Methods	
8.2.1	Study Participants	
8.2.2	Study Design and Procedure	
8.2.3	Outcome Measures	
8.2.4		
8.3	Results	
8.3.1	Sample Characteristics	
8.3.2	<i>Effects of the Amniocentesis</i>	
8.4	Discussion	1
PART III	GENERAL DISCUSSION	8
9. Su	IMMARY AND DISCUSSION OF THE EMPIRICAL STUDIES	8
9.1	Salivary Cortisol to Cortisone Conversion as a Marker of the Stress Response during Amniocentesis Corresponds with the Conversion of Cortisol to Cortisone in the Amniotic Fluid 90	8
9.2	The Effect of the Autonomic Stress Response on Amniotic Fluid Cortisol and Cortisone in the	
	Second Trimester of Human Pregnancy	9
9.3	Integration of the Current Findings	9
10.	LIMITATIONS AND STRENGTHS OF THE EMPIRICAL STUDIES	5
11.	Оитьоок 10	7
REFEREN	NCES	0

ACKNOWLEDGMENTS AND DEDICATION

The past three years have gone by surprisingly quickly. They were filled with fascinating and diverse experiences in connection with the research and people associated with this project. I enjoyed every phase and every challenge and learned much, including that there is always is a plan B (which sometimes turns out to be even better than plan A).

I am first and foremost immensely grateful to my Ph.D. supervisor, Professor Ulrike Ehlert, Head of the Department of Clinical Psychology and Psychotherapy at the University of Zurich. Her knowledge, expertise, understanding, guidance, encouragement, patience and flexibility were invaluable in launching this project, opening doors and moving things along. I consider it an honour to be part of her team.

I also want to express my deep appreciation to my second supervisor, Professor Roland Zimmerman, Head of the Division of Obstetrics, University Hospital Zurich. He provided invaluable feedback and opportunities for the project and ensured that we were able to use the necessary facilities at the hospital. We were thus able to conduct the examinations successfully. I would also like to thank his secretaries, Ingrid Vitali, Lisa Caflisch, Kirsti Heiskanen and Joan Schlepfer for their special efforts and continuous support during the recruitment phase of our project.

I especially appreciate the opportunity this project gave me to work with the mothers who volunteered to participate in this study. My profound thanks go to them (and to their babies) for the personal time and information they provided. This project would not have been possible without them.

My special thanks also go to my colleague, Sara Dainese, and to all the members of the "The Psychobiology of Pregnancy" research group. I greatly enjoyed working with our master students Saskia Bommer, Leandra Gurzan, Andrea Kündig, Tanja Radulovic, Maria Rigozzi, and Marion Thoma. I am also very grateful to our interns, Inga Gehrmann, Sarah Kobelt, Salome Lütolf, Stéphanie Scherrer, Silvia Siefert, Laura Schneider, Daniela Thierstein and Sarah Ziegler for their support, assistance and initiative during this project. I warmly thank my colleagues at the Department of Clinical Psychology and Psychotherapy at the University of Zurich for the excellent pieces of advice and for the many shared moments of comic relief.

My heartfelt appreciation goes to the team of the Division of Obstetrics at the University Hospital Zurich, to Prof. Christian Breymann and his team at the "Gynäkologie Geburtshilfe" Seefeld in Zurich, to Dr. med. Gundula Hebisch and her team at the Division of Obstetrics at the Hospital of Wetzikon (the cooperation with the Hospital of Wetzikon was a special pleasure to me as I was born there myself), to Dr. med. Markus Hodel and his team at the Division of Obstetrics, Cantonal Hospital of Lucerne, to Dr. Christoph Honegger and his team at the Division of Obstetrics, Hospital of Uster, to Dr. med. Martin Kaufmann and his team at the Division of Obstetrics, Hospital of Bülach, to Dr. René C. Müller and his team at the Prenatal Praxis in Winterthur, and to Dr. med. Thomas Roos and his team at the Division of Obstetrics, Cantonal Hospital of Schaffhausen. I thank them all for the much appreciated support we received in the recruitment of participants for this study.

It is impossible to thank enough my dear parents, Catherine and Dr. Assad Ghaemmaghami, for their love, unflagging support, patience and encouragement. They helped me in overcoming the difficulties along the way and in holding on to my optimism and determination. My warmest gratitude is also due my brothers, Payám and Páyá. They were always there for me, provided plenty of healthy distraction and made me laugh a lot.

A very special acknowledgment goes to my dear colleague and friend, Dr. Roberto La Marca. I cannot find words to thank him enough for the time he took, for his enthusiastic encouragement and moral support - not to mention the many philosophical discussions and humorous moments. I am deeply grateful for such a sincere and true friend.

My heartfelt appreciation goes to my dear friends of our longstanding and unmatchable "Girls Club", Nadine Bienefeld, Ursina Ehrensperger, Janine Germann, Claudine Huber, Sabina Mätzler and Martina Peloso for their warmth of heart and encouragement.

Finally, these pages would not be complete without expressing my immense gratitude to the Swiss National Science Foundation for funding this research project.

I dedicate this dissertation to my Mamanbozorg and Bababozorg, Parvin and Ezzatollah Ghaemmaghami, my grandparents and angels who always give me support from above.

ABSTRACT

Stress during human pregnancy is associated with various adverse consequences for the physiological and psychological wellbeing of mother and child. A main focus for the research field of stress during pregnancy is to identify the underlying biological mechanism by which the maternal psychological stress is transferred to the developing foetus. Glucocorticoids, such as cortisol seem to play a pivotal role, since an overexposure of maternal cortisol, for example due to psychological stress is capable of crossing the placental barrier and thereby reaching the foetus. Heightened cortisol levels in the prenatal period have been associated with preterm birth and low birth weight. In animal studies, the placental enzyme 11 β -hydroxysteroid dehydrogenase type 2 (11 β -HSD2) which converts active cortisol into its inactive metabolite cortisone, protects the developing foetus against an overexposure to maternal cortisol concentrations. This enzyme is also present in the adult salivary glands, where it exerts the same conversion of cortisol to cortisone.

The aim of the present thesis was to examine the psychological and physiological stress reactivity of pregnant women confronted with a standardized stressor and to concurrently investigate the conversion of cortisol to cortisone in the saliva and amniotic fluid of pregnant women. The empirical study results of the present thesis are divided into two parts.

In part 1 (see chapter 7, page 63), the response of salivary cortisol, cortisone and the ratio between the two compounds, as an indicator of 11 β -HSD2 activity in the salivary glands, were compared to the stress elicited by an amniocentesis with cortisol, cortisone and again the ratio between the two compounds in the amniotic fluid which served as an indicator of 11 β -HSD2 activity in the foetal system. This ratio was calculated by dividing cortisone (the end product of 11 β -HSD2 activity) by the total sum of cortisone plus cortisol and has been adopted in previous studies to investigate the 11 β -HSD2 activity.

An aliquot of amniotic fluid and repeated saliva samples were collected from 34 healthy pregnant women undergoing an amniocentesis for karyotyping. Mood alterations due to the intervention were surveyed using questionnaires. Subjects were re-examined in a

control condition 2.7 weeks later after having been informed about the inconspicuous result of the amniocentesis.

The results revealed that subjects with a stronger acute stress response seem to have higher 11β -HSD2 activity levels in the foetal system as measured by the above mentioned ratio of cortisone to cortisol in the amniotic fluid.

In part 2 (see chapter 8, page 80), we investigated the role of the maternal autonomic nervous system (ANS) in response to the stress of the amniocentesis and compared this stress response with amniotic fluid cortisol, cortisone and the conversion of cortisol to cortisone. Similar to the results in part 1, the amniocentesis revealed significant autonomic alterations compared to the control condition. Links between the ANS stress response and the ratio of cortisone to cortisol in the amniotic fluid were detected as well.

TABLES

Table 1.	Investigated Forms of Naturalistic Stressors During		
	Pregnancy (Adapted from Dunkel Schetter & Glynn, 2011)	p. 32	
Table 2.	Maternal Psychosocial Stress Response During Pregnancy	p. 43	
Table 3.	Psychobiological Effects in Pregnant Women Anticipating a Standardized Medical Procedure During Pregnancy	p. 45	
Table 4.	Comparison of 11β-HSD2 and 11β-HSD1(Adapted from Michael, Thurston, & Rae, 2003 and from Seckl, 1997)	p. 53	
Table 5.	Characteristics of the Study Population	p. 69	

FIGURES

Figure 1.	Central structures that regulate the stress response of the HPA Axis and ANS. Brain structures that regulate the sympathetic action are	
	in red and brain structures that regulate the parasympathetic action	
	are in blue. (Adapted from Ulrich-Lai & Herman, 2009 and from	
	Gunnar & Quevedo, 2007).	p. 9
Figure 2.	The QRS complex and two beat to beat intervals in an	
	electrocardiogram mirroring HRV.	p. 19
Figure 3.	Regulation of the access of aldosterone to the mineralocorticoid	
	receptor by 11β -HSD2 (Adapted from Michael, Thurston,	
	& Rae, 2003).	p. 51
Figure 4.	The maternal and fetal HPA axes and placental 11β -HSD2	
	activity (Adapted from Ehlert et al., 2003 and Drake et al., 2007).	p. 54
Figure 5.	Flow diagram depicting the recruitment process of the study.	p. 65
Figure 6.	Mean increase in the AUCi for cortisol (SalF; ln+1), cortisone	
	(SalE; ln) and the SalE/(E+F) ratio (%) during the amniocentesis	
	and rest condition; **, $p < .01$.	p. 71
Figure 7.	Bivariate correlations between the delta increase in SalE/(E+F)	
	in % and the amniotic fluid E/(E+F) ratio in % ($p < .05$).	p. 73
Figure 8.	Study design and procedure.	p. 81
Figure 9.	Stress response (mean and SEM) of salivary alpha-amylase (A),	
	heart rate (B), high frequency power (C), low frequency power	
	(D) and the LF/HF ratio (E) during the amniocentesis condition	
	compared to the control condition. Levels of significance are	
	marked as follows: *, <i>p</i> < .05, **, <i>p</i> < .01, ***, <i>p</i> < .001.	p. 88
Figure 10.	Bivariate correlations between the baseline levels of the ln	
	transformed LF/HF ratio and the amniotic fluid E/(E+F) ratio	
	in % ($p < .05$).	p. 90
Figure 11.	Bivariate correlations between the AUCi of the ln transformed	
	LF/HF ratio and the amniotic fluid E/(E+F) ratio in % ($p < .05$).	p. 91

ABBREVIATIONS

11β-HSD	11β-Hydroxysteroid Dehydrogenase
11β-HSD1	11β-Hydroxysteroid Dehydrogenase Type 1
11β-HSD2	11β-Hydroxysteroid Dehydrogenase Type 2
ACh	Acetylcholine
ACTH	Adrenocorticotropic hormone
AF	Amniotic fluid
AME	Apparent mineralocorticoid excess
ANOVA	Analysis of variance
ANS	Autonomic nervous system
AUCi	Area under the curve with respect to increase
AVP	Arginine vasopressin
BNST	Bed nucleus of the stria terminalis
BMI	Body mass index (kg/m ²)
bmp	Beats per minute
CBG	Corticosteroid binding globulin
CG	Control group
CNS	Central nervous system
CRH	Corticotropin-releasing hormone
D	Dopamine
DBP	Diastolic blood pressure
DNA	Deoxyribonucleic acid

Е	Cortisone
EG	Experimental group
EPDS	Edinburgh Postnatal Depression Scale
EPI	Epinephrine
IUGR	Intrauterine growth restriction
F	Cortisol
GR	Glucocorticoid receptor
HF	Power in the high frequency range
HPA	Hypothalamic-pituitary-adrenal
HR	Heart rate
HRV	Hear rate variability
HSD	Hydroxysteroid dehydrogenase
LC	Locus coeruleus
LF	Power in the low frequency range
LF/HF ratio	Ratio LF [ms ²] / HF[ms ²]
MAP	Mean arterial pressure
MDBF	Multidimensional Mood Questionnaire (Multidimensionaler
	Befindlichkeitsfragebogen)
MESA	Measure for Assessment of General Stress Susceptibility (Messinstrument zur Erfassung der Stressanfälligkeit)
MR	Mineralocorticoid receptor
mRNA	Messenger ribonucleic acid
NN	Normal to normal intervals
NE	Norepinephrine

NTS	Nucleus of the solitary tract
PSNS	Parasympathetic nervous system
PVN	Paraventricular nucleus
RSA	Respiratory sinus arrhythmia
SA	Sinoatrial
sAA	Salivary alpha-amylase
SalE	Salivary cortisone
SalF	Salivary cortisol
SAM	Sympatho-adrenomedullary
SBP	Systolic blood pressure
SCN	Suprachiasmatic nucleus
SDNN	Standard deviation between normal consecutive beats
SEM	Standard error of the mean values
SNS	Sympathetic nervous system
STAI	State-trait anxiety inventory
STAI-s	State anxiety
STAI-t	Trait anxiety
Т	Time
Т3	Triiodothyronine
T4	Thyroxine
TSH	Thyroid-stimulating hormone
TSST	Trier Social Stress Test
VAS	Visual analogue scale