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1 Introduction 

1.1 Bioenergy production as an alternative utilization of semi-natural grassland 
biomass 

Semi-natural grasslands are man-made habitats of high biodiversity. For their conservation 

they depend on a continued low-intensity agricultural management, but both intensification 

and abandonment of management threaten their existence in many parts of Europe (Bignal 

and McCracken, 1996; Ostermann, 1998). In many European regions, they are restricted to 

marginal sites that are characterized either by hydrological extremes or by difficulties in 

mechanization, for example small-structured, steep, rocky or tree-covered sites. While many 

semi-natural grassland communities are low-intensity pastures, others have their origin in 

hay-making and rely on mowing, rather than grazing, for the preservation of their specific 

botanical composition (Ostermann, 1998).  

Both the high ecological value of semi-natural grasslands and their need for special 

conservation efforts have been recognized on a European level by including the majority of 

semi-natural grassland communities as ‘habitat types of community interest’ in Annex I of the 

European Habitats Directive (European Council, 1992). The directive places legal obligation 

on the member states to prevent loss or deterioration of Annex I habitats within designated 

special areas of conservation, and to report on the total area and conservation status of these 

habitats in regular intervals. Table 1.1 shows the reported areas for the period of 2001-2006 of 

those habitat types that are considered to have their origin either exclusively or partly in 

haymaking, or to be threatened by the abandonment of this practice. In total, they make up 

about 3.4 million hectares in the EU-25, nearly half of which are situated in the Continental 

biogeographic region (EIONET, no date). With few exceptions, the future prospects of these 

habitats were evaluated as ‘inadequate’ or ‘bad’ according to the three-category EIONET 

classification. 

One major limitation for an economically viable use of the biomass produced on these 

grasslands as an animal forage lies in the comparatively late cutting dates that are necessary 

for preserving their botanical composition. Increasing maturity of grassland biomass leads to 

increasing fibre contents and decreasing protein contents and digestibility. As nutritional 
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requirements of high-performing ruminants have strongly increased over the last decades, the 

opportunities of using late-cut grassland herbage as a forage have become severely limited, 

and alternative uses for this biomass have to be found.  

Table 1.1 Reported areas of grassland habitats listed in Annex 1 of the European Habitats Directive in the EU-25. 

Habitat area in the EU-25 (km²) (1) 
Habitat type 

ALP ATL BOR CON MED PAN Sum 

Origin 
(2) 

Threat 
(3) 

1630 Boreal baltic coastal 
meadows – – 214 15 – – 229 G, H – 

6210 
Semi-natural dry 
calcerous grasslands 
/ scrubland 

1850 2320 228 2065 >2567 134 >9164 G, H AG 

6270 
Fennoscandian 
lowland dry to mesic 
grasslands 

– – 406 43 – – 449 G, H AG 

6410 
Molinia meadows on 
calcareous, peaty or 
clayey-silt-laden soils 

214 >389 255 508 >86 83 >1535 H AG, AH

6420 Mediterranean tall 
humid grasslands  2 – – 13 >2456 – >2471 H AG 

6430 
Hydrophilous tall 
herb fringe 
communities  

>532 >452 130 >672 >539 19 >2344 H – 

6440 Alluvial meadows of 
river valleys – – – 86 – 553 639 H – 

6450 Northern boreal 
alluvial meadows 27 – 427 – – – 454 H AH 

6510 Lowland hay 
meadows 1601 >579 196 11154 >883 323 >14736 G, H AH, AG

6520 Mountain hay 
meadows 543 11 3 1642 50 8 2257 G, H AH, AG

6530 Fennoscandian 
wooded meadows – – 53 – – – 53 G AG, AH

Sum  >4769 >3751 1912 >16199 >6581 1120 >34332   

(1) Assessments on the conservation status of habitat types and species of Community interest carried out in the 
EU-25 for the period 2001-2006, compiled as part of the Habitats Directive - Article 17 reporting process. 
(EIONET, no date); Biogeographic regions - ALP: Alpine; ATL: Atlantic; BOR: Boreal; CON: 
Continental; MED: Mediterranean; PAN: Pannonic. 

(2) adapted from Ostermann (1998); G: origin in grazing; H: origin in haymaking; C: origin in crops. 
(3) adapted from Ostermann (1998); AG: threatened by abandonment of grazing; AH: threatened by 

abadonment of hay-making; other threats not considered here 

With the now widely acknowledged need to reduce greenhouse gas emissions and fossil fuel 

consumption, and ambitious targets for increasing the share of renewable energy in the EU 

(European Parliament and European Council, 2009), bioenergy generation emerges as a 
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promising new utilization for semi-natural grassland biomass. Using grassland biomass not 

currently needed as a forage, this strategy has the advantage of avoiding competition between 

bioenergy and food production. In contrast to many other bioenergy options, it also does not 

lead to a conflict, but rather to a synergy with nature conservation aims. However, it first has 

to be established that the bioenergy use of semi-natural grassland biomass actually leads to 

net energy production and net greenhouse gas savings. While semi-natural grassland biomass 

production involves low inputs compared to many dedicated bioenergy crops, biomass yields 

are also much lower. Hay moreover has a low energy density, which may lead to high energy 

costs if transport is necessary. A life cycle assessment (LCA) quantifying energy inputs and 

outputs as well as greenhouse gas emission savings is therefore the first step in evaluating the 

suitability of semi-natural grassland biomass for bioenergy generation.  

1.2 Potential conversion technologies for semi-natural grassland biomass 

A suitable conversion technology for semi-natural grassland biomass must be adapted to deal 

with the biomass quality that results from low-intensity management, notably the high 

proportion of the lignocellulosic cell wall fraction. As the low energy density leads to high 

transportation costs, and the often scattered occurrence of semi-natural grasslands poses 

considerable logistic challenges, small-scale and decentralized technologies should also be 

preferred. 

In Germany and Austria, anaerobic fermentation for biogas generation is currently the 

quantitatively most important conversion technology for grassland biomass. However, the 

majority of currently existing biogas plants are not particularly well adapted to the utilization 

of more mature grassland biomass. Not only does a larger fibre content lead to reduced 

substrate-specific methane yields, it also has negative effects on the technical process. High 

fibre contents necessitate more stirring and thus lead to higher electricity use; they also 

increase abrasions of the feeding and stirring equipment (Prochnow et al., 2009b). These 

effects limit the proportion of fibre-rich substrates that can be used in conventional 

agricultural biogas plants. An additional problem exists in the difficulty of ensiling very 

mature grassland herbage. 

Technologies more suitable for converting lignocellulosic biomass include combustion, 

thermochemical gasification, pyrolysis and generation of lignocellulosic ethanol (Faaij, 2006; 
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Sims et al., 2010). Gasification allows the generation of heat and electricity, or the production 

of hydrogen, methanol, Fischer-Tropsch liquids or synthetic natural gas from the syngas. Due 

to the lack of efficient small-scale gas cleaning equipment and consequently high fuel quality 

requirements of smaller-scale gasifiers, only large-scale plants of capacities well exceeding 

10 MWth are currently of practical relevance. Pyrolysis consist in converting biomass to 

charcoal, liquid and gaseous fractions at temperatures of about 500 °C in the absence of 

oxygen. Like hydrolysis of lignocellulosic biomass for ethanol production, it has as yet not 

been practically implemented on a meaningful scale (Faaij, 2006; Sims et al., 2010). 

Combustion, on the other hand, is a comparatively well established technology with a wide 

range of capacities being available. Herbaceous biomass of similar properties as semi-natural 

grassland, such as cereal straw and perennial energy grasses, is already extensively being used 

as fuels. From the general suitability for using lignocellulosic fuels, the advanced stage of 

technical development and the availability of small-scale facilities, combustion seems 

currently the most promising bioenergy conversion technology for semi-natural grassland 

biomass, and therefore is the focus of this thesis. 

1.3  Combustion technology for semi-natural grassland biomass 

The basic layout of a combustion appliance is determined by the physical dimension, the form 

and size distribution, the bulk and particle density, as well as the moisture and ash content of 

the intended fuel (van Loo and Koppejan, 2008). In all these properties, grassland biomass is 

very similar to other herbaceous biofuels. Technologies for small- to medium-scale 

combustion of herbaceous biofuels in the range of some few kWth to about 20 MWth include 

pellet-fired systems, whole-bale combustion furnaces and grate furnaces. 

Pellet-fired systems for residential use are available in capacities starting at 2.5 kWth and offer 

a high degree of user convenience (Hartmann et al., 2009ab). Though wood pellets are at 

present the most common fuel used, pelletizing is an attractive option for herbaceous biofuels 

as well, as it increases energy density, lowers transportation costs and facilitates fuel feeding 

into the burner. It is, however associated with additional monetary and energy costs 

(Hartmann and Witt, 2009). Thek and Obernberger (2004) calculated the production costs of 

wood pellets from sawdust in a large-scale pellet production plant to be 79.6-94.6 € per tonne 

pellets, at an energy expenditure of 460-617 MJ per tonne, or about 2.6-3.6% of the gross 
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calorific value. Whole-bale combustion furnaces are semi-continuous systems, into which 

bales are fed manually. Their batch-wise operation presents a problem as it results in 

temperature and CO emission peaks which cannot be adequately controlled by current process 

control systems (Hartmann et al., 2009b). Grate furnaces are suitable for fuels with varying 

particle sizes and high moisture or ash contents. Although small appliances starting at about 

50 kWth exist, grate furnaces are also used in combustion plants of 20 MWth or more (van Loo 

and Koppejan, 2008; Hartmann et al., 2009b). Most commonly used for fuels like wood chips 

or bark, grate furnaces have also been adapted for herbaceous fuels. These can be 

automatically fed either as briquettes or loose, with a preceding bale cutter or shredder. 

Pulverized fuel and fluidized bed combustion are further technologies, which only become 

relevant at larger plant sizes for economic reasons. In pulverized fuel combustion, fuel of 

maximum particles sizes of 10-20 mm is pneumatically injected into the furnace together with 

the primary combustion air. Capacities range from 1 MWth to several hundred MWth. The 

upper range is represented by pulverized coal-fired boilers, in which co-combustion of 

biomass fuels is possible. In fluidized bed combustion systems, starting at about 20 MWth, the 

fuel is mixed with an inert, granular bed material. The bed is fluidized by the primary 

combustion air that enters the furnace from below. Mixtures of fuels can be burned, but 

particle size should not exceed 40-100 mm (van Loo and Koppejan, 2008; Hartmann et al., 

2009).  

Production of electricity as well as heat from biomass is possible in combined heat and power 

(CHP) plants. Stirling engines for small-scale power production are currently in the pilot and 

development phase, but as they require very clean flue gas, they are not suitable for 

herbaceous biofuels. Among proven technologies, steam piston engines are available for 

smaller CHP plants, starting at capacities of 25 kWel with electrical efficiencies of 4-7%. 

Steam turbines are typically used in large-scale CHP plants of 500 kWel to 500 MWel. 

Electrical efficiencies rise from <15% in small steam turbines to up to 40% in large ones. 

High electrical efficiencies, however, are linked to high steam pressure and temperature, 

which can lead to substantial superheater corrosion and fouling problems in biomass-fired 

plants (Baxter et al., 1998; Faaj, 2006; van Loo and Koppejan, 2008). 

In general, all the described combustion technologies are well suited to deal with the physical 

characteristics of herbaceous biofuels, in the case of fluidized bed and pulverized combustion 


