Characterization of Oxygenterminated Diamond Electrodes for Electrochemical Applications

ulm university universität **UUUIM**

Characterization of Oxygen-terminated Diamond Electrodes for Electrochemical Applications

DISSERTATION

zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

(DR.-ING.)

der Fakultät für Ingenieurwissenschaften und Informatik der Universität Ulm

von

CARSTEN PIETZKA AUS SÖGEL

Betreuer:

Prof. Dr.-Ing. Erhard Kohn

Amtierender Dekan:

Prof. Dr.-Ing. Michael Weber

Ulm, 04.03.2010

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2011 Zugl.: Ulm, Univ., Diss., 2010

978-3-86955-709-0

© CUVILLIER VERLAG, Göttingen 2011 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage 2011 Gedruckt auf säurefreiem Papier.

 $978\hbox{-}3\hbox{-}86955\hbox{-}709\hbox{-}0$

Contents

Li	st of	symb	ols	ix
\mathbf{A}	bstra	ct		xi
1	Intr	oduct	ion	1
2	Dia	mond Electr	for Electrochemical Sensing	3 २
	2.1 2.2	Diamo	ond electrodes and ISFETs	5
3	Gro	wth o	f Diamond Layers	9
	3.1	Diamo	ond growth by CVD	9
		3.1.1	Hot-filament CVD	10
		3.1.2	Microwave plasma CVD	11
	3.2	Dopin	g of diamond	12
	3.3	Surfac	ce terminations of diamond	14
4	Elec	ctroch	emical Surface Analysis	17
	4.1	The s	emiconductor-electrolyte interface	17
		4.1.1	The electrochemical potential scale	17
		4.1.2	The electrochemical double layer	18
		4.1.3	The pH sensitivity of oxygen-terminated diamond	19
		4.1.4	Charge-transfer reactions on diamond electrodes	20
	4.2	Electr	ode preparation and experimental setup	21
	4.3	Chara	cterization in simple electrolytes	23
		4.3.1	Open circuit potential measurements	23
		4.3.2	Cyclic voltammetry measurements	24
		4.3.3	Electrochemical impedance spectroscopy	25
	4.4	Evalu	ation of the electronic surface barrier	28
	4.5	Redox	reactions on electrodes	30
		4.5.1	Linear diffusion on planar (large-area) electrodes	30
		4.5.2	Hemispherical diffusion on microelectrodes	32
		4.5.3	Microelectrode arrays	34

5	Sur	face Oxidation of Diamond	35
	5.1	Surface oxidation treatments	35
		5.1.1 Wet-chemical oxidation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	35
		5.1.2 Anodic oxidation \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	36
		5.1.3 Oxidation by plasma treatments	37
	5.2	Surface profiling by AFM	39
	5.3	Surface analysis by XPS	40
		5.3.1 Introduction \ldots	40
		5.3.2 Wet-chemically oxidized surface	43
		5.3.3 Anodically oxidized surface	44
		5.3.4 Surface oxidized by RF oxygen plasma	46
		5.3.5 Surface after argon/oxygen plasma etching (RIE) \ldots .	47
		5.3.6 Effect of annealing in hydrogen plasma after RIE	50
	5.4	Summary	52
6	Elec	ctrochemical Characterization	55
U	6.1	Single-crystal diamond electrodes	56
	0.1	6.1.1 Wet-chemical oxidation	56
		6.1.2 Anodic oxidation	59
		6.1.3 BF oxygen plasma	65
		6.1.4 Argon/oxygen plasma (RIE)	68
		6.1.5 Surface annealing in hydrogen plasma	71
	6.2	Nanocrystalline diamond electrodes	73
	0.2	6.2.1 Anodic oxidation	73
		6.2.2 BF ovvgen plasma	75
	6.3	Summary	77
_			
7	App	plications of Diamond Electrodes	79
	7.1	Diamond electrodes for the ethanol oxidation	79
	7.2	Diamond sub-microelectrode array	81
		$7.2.1 \text{Introduction} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	81
		7.2.2 Microelectrode array fabrication	82
		7.2.3 Characterization in 0.1 M H_2SO_4	84
		7.2.4 Response to redox couples	86
	7.3	Diamond electrodes with metal particles	88
		7.3.1 Introduction \ldots	88
		7.3.2 Characterization of the electrodes	89
		7.3.3 Equivalent circuit of the electrodes covered by Au	0.0
		nanopraticles	92
8	Cha	aracterization of III-Nitrides	95
	8.1	Introduction	95
	8.2	Gallium nitride	96
	8.3	Indium nitride	98

ii

CONTENTS		
9 Summary	103	
List of publications	119	
Acknowledgements	121	

List of Figures

2.1 2.2	Typical cyclic voltammetry measurements of diamond and platinum (a) scheme of an oxygen-terminated diamond ISFET with boron δ -doped channel, (b) transfer characteristics in pH = 1 and pH = 13	4 6
3.1 3.2 3.3	Photograph and sketch of the HFCVD reactor	10 11 12
3.4	Activation energy of boron in diamond as a function of the effective acceptor concentration	13
4.1 4.2	Electrochemical potential scale versus electronic energy scale Sketch of the electrochemical double layer, assuming no specific	18
19	adsorption	19 91
4.3 4.4	(a)Three-electrode glass cell (b) schematic realization of the po-	21
	tentiostat used for the measurements	22
$4.5 \\ 4.6$	Typical OCP measurement of a diamond electrode in $0.1 \text{ M H}_2\text{SO}_4$ Typical cyclic voltammetry plot of a boron-doped diamond elec-	23
	trode in $0.1 \text{ M H}_2\text{SO}_4 \dots \dots$	25
4.7	Equivalent circuits of the diamond-electrolyte interface	26
4.0	bias. (b) at flatband conditions	28
4.9	Typical cyclic voltammetry measurement for an oxygen- terminated diamond electrode in 0.1 M KCl containing 10 mM	-0
	$K_4 Fe(CN)_6 \dots \dots$	31
4.10	Calculated profiles for linear diffusion	32
4.11	Calculated profiles for hemispherical diffusion	33
4.12	Microelectrode arrays with two different distances between adja- cent microelectrodes	34
5.1	Current-time characteristics of an anodic oxidation treatment	37
5.2	Sketch of the barrel reactor for oxygen plasma	38
5.3	Sketch of the reactor for reactive ion-etching in argon/oxygen plasma	39

5.4	AFM images of a SCD sample after (a, d) wet-chemical, (b, e) RF oxygen plasma and (c, f) argon/oxygen plasma treatment	40
5.5	Sketch of the setup for XPS measurements	41
5.6	XPS spectrum of oxygen-terminated diamond (survey scan)	42
5.7	(a) C1s and (b) O1s core level spectra of single-crystal diamond after wet-chemical oxidation	43
5.8	Analysis of the C1s peak for wet-chemical oxidation at different detection angles	44
5.9	(a) C1s and (b) O1s core level spectra of single-crystal diamond after anodic oxidation	45
5.10	Analysis of the C1s peak for anodic oxidation at different detection angles	45
5.11	XPS spectra of single-crystal diamond after RF oxygen plasma	46
5.12	Analysis of the C1s peak for RF oxygen plasma at different detec- tion angles	47
5.13	C1s core level spectra after argon/oxygen plasma (RIE): (a) 0° , (b) 80°	48
5.14	Results from angle-resolved XPS measurements after argon/oxy-gen plasma (C1s peak) and model of the electrode surface \ldots .	49
5.15	Current-voltage measurements on the surface of a highly boron- doped single-crystal diamond electrode before argon/oxygen plasma, after argon/oxygen plasma, and after subsequent anneal- ing in hydrogen plasma and wet-chemical oxidation ("recovery treatment")	50
5.16	C1s spectrum after argon/oxygen plasma and annealing treatment in hydrogen plasma in comparison with wet-chemical oxidation and argon/oxygen plasma without annealing	51
5.17	AFM images of a hole etched by argon/oxygen plasma before and after subsequent annealing in hydrogen plasma	52
6.1	Cyclic voltammetry plots at $s = 50$ mV/s for single-crystal dia- mond electrode after wet-chemical oxidation $\ldots \ldots \ldots \ldots \ldots$	56
6.2	Impedance spectroscopy measurements (capacitance plots) at two different potentials in $0.1 \text{ M H}_2\text{SO}_4$ electrolyte $\ldots \ldots \ldots \ldots$	57
6.3	Mott-Schottky plots for single-crystal diamond electrode after wet- chemical oxidation. The solid lines show the fits for the cases of H_2SO_4 and KCl	58
6.4	Cyclic voltammetry plots for single-crystal diamond electrode after anodic oxidation	60
6.5	Cyclic voltammetry plots in $0.1 \text{ H}_2\text{SO}_4$ electrolyte for wet-chemical and anodic oxidation in semilogarithmic scale $\ldots \ldots \ldots \ldots$	61

vi

LIST OF FIGURES

6.6	Cyclic voltammetry measurements in $0.1 \text{ H}_2\text{SO}_4$ electrolyte. (a): Anodic peak current after scanning to different cathodic potentials,	
	(b): Cathodic current after cycling to different anodic potentials	62
67	Capacitance plots for impedance spectroscopy measurements in 0.1	02
0.1	H-SO.	63
68	Mott Schottky plots for single grystel diamond electrode after an	00
0.8	odia ovidation	64
60	Cuolic oxidation	04
0.9	cyclic voltalinietry of single-crystal dialiond oxidized by RF oxy-	65
C 10	gen plasma \dots	60
0.10	Results of impedance spectroscopy at $V = +0.5$ V vs. SCE in 0.1	00
0.1.1	M KCl electrolyte	66
6.11	Mott-Schottky plots for single-crystal diamond electrode oxidized by RF oxygen plasma.	67
6.12	Cyclic voltammetry plots of a single-crystal diamond electrode af-	
	ter 60 s argon/oxygen plasma etching.	68
6.13	Cyclic voltammetry plots in $0.1 \text{ H}_2\text{SO}_4$ of single-crystal diamond	
	electrodes exposed to argon/oxygen plasma compared to the case	
	of anodic oxidation.	69
6.14	Capacitance plot of a single-crystal diamond electrode after 60 s	00
0.11	argon/oxygen plasma etching in $pH = 1$ electrolyte	69
6 15	Mott-Schottky plots of a single-crystal diamond electrode after 60	00
0.10	s argon/oxygen plasma etching	70
6 16	Cyclic voltammetry masurement of the single crystal diamond	10
0.10	electrode after argon /oxygon plasma and subsequent appealing in	
	budrogen plasma	79
6 17	Mott Schottly, plota of single envited diamond often often on	12
0.17	mott-schottky plots of single-crystal diamond after after ar-	
	gon/oxygen plasma (KIE) and hydrogen plasma treatment in com-	79
C 10	Caliberation with the case of anodic oxidation	12
0.18	Cyclic voltammetry plots of the NCD electrode after anodic oxidation	13
0.19	Mott-Schottky plots of the NCD electrode after anodic oxidation .	(4
6.20	Cyclic voltammetry measurements of the nanocrystalline diamond	
	electrode exposed to RF oxygen plasma	75
6.21	Semilogarithmic plots of the cyclic voltammetry measurements for	
	anodic oxidation and oxygen plasma (anodic region)	76
6.22	Results of impedance spectroscopy of the NCD electrode after oxy-	
	gen plasma	77
6.23	Mott-Schottky plots of the NCD electrode oxidized by RF oxygen	
	plasma	77
F 1		
7.1	Cyclic voltammetry measurements at 20 mV/s in 0.1 M H_2SO_4	0.0
	containing different ethanol concentrations	80
7.2	Current density of the ethanol oxidation for 90 subsequent scans	
	of cyclic voltammetry at an ethanol concentration of 8 mM	81

vii

7.3	((a) schematical band diagram of a pn-junction close to the elec- trode surface.(b) scheme of the fabricated sub-microelectrode array	83
7.4	AFM image of the fabricated sub-microelectrode array. (a) top	
	view, (b) cross section.	83
7.5	Cyclic voltammetry measurements at $s = 20$ mV/s of a highly-	
	boron-doped electrode, the electrode overgrown with the nitrogen-	
	doped cap layer, and the fabricated sub-microelectrode array	84
7.6	Results of the impedance measurements for the electrode with cap	
	layer but without holes and for the sub-microelectrode array \ldots	86
7.7	Cyclic voltammetry measurements of the sub-microelectrode array	
	in 0.1 M KCl + 10 mM Fe(CN) $_{6}^{4-}$ at various scan rates	87
7.8	Redox characteristics at $s = 100 \text{ mV/s}$ of the sub-MEA without	
	recovery treatment and after 5 and 15 min recovery treatment	88
7.9	SEM images of (a) the p^+ electrode and (b) p^+/p^- electrode with	0.0
7 10	Au nanoclusters \dots	90
7.10	Cyclic voltammograms of the p^+ and the p^+/p^- electrode (a) be-	00
711	Iore and (b) after the deposition of the Au nanoparticles	90
(.11	impedance spectroscopy measurements of the $p+$ and the $p+/p-$	
	ticlos	01
7 12	Schematic cross-section of an O-terminated NCD electrode with	51
1.12	low-doped cap layer and Au particles including the equivalent	
	circuit of the interface	92
		01
8.1	Cyclic voltammetry measurements of a n-doped GaN electrode in	
	$0.1 MH_2 SO_4$ before and after anodic oxidation in 0.1 M KOH	96
8.2	Mott-Schottky plots of the n-doped GaN electrode in $0.1 \text{ M H}_2\text{SO}_4$	
	before and after anodic oxidation in 0.1 M KOH	97
8.3	TEM images of the anodically oxidized InN electrode	99
8.4	Cyclic voltammetry plots of the n-doped InN electrode in 0.1 M	100
0 5	H_2SO_4	100
ð.ð	(a) MOUT-SCHOUTRY plots of the n-doped INN electrode in 0.1 MILCO (b) comion profile for the initial InN electrode in 0.1	
	$M_{12}SO_4$. (b) carrier prome for the initial line electrode extracted from the Mott Schottlay plot	101
		101

viii

List of symbols

C	capacitance
C_{DL}	double-layer capacitance
C_{SC}	depletion-layer (space charge) capacitance
\underline{C}	complex capacitance
c_0	reference concentration
c_b	bulk concentration in electrolyte
$c_{H_3O^+}$	H_3O^+ concentration
D	diffusion constant
d_A	thickness of layer A
d_{CO}	thickness of C-O-layer
$d_{\alpha C}, d_{\alpha C1}, d_{\alpha C2}$	thicknesses of α -C layers
E	energy
E_a	activation energy of dopants
E_b	binding energy
E_g	bandgap
E_{kin}	kinetic energy
F	Faraday constant
f	measurement frequency
h	Planck constant
I_A, I_B	intensities
I_{A0}, I_{B0}	maximum intensities
J	current density
J_0	exchange current density
k_B	Boltzmann constant
m^*	effective mass
N_A	acceptor concentration
n	n-factor of constant phase element

n(x)	charge carrier profile
Q	charge
Q_0	nominal capacitance of constant phase element
q	elementary charge
R_1	resistance
R_{CT}	charge-transfer resistance
R_{DL}	double-layer resistance
R_q	gas constant
R_{GB}	resistance across grain boundaries
R_{SC}	depletion layer resistance
r_0	radius of microelectrode
S	scan rate
T	absolute temperature
t	time
V, V_s	electrode potential
V_0	equilibrium potential of redox reaction
V_{FB}	flatband potential
V_{OCP}	open-circuit potential
Z	impedance
<u>Z</u>	complex impedance
z	number of exchanged electrons
α	transfer coefficient
β_A	surface coverage with layer A
ϵ_0	dielectric constant
ϵ_r	relative permittivity
λ	escape length of photoelectrons
ν	frequency (X-rays)
θ	detection angle
Φ_{det}	work function of photoelectron detector
Φ_{SC}	potential drop across depletion layer
ϕ_B	electronic surface barrier
ω	circular frequency

Abstract

The topic of this thesis is the electrochemical characterization of oxygenterminated single-crystal- and nanocrystalline diamond electrodes. Diamond is a very attractive material for bio- and electrochemical applications due to its exceptional stability, its biocompatibility, and its electrochemical properties like wide potential window of water dissociation and low background current. The oxygen-termination improves the stability of the electrode characteristics, which is the main advantage compared to the hydrogen termination, which is apparent directly after growth.

However, the characterisites of oxygen-terminated diamond electrodes are very dependent on the oxidation treatment, as it is shown in this work. Four different oxidation treatments are investigated by electrochemical measurements: Wetchemical oxidation in a H_2SO_4/H_2O_2 mixture, anodic oxidation in KOH, RF oxygen plasma without DC bias and an etching process in argon/oxygen plasma including a DC bias. The electrode characterisites are correlated with the results from X-ray photoemission spectroscopy (XPS) measurements. It is shown that these oxidation treatments induce different carbon-oxygen functional groups on the diamond surface. In addition, plasma treatments can lead to sp²-like defects, especially in the case of the argon/oxygen etching process. In the latter case, the plasma process results in a thin layer of non-diamond phases, which is expected to degrade the performance of the diamond electrodes exposed to this treatment. The different carbon-oxygen surface groups and the different amounts of sp²-like defects have a significant influence on the electrochemical characterisitcs of the corresponding diamond electrodes, which can be observed by cyclic voltammetry and electrochemical impedance spectroscopy measurements. These two measurement techniques play an important role in the characterization of the diamond electrodes and are therefore discussed in detail. One important parameter which is investigated is the electronic surface barrier of diamond in contact to the electrolyte, which can vary over a range from below 1.0 eV to almost 2.0 eV depending on the oxidation treatment.

Apart from the oxidation treatments, the cases of single-crystal and nanocrystalline diamond are compared. It is shown that the grain boundary network can also affect the characterisitcs of diamond electrodes.