

# Synthese und Charakterisierung neuartiger binärer Molekülverbindungen schwerer Hauptgruppenelemente

# Stephan Traut



# Synthese und Charakterisierung neuartiger binärer Molekülverbindungen schwerer Hauptgruppenelemente

Zur Erlangung des akademischen Grades eines

# DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. Nat.)

Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich

vorgelegte

## DISSERTATION

von

## Dipl.-Chem. Stephan Traut

aus

Pforzheim

Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Carsten von Hänisch Koreferent: Prof. Dr. Annie Powell Tag der mündlichen Prüfung: 10. Februar 2011

# Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2011 Zugl.: Karlsruhe (KIT), Univ., Diss., 2011

978-3-86955-704-5

© CUVILLIER VERLAG, Göttingen 2011 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage, 2011
Gedruckt auf säurefreiem Papier

978-3-86955-704-5

Diese Arbeit wurde unter der Anleitung von Herrn Prof. Dr. Carsten von Hänisch in der Zeit vom März 2008 bis Februar 2011 am Institut für Anorganische Chemie des Karlsruher Instituts für Technologie und am Fachbereich Chemie der Phillips-Universität Marburg angefertigt.

# Inhaltsverzeichnis

| 1 E |          | EINLEITUNG1 |                                                                                                                 |  |
|-----|----------|-------------|-----------------------------------------------------------------------------------------------------------------|--|
| 1.1 |          | All         | GEMEINER TEIL                                                                                                   |  |
|     | 1.2      | BIN         | ÄRE MOLEKÜLVERBINDUNGEN2                                                                                        |  |
|     | 1        | .2.1        | Binäre Gruppe 14/15-Molekülverbindungen2                                                                        |  |
|     | 1        | .2.2        | Binäre Interpnikogen-Molekülverbindungen                                                                        |  |
|     | 1        | .2.3        | Binäre Tellurverbindungen der 14. und 15. Gruppe7                                                               |  |
|     | 1.3      | Тне         | RMOELEKTRISCHE MATERIALEN                                                                                       |  |
|     | 1        | .3.1        | Der Seebeck-Effekt9                                                                                             |  |
|     | 1        | .3.2        | Gütezahl zT nach Altenkirch                                                                                     |  |
|     | 1        | .3.3        | Binäre Molekülverbindungen als Vorläufer für thermoelektrische Materialien10                                    |  |
| 2   | A        | UFGA        | BENSTELLUNG UND ZIELSETZUNG12                                                                                   |  |
| 3   | D        | ISKUS       | SION DER ERGEBNISSE                                                                                             |  |
|     | 3.1      | SYN         | ITHESEPRINZIPIEN                                                                                                |  |
|     | 3.2      | DAF         | RSTELLUNG UND CHARAKTERISIERUNG VON SILYLVERBINDUNGEN DER PNIKOGENE UND                                         |  |
|     |          | Сни         | ALCOGENE                                                                                                        |  |
|     | 3        | 8.2.1       | Silylverbindungen des Phosphors, Arsens und Tellurs15                                                           |  |
|     | 3        | .2.2        | Dilithiumphosphandiide und -arsandiide16                                                                        |  |
|     | 3        | .2.3        | Darstellung und Charakterisierung von (Me <sub>3</sub> Si) <sub>3</sub> CBiCl <sub>2</sub> (4)20                |  |
|     | 3.3      | BIN         | ÄRE 14/15-MOLEKÜLVERBINDUNGEN                                                                                   |  |
|     | 3        | 8.3.1       | Untersuchungen zu Reaktion der primären Phosphane bzw. Arsane tBu_PhSiEH_2                                      |  |
|     |          |             | mit den Amiden $[M{N(SiMe_3)_2}_2]$ (M = Sn, Pb)22                                                              |  |
|     | 3        | 3.3.2       | Untersuchungen zur Reaktion des Dilithiumsilylarsandiieds [ $tBu_2PhSiAsLi_2$ ] <sub>8</sub> (2)                |  |
|     |          |             | <i>mit SnCl</i> <sub>2</sub>                                                                                    |  |
|     | 3        | 3.3.3       | Untersuchungen zur Reaktion des primären Silylphosphans (Me <sub>3</sub> Si) <sub>3</sub> SiPH <sub>2</sub> mit |  |
|     |          |             | den Amiden $M\{N(SiMe_3)_2\}_2$ (M = Sn, Pb)                                                                    |  |
|     | 3        | 8.3.4       | Untersuchungen zur Reaktion der gemischt silylierten Phosphane bzw. Arsane                                      |  |
|     |          |             | $(Me_3Si)_3SiE(SiMe_3)_2 mit MCl_2 (M = Sn, Pb) \dots 35$                                                       |  |
|     | 3        | 8.3.5       | Darstellung und Charakterisierung der Blei-Antimon-Käfigverbindung                                              |  |
|     | ~ .      | _           | $[(Pr_3SISb)_6Pb_4] (16)41$                                                                                     |  |
|     | 3.4      | BIN         | ARE 15/15-MOLEKULVERBINDUNGEN                                                                                   |  |
|     | 3        | 3.4.1       | Untersuchungen zur Darstellung von Phosphor-Bismut-Verbindungen                                                 |  |
|     | 3        | .4.2        | Ditersuchungen zur Darstellung von Arsen-Antimonverbindungen und Arsen-                                         |  |
|     | 0 F      | Div         |                                                                                                                 |  |
|     | J.5<br>0 | BIN.        | ARE GRUPPE TO -IVIOLEKULVERBINDUNGEN                                                                            |  |
|     | ى        | .3.1        | - Sn Dh)                                                                                                        |  |
|     |          |             | – , , , , , , , , , , , , , , , , , , ,                                                                         |  |

|   | 3.5.2 | Untersuchungen zur Reaktion gemischt silylierter Tellur-verbindungen mit Bi $CI_3$                                                                                                                                                         |       |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   |       | und $RBiCl_2$ ( $R = (Me_3Si)_2CH$ , ( $Me_3Si$ ) <sub>3</sub> C)                                                                                                                                                                          | 62    |
| 4 | EXP   | ERIMENTELLER TEIL                                                                                                                                                                                                                          | 71    |
|   | 4.1   | ALLGEMEINER TEIL                                                                                                                                                                                                                           | 71    |
|   | 4.1.1 | Arbeitstechnik                                                                                                                                                                                                                             | 71    |
|   | 4.1.2 | Schutzgas                                                                                                                                                                                                                                  | 71    |
|   | 4.1.3 | Lösungsmittel                                                                                                                                                                                                                              | 71    |
|   | 4.1.4 | Spektroskopische Untersuchungen                                                                                                                                                                                                            | 71    |
|   | 4.2 I | DARSTELLUNG DER AUSGANGSVERBINDUNGEN                                                                                                                                                                                                       | 73    |
|   | 4.2.1 | Darstellung von [LiPH <sub>2</sub> •(dme)]                                                                                                                                                                                                 | 73    |
|   | 4.2.2 | Darstellung von tBu₂PhSiH                                                                                                                                                                                                                  | 74    |
|   | 4.2.3 | Darstellung von tBu₂PhSiCl                                                                                                                                                                                                                 | 74    |
|   | 4.2.4 | Darstellung von tBu₂PhSiBr                                                                                                                                                                                                                 | 75    |
|   | 4.2.5 | Darstellung von [tBu₂PhSiNa(thf)]                                                                                                                                                                                                          | 75    |
|   | 4.2.6 | Darstellung von [tBu₂PhSiTeNa(thf)₂]                                                                                                                                                                                                       | 76    |
|   | 4.3 I | DARSTELLUNG VON SILYLVERBINDUNGEN DES PHOSPHORS, ARSENS UND TELLURS                                                                                                                                                                        | 77    |
|   | 4.3.1 | Darstellung von tBu₂PhSiPH₂                                                                                                                                                                                                                | 77    |
|   | 4.3.2 | Darstellung von tBu₂PhSiAsH₂                                                                                                                                                                                                               | 78    |
|   | 4.3.3 | Darstellung von (Me <sub>3</sub> Si) <sub>3</sub> SiAs(SiMe <sub>3</sub> ) <sub>2</sub>                                                                                                                                                    | 79    |
|   | 4.3.4 | Darstellung von tBu₂PhSiTeSiMe₃                                                                                                                                                                                                            | 80    |
|   | 4.4 I | DARSTELLUNG VON DILITHIUMPHOSPHANDIIDEN UND -ARSANDIIDEN                                                                                                                                                                                   | 81    |
|   | 4.4.1 | Darstellung von [tBu₂PhSiPLi₂] <sub>8</sub> (1)                                                                                                                                                                                            | 81    |
|   | 4.4.2 | Darstellung von [tBu₂PhSiAsLi₂] <sub>8</sub> (2)                                                                                                                                                                                           | 81    |
|   | 4.4.3 | Darstellung von [( $Me_3Si$ ) <sub>3</sub> SiPLi <sub>2</sub> ] <sub>6</sub> • 2 tol (3)                                                                                                                                                   | 82    |
|   | 4.5 l | DARSTELLUNG VON ( $Me_3SI$ ) <sub>3</sub> $CBICL_2(4)$                                                                                                                                                                                     | 83    |
|   | 4.6 I | Darstellung von 14/15-Molekülverbindungen                                                                                                                                                                                                  | 84    |
|   | 4.6.1 | Darstellung von [tBu₂PhSiPSn]₄ (5)                                                                                                                                                                                                         | 84    |
|   | 4.6.2 | Darstellung von [tBu₂PhSiPPb]₄ (6)                                                                                                                                                                                                         | 84    |
|   | 4.6.3 | Darstellung von [tBu₂PhSiAsSn]₄ (7)                                                                                                                                                                                                        | 85    |
|   | 4.6.4 | Darstellung von [tBu <sub>2</sub> PhSiAsPb] <sub>4</sub> • 2 thf (8)                                                                                                                                                                       | 86    |
|   | 4.6.5 | Darstellung von [(tBu <sub>2</sub> PhSiAs) <sub>4</sub> Sn <sub>3</sub> Li <sub>2</sub> • 6 Et <sub>2</sub> O (9)                                                                                                                          | 87    |
|   | 4.6.6 | Darstellung von [(tBu₂PhSiAsSn)₄•SnCl(Bu)] (10)                                                                                                                                                                                            | 87    |
|   | 4.6.7 | Darstellung von [(Me <sub>3</sub> Si) <sub>3</sub> SiPSn] <sub>4</sub> (11)                                                                                                                                                                | 88    |
|   | 4.6.8 | Darstellung von [(Me <sub>3</sub> Si) <sub>3</sub> SiPPb] <sub>4</sub> (12)                                                                                                                                                                | 89    |
|   | 4.6.9 | Darstellung von [{(Me <sub>3</sub> Si) <sub>3</sub> SiP} <sub>2</sub> Sn <sub>3</sub> Cl <sub>3</sub> ] • [Li(thf) <sub>4</sub> ] <sup>+</sup> • [{(Me <sub>3</sub> Si) <sub>3</sub> SiP} <sub>2</sub> Sn <sub>3</sub> Cl <sub>2</sub> ] • | • tol |
|   |       | (13)                                                                                                                                                                                                                                       |       |
|   | 4.6.1 | U Darstellung von [( $Me_3SI$ ) <sub>3</sub> SIAsSN] <sub>4</sub> • 2 tol (14)                                                                                                                                                             | 90    |
|   | 4.6.1 | $I  \text{Darstellung von} [(\text{IVIe}_3 \text{SI})_3 \text{SIASPD}]_4 \bullet 2 \text{ tol} (15)$                                                                                                                                       | 91    |
|   | 4.6.1 | $2  \text{Darstellung von [(IPr_3SISD)_6Pb_4] (16)}$                                                                                                                                                                                       | 91    |
|   | 4.7   | JARSTELLUNG VON 15/15-MOLEKULVERBINDUNGEN                                                                                                                                                                                                  | 92    |
|   | 4.7.1 | Darstellung von [tBu <sub>2</sub> PhSiP(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>2</sub> ] (17)                                                                                                                                      | 92    |

|   | 4.7.2   | Darstellung von [P(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>3</sub> ] (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
|---|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|   | 4.7.3   | Darstellung von [(tBu <sub>2</sub> PhSiAs) <sub>4</sub> Sb <sub>4</sub> ] • tol (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
|   | 4.7.4   | Darstellung von [tBu2PhSiAs(BiCH(SiMe3)2Cl)2] (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                                                |
|   | 4.7.5   | Darstellung von [iPr <sub>3</sub> SiAs(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>2</sub> ] (21) und [As(BiCH(SiMe <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sub>2</sub> Cl) <sub>2</sub> ] <sub>2</sub> (22) |
|   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94                                                |
|   | 4.7.6   | Darstellung von [As(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>2</sub> ] <sub>2</sub> (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
|   | 4.8 DA  | RSTELLUNG VON GRUPPE 16-MOLEKÜLVERBINDUNGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96                                                |
|   | 4.8.1   | Darstellung von [(tBu₂PhSiTe)₄Sn₂] (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|   | 4.8.2   | Darstellung von [(tBu <sub>2</sub> PhSiTe) <sub>4</sub> Pb <sub>2</sub> ] (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
|   | 4.8.3   | Darstellung von [{(Me <sub>3</sub> Si) <sub>3</sub> SiTe} <sub>4</sub> Te <sub>2</sub> Sn <sub>4</sub> ] (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
|   | 4.8.4   | Darstellung von [(tBu₂PhSiTe)₃Bi] (26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
|   | 4.8.5   | Darstellung von [(tBu <sub>2</sub> PhSiTe) <sub>2</sub> BiC(SiMe <sub>3</sub> ) <sub>3</sub> ] (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
|   | 4.8.6   | Darstellung von [{(Me <sub>3</sub> Si) <sub>3</sub> SiTe} <sub>2</sub> BiCH(SiMe <sub>3</sub> ) <sub>2</sub> ] (28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
|   | 4.8.7   | Darstellung von [{(Me <sub>3</sub> Si) <sub>3</sub> SiTe} <sub>2</sub> BiC(SiMe <sub>3</sub> ) <sub>3</sub> ] • Et <sub>2</sub> O (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| 5 | ZUSAN   | MENFASSUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| • | KDIOT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                               |
| 6 | KRISTA  | ALLSTRUKTURANALYSEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108                                               |
|   | 6.1 ALI | .GEMEINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108                                               |
|   | 6.2 Kr  | ISTALLSTRUKTURDATEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110                                               |
|   | 6.2.1   | [tBu <sub>2</sub> PhSiAsLi <sub>2</sub> ] <sub>8</sub> (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
|   | 6.2.2   | $[(Me_3Si)_3SiPLi_2]_6 \bullet 2 \text{ tol } (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|   | 6.2.3   | $(Me_3Si)_3CBiCl_2$ (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|   | 6.2.4   | [tBu <sub>2</sub> PhSiPSn] <sub>4</sub> (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
|   | 6.2.5   | [tBu <sub>2</sub> PhSiPPb] <sub>4</sub> (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114                                               |
|   | 6.2.6   | $[tBu_2PhSiAsPb]_4 \bullet 2 thf (8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
|   | 6.2.7   | $[(tBu_2PhSiAs)_4Sn_3Li_2] \bullet 6 Et_2O (9).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
|   | 6.2.8   | $[(tBu_2PhSiAsSn)_4 \cdot Sn(Cl)Bu] (10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117                                               |
|   | 6.2.9   | [(Me <sub>3</sub> Si) <sub>3</sub> SiPSn] <sub>4</sub> (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118                                               |
|   | 6.2.10  | [(Me <sub>3</sub> Si) <sub>3</sub> SiPPb] <sub>4</sub> (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
|   | 6.2.11  | Darstellung von [{ $(Me_3Si)_3SiP_2Sn_3Cl_3$ ]- • [Li(thf) <sub>4</sub> ]+ • [{ $(Me_3Si)_3SiP_2Sn_3Cl_3$ ]- • [Li(thf)_4]+ • [{ $(Me_3Si)_3SiP_2Sn_3Cl_3$ ]- • [Li(thf)_4]+ • [{}(Me_3Si)_3SiP_2Sn_3Cl_3]- • [Li(thf)_4]+ • [{}(Me_3Si)_4Sn_4]- • [{ | $Cl_2] \bullet tol$                               |
|   |         | (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
|   | 6.2.12  | $[(Me_3Si)_3SiAsSn]_4 \bullet 2 \text{ tol } (14).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                               |
|   | 6.2.13  | $[(Me_3Si)_3SiAsPb]_4 \bullet 2 \text{ tol } (15).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
|   | 6.2.14  | [(iPr <sub>3</sub> SiSb) <sub>6</sub> Pb <sub>4</sub> ] (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
|   | 6.2.15  | $[tBu_2PhSiP(BiCH(SiMe_3)_2Cl)_2] (17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 124                                               |
|   | 6.2.16  | [P(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>3</sub> ] (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
|   | 6.2.17  | $[(tBu_2PhSiAs)_4Sb_4] \bullet tol (19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
|   | 6.2.18  | $[tBu_2PhSiAs(BiCH(SiMe_3)_2Cl)_2] (20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127                                               |
|   | 6.2.19  | [iPr3SiAs(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>2</sub> ] (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|   | 6.2.20  | [As(BiCH(SiMe <sub>3</sub> ) <sub>2</sub> Cl) <sub>2</sub> ] <sub>2</sub> (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
|   | 6.2.21  | [(tBu₂PhSiTe)₄Sn₂] (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|   | 6.2.22  | [(tBu <sub>2</sub> PhSiTe) <sub>4</sub> Pb <sub>2</sub> ] (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 131                                               |

|   | 6.2. | 2.23 $[{(Me_3Si)_3SiTe}_4Te_2Sn_4]$ (25)                                                                 | 132 |
|---|------|----------------------------------------------------------------------------------------------------------|-----|
|   | 6.2. | 2.24 [(tBu₂PhSiTe)₃Bi] (26)                                                                              | 133 |
|   | 6.2. | 2.25 [(tBu <sub>2</sub> PhSiTe) <sub>2</sub> BiC(SiMe <sub>3</sub> ) <sub>3</sub> ] (27)                 | 134 |
|   | 6.2. | 2.26 [{(Me <sub>3</sub> Si) <sub>3</sub> SiTe} <sub>2</sub> BiCH(SiMe <sub>3</sub> ) <sub>2</sub> ] (28) | 135 |
|   | 6.2. | 2.27 $[{(Me_3Si)_3SiTe}_2BiC(SiMe_3)_3] \bullet Et_2O$ (29)                                              | 136 |
| 7 | AN   | HANG                                                                                                     | 137 |
|   | 7.1  | Verwendete Abkürzungen                                                                                   | 137 |
|   | 7.2  | NUMMERIERUNG DER VERBINDUNGEN                                                                            | 138 |
|   | 7.3  | LITERATURVERZEICHNIS                                                                                     | 139 |
|   | 7.4  | LEBENSLAUF                                                                                               | 147 |
|   | 7.5  | PUBLIKATIONSLISTE                                                                                        | 149 |
|   | 7.6  | DANKSAGUNGEN                                                                                             | 150 |

# 1 Einleitung

# 1.1 Allgemeiner Teil

Binäre Molekülverbindungen der Hauptgruppenelemente werden bereits seit längerer Zeit erforscht. Neben einfachen Verbindungen mit einigen wenigen Schweratomen wurden in den vergangenen Jahren auch Käfig- und Clusterverbindungen dieser Elementkombinationen untersucht. Das Interesse gilt dabei sowohl der Synthese als auch den optischen wie elektronischen Eigenschaften.<sup>[1]</sup>

Diese mehrkernigen Metallkomplexe lassen sich in zwei Gruppen unterteilen:

- "Nackte" Clustermoleküle
- Ligandenstabilisierte Clustermoleküle

"Nackte" Clustermoleküle werden auf Grund ihrer hohen Reaktivität vorwiegend in inerten Matrizen oder in der Gasphase unter (Ultra-) Hochvakuumbedingungen dargestellt. Bei Gasphasen-Messungen werden Wechselwirkungen mit Oberflächen oder Lösungsmitteln vermieden; sie liefern somit intrinsische Eigenschaften der jeweiligen Spezies, lassen sich aber nicht als stabile Materialien isolieren.<sup>[2]</sup>

Ligandenstabilisierte Cluster- und Käfigverbindungen können im Allgemeinen isoliert werden, da die Ligandenhülle eine Kondensation zur binären Phase verhindert. Die Gestalt und Eigenschaften dieser Verbindungen hängen dabei wesentlich von den sterischen, als auch elektronischen Eigenschaften der Liganden ab. Als Bindeglied zwischen einzelnen Atomen und dem Festkörper sind besonders ligandenstabilisierte Übergangsmetallcluster ein intensiv untersuchtes Feld der metallorganischen Chemie.<sup>[3]</sup> Zu den Hauptgruppenelementcluster- und Käfigverbindungen sind bislang erheblich weniger Untersuchungen durchgeführt worden.<sup>[4]</sup>

Neben dem rein akademischen Interesse an derartigen Cluster- und Käfigverbindungen, besteht auch die Möglichkeit zu einer Anwendung als

Vorstufen zur Darstellung von Festphasen durch moderne Methoden wie dem MOCVD- oder dem Sol-Gel-Verfahren, beispielsweise in der Halbleiterindustrie.<sup>[5]</sup>

# 1.2 Binäre Molekülverbindungen

#### 1.2.1 Binäre Gruppe 14/15-Molekülverbindungen

Im Gegensatz zu den starken Fortschritten bei Gruppe 13/15- Verbindungen für die Halbleitertechnik, werden Molekülverbindungen, besonders der höheren Homologen der Elemente der 14. und 15. Gruppe nur von wenigen Arbeitsgruppen untersucht. Während in den Systemen Sn/E (E = P, As) noch einige Vertreter bekannt sind,<sup>[6-14]</sup> sind Molekülverbindungen des Systems Pb/E sehr selten.<sup>[15-20]</sup> Zur Stabilisierung derartiger Gruppe 14/15 Verbindungen haben sich in der Vergangenheit silylsubstituiert Gruppe 15-Elemente bewährt.



Abbildung 1: Strukturmotive homoleptischer Phosphanide und -arsanide (E = P, As) des Zinns.

In Abhängigkeit von der Synthesemethode und der Wahl des sterischen Anspruchs der exocyclischen Silvlreste am Pnikogen bilden sich unterschiedliche polyedrische Strukturmotive. So entsteht beispielsweise in einer Brønsted- Säure-Base-Reaktion von primären Silylphosphanen und -arsanen mit Sn{N(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub> entweder ein Heterokubankäfig der Form  $[tBu_3SiESn]_4$  (E = P<sup>[12]</sup>, As<sup>[14]</sup>) oder ein hexagonales Prisma der Struktur  $[iPr_3SiESn]_6$  (E = P<sup>[13]</sup>, As<sup>[14]</sup>). Die Salzeliminierungsreaktion von  $iPr_3SiELi_2$  mit SnCl<sub>2</sub> führt hingegen nicht zum erwarteten hexagonalen Prisma, sondern zu einer siebenkernigen Käfigverbindung des Typs [*i*Pr<sub>3</sub>SiESn]<sub>7</sub> (E = P, As).<sup>[10]</sup>

Neben einer Abhängigkeit der Struktur von den verwendeten Silylresten, besteht auf die Reaktion auch ein Einfluss der verwendeten Stöchiometrie von metallierten Pnikogeniden zu den Metallsalzen. Führt man beispielsweise die Reaktion von *i*Pr<sub>3</sub>SiELi<sub>2</sub> mit einem Überschuss an SnCl<sub>2</sub> im Verhältnis 1:1,2 durch, entsteht nicht die erwartete siebenkernige Käfigverbindung, sondern der zinnreiche Cluster [(*i*Pr<sub>3</sub>SiP)<sub>6</sub>Sn<sub>8</sub>Cl<sub>2</sub>] der neben *i*Pr<sub>3</sub>Si- auch Cl-Substituenten aufweist und Sn-Sn-Bindungen besitzt.<sup>[10]</sup> Es ist also möglich durch einen Überschuss an Zinnsalzen subvalente Zinnatome in ein Molekül einzubringen. Die Reaktion von einem Überschuss an *i*Pr<sub>3</sub>SiAsLi<sub>2</sub> mit SnCl<sub>2</sub> im Verhältnis 1:0,66 ergibt hingegen ein Sn<sub>4</sub>As<sub>6</sub>Li<sub>4</sub>-Rhombendodekaeder, bestehend aus einem [(*i*Pr<sub>3</sub>SiAs)<sub>6</sub>Sn<sub>4</sub>]<sup>4</sup>-Fragment und vier Li<sup>+</sup>-Kationen, die durch je drei As-Atome des Sn<sub>4</sub>As<sub>6</sub>-Gerüst koordiniert werden.<sup>[10]</sup> Bekannt ist darüber hinaus die Verbindung [{Sn( $\mu$ -PMes)}<sub>2</sub>(MesP)<sub>2</sub>Li<sub>2</sub>], erhalten aus der Umsetzung von Sn(NMe<sub>2</sub>)<sub>2</sub> mit MesP(H)Li.<sup>[21]</sup>



Abbildung 2: Molekülstruktur von[(*i*Pr<sub>3</sub>SiP)<sub>6</sub>Sn<sub>8</sub>Cl<sub>2</sub>] und [(*i*Pr<sub>3</sub>SiAs)<sub>6</sub>Sn<sub>4</sub>Li<sub>4</sub>(Et<sub>2</sub>O)<sub>2</sub>] im Kristall.

Neben den genannten Verbindungen mit Zinn in der Oxidationsstufe 2 bzw. <2, sind auch Phosphor- und Arsenverbindungen des vierwertigen Zinns bekannt. Diese weisen meist monomere, dimere oder trimere Strukturmotive auf.<sup>[22-26]</sup>

Monomere Stannylverbindungen des Typs  $tBu_3SnEH_2$  (E = P<sup>[23]</sup>, As<sup>[25]</sup>) können über die Reaktion von  $tBu_3SnCl$  mit den Alkalimetallphosphaniden bzw. -arsaniden NaEH<sub>2</sub> dargestellt werden. Hingegen führt die Reaktion von  $tBu_2SnCl_2$  mit NaEH<sub>2</sub> unter Kondensation zu Dimeren des Typs ( $tBu_2SnEH$ )<sub>2</sub>  $(E = P^{[22]}, As^{[25]})$ . Ungewöhnlich ist hingegen die Käfigverbindung  $[P\{(SnMe_2)_2\}_3P]^{[27]}$ , die durch die Umsetzung von  $Me_4Sn_2H_2$  mit  $P_4$  entsteht und die Verbindung  $[P_4(SnMe_2)_6]$ , die über eine katalysierte Umwandlung von  $P(SnMe_3)_3$  dargestellt werden kann<sup>[9]</sup>. Im weiteren Sinne kann auch das Oktobismutan  $Bi_8[Sn(SiMe_3)_3]_6$  zu dieser Verbindungsklasse gezählt werden, bei welchem ein Hypersilylanalogon des Zinns als Ligand eingesetzt wird.<sup>[28]</sup>



Abbildung 3: Molekülstrukturen von [P{(SnMe<sub>2</sub>)<sub>2</sub>}<sub>3</sub>P] und [P<sub>4</sub>(SnMe<sub>2</sub>)<sub>6</sub>].

Molekülverbindungen des Systems Pb/E (E = P, As) hingegen, wurden bisweilen nur eingeschränkt untersucht. Beispiele dafür sind die zyklische Verbindung [Pb{P(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub>]<sub>2</sub><sup>[18]</sup>, welche durch die Reaktion von Pb{N(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub> mit dem sekundären Silylphosphan HP(SiMe<sub>3</sub>)<sub>2</sub> dargestellt werden kann, sowie die bereits in Vorarbeiten der eigenen Gruppe synthetisierte Verbindung [*i*Pr<sub>3</sub>SiAsPb]<sub>6</sub><sup>[17]</sup>. Die homoleptische, phosphanylsubstituierte Verbindung Pb(PR<sub>2</sub>)<sub>2</sub> (R = arylsubstituierter Silylrest) kann durch die Reaktion von Pbl<sub>2</sub> mit R<sub>2</sub>PLi dargestellt werden und gilt formal als Carbenanalogon.<sup>[29]</sup> Daneben gilt der heteroleptische Komplex R<sub>2</sub>Si=PPb(L) (R = Silylrest, L = Diketiminatligand) als erster Vertreter einer Koordinationsverbindung eines Phosphasilylenderivates an ein divalentes Bleiatom.<sup>[19]</sup>



**Abbildung 4:** Strukturmotive der Verbindungen  $[Pb{P(SiMe_3)_2}_2]_2$ ,  $Pb(PR_2)_2$ , und dem heteroleptischen Komplex  $R_2Si=PPb(L)$  (R = SilyIrest, L = Diketiminatligand).

#### 1.2.2 Binäre Interpnikogen-Molekülverbindungen

Homonukleare Ringe und Polyzyklen der Elemente der 15. Gruppe sind schon längere Zeit im Fokus der Forschung.<sup>[30-34]</sup> Die dabei beobachteten Molekülstrukturen weisen eine große strukturelle Vielfalt auf.

Dimere Molekülverbindungen wie das Diphosphan [(Me<sub>3</sub>Si)<sub>3</sub>SiPH]<sub>2</sub><sup>[35]</sup> und das Distiban [(Me<sub>3</sub>Si)<sub>2</sub>CHSbH]<sub>2</sub><sup>[36]</sup> sind dabei ebenso literaturbekannt wie eine große Anzahl an Ringen. Neben kleinen Ringen wie dem  $P_3tBu_3^{[37]}$  und dem [(Me<sub>3</sub>Si)<sub>3</sub>SiSb]<sub>4</sub><sup>[38]</sup> reicht die Palette über Fünf- und Sechsringe hin zu Polyzyklen, wie dem bizyklischen  $[(tBu_3Si)_6Sb_8]^{[39,40]}$ . Daneben sind auch Käfigmoleküle wie das [{(Me<sub>3</sub>Si)<sub>2</sub>CHSb}<sub>4</sub>Sb<sub>4</sub>] bekannt.<sup>[41]</sup> In jüngerer Zeit wird vor Forschungsgebiet allem durch dieses neue, kationische Phosphoniumverbindungen bereichert.<sup>[42,43]</sup> Die Insertionsreaktion von Ph<sub>2</sub>PCI in den viergliedrigen (PhP)<sub>4</sub>-Ring in Gegenwart von Me<sub>3</sub>SiOTf liefert beispielsweise das Cyclotetraphospinophoshonium Kation [Ph<sub>6</sub>P<sub>5</sub>]<sup>+</sup>.<sup>[43]</sup>



**Abbildung 5:** Strukturmotive der Verbindungen  $[(Me_3Si)_3SiSb]_4$ ,  $[{(Me_3Si)_2CHSb}_4Sb_4]$  und  $[Ph_6P_5]^+$ .

Binäre Molekülverbindungen der Elemente der 15. Gruppe sind hingegen weitgehend unerforscht. In erster Linie standen dabei die Systeme E/N

(E = P - Bi) im Mittelpunkt der Forschung, wie beispielsweise Phosphor-Stickstoff-Heterozyklen.<sup>[44]</sup> In der jüngeren Vergangenheit gelang es, eine ganze Reihe an Aziden und Polyaziden des Arsens, Antimons und Bismutes darzustellen und zu charakterisieren.<sup>[45-47]</sup> Einige Vertreter dieser hoch endothermen Substanzklasse sind die binären Verbindungen E(N<sub>3</sub>)<sub>3</sub> (E = Sb<sup>[46]</sup>, Bi<sup>[47]</sup>).

Trotz ihrer sehr ähnlichen Elektronegativitäten (P 2.19; As 2.18; Sb 2.05; Bi 2.02)<sup>[48]</sup> sind binäre Molekülverbindungen, besonders der höheren Homologen der 15. Gruppe, sehr selten.

Neben einigen zyklischen Verbindungen die in ihrer Art den homonuklearen Spezies ähneln, wie die Ringe  $(P_2AstBu_3)^{[49]}$  und  $[(Me_3Si)_2HCAsPSitBuPh_2]^{[50]}$ , sind auch bizyklische Verbindungen, beispielsweise das  $[Sb_2(PAr)_2]^{[51]}$  $(Ar = 2,4,6-(tBu)_3C_6H_2)$  bekannt. Darüber hinaus wurde kürzlich über die chlorverbrückten Ringverbindungen  $[tBuPh_2SiP{BiCICH(SiMe_3)_2}_2]$ ,  $[P_2{BiCICH(SiMe_3)_2}_4]$  und  $[P{BiCICH(SiMe_3)_2}_3]$  berichtet. Diese konnten aus Umsetzungen von Dilithiumphosphaniden mit den organosilylsubstituierten Chloriden der Elemente As - Bi erhalten werden.<sup>[50]</sup>



**Abbildung 6:** Strukturmotive der zyklischen Verbindungen [(Me<sub>3</sub>Si)<sub>2</sub>HCAsPSi*t*BuPh<sub>2</sub>],  $[Sb_2(PAr)_2]$  und  $[P_2{BiCICH(SiMe_3)_2}_4]$ .

Doppelbindungen zwischen schweren Elementen der Hauptgruppen werden über das CGMT-Modell beschrieben und gelten gemeinhin als nichtklassische Doppelbindungen.<sup>[52]</sup> Neben dem phosphanylsubstituierten Dibismuthen [BiP(Si*t*BuPh<sub>2</sub>)<sub>2</sub>]<sub>2</sub> gibt es auch Vertreter mit heteronuklearer Doppelbindung.<sup>[53]</sup> Sterisch sehr anspruchsvolle Arylreste stabilisieren die Sb-Bi-Doppelbindung in der Verbindung BbtSbBiBbt (Bbt = 2,6-[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl).<sup>[54]</sup> Binäre Cluster- und Käfigmoleküle der 15. Gruppe sind nahezu unbekannt. Lediglich zwei Verbindungen sind in diesem Zusammenhang literaturbeschrieben und wurden in Vorarbeiten der eigenen Gruppe dargestellt. So liefert die Tieftemperaturreaktion von Me<sub>2</sub>ThexSiPLi<sub>2</sub> (Thex = *i*PrMe<sub>2</sub>C) mit SbCl<sub>3</sub> im Verhältnis 3:2 die Käfigverbindung [(ThexMe<sub>2</sub>SiP)<sub>4</sub>Sb<sub>4</sub>]. In analoger Weise kann auch ein Sb<sub>4</sub>As<sub>4</sub>-Käfig durch die Umsetzung von *i*Pr<sub>3</sub>SiAsLi<sub>2</sub> mit SbCl<sub>3</sub> gewonnen werden.<sup>[55]</sup>



Abbildung 7: Molekülstruktur von [(*i*Pr<sub>3</sub>SiAs)<sub>4</sub>Sb<sub>4</sub>] und [Cl<sub>2</sub>Bi(AsPh<sub>3</sub>)<sub>2</sub>][F<sub>3</sub>CSO<sub>3</sub>].

Abgesehen von Verbindungen mit kovalenten Bindungen, wurden in jüngster Vergangenheit auch Koordinationskomplexe der Systeme As/Sb und As/Bi beschrieben. In einer Lewis-Säure-Base-Reaktion von Ph<sub>3</sub>As mit BiCl<sub>3</sub> in Anwesenheit eines Halogenidabstraktionsreagens entsteht der kationische Komplex  $[Cl_2Bi(AsPh_3)_2]^+$  mit  $[F_3CSO_3]^-$  als Gegenion.<sup>[56]</sup> Darüber hinaus ist die neutrale Koordinationsverbindung  $[o-C_6H_4(AsMe_2)_2Bi_2I_6]$  literaturbekannt.<sup>[57]</sup>

#### 1.2.3 Binäre Tellurverbindungen der 14. und 15. Gruppe

Binäre Molekülverbindungen des Systems E/Te (E = Sn, Pb, Bi) sind von großem Interesse, aufgrund ihrer potentiellen Verwendung als Einkomponenten-Vorstufen für thermoelektrische Materialien (siehe Kapitel 1.3.3). Während von den Chalkogeniden Schwefel und Selen noch einige Vertreter bekannt sind, konnten von Tellur nur wenige Spezies isoliert werden.<sup>[58-61]</sup>