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Introduction

For more than 30 years the investigation of heavy-fermion (HF) metals has been one

of the most fascinating and interesting fields in condensed-matter physics both exper-

imentally and theoretically. The HF phenomenon is observed in compounds based on

elements such as, e.g., Ce or Yb and manifests itself in the existence of quasiparticles

with very large effective mass, m�, at low temperatures. The ground state of these

systems is considered to result from a competition between the Kondo effect and the

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. On one hand, the RKKY mech-

anism accounts for the indirect interaction between neighboring magnetic moments via

the conduction electrons favoring magnetic order. On the other hand, the Kondo ef-

fect screens the f moment by spin polarizing the conduction electrons. The balance of

these interactions is set by the local exchange interaction, J , between the f shell and

conduction electrons. Thus, depending on the strength of J , the ground state of a HF

compound can be either paramagnetic (PM) or magnetically ordered. Even interplay

between magnetism and superconductivity is observed in some systems. The anomalous

properties for which the competition between Kondo effect and RKKY interaction plays

an important role are still far from being fully understood. High-pressure experiments

are of particular interest because for a given system J can be tuned by external pressure

(p). For Ce-based Kondo-lattice compounds, increasing pressure is known to increase

J and, thereby, favoring a non-ordered ground state, while for Yb-based Kondo-lattice

systems J is expected to decrease with increasing p and, thus, to favor long-range

magnetic order.

The Landau Fermi-liquid (LFL) theory has been outstandingly successful in describ-

ing the low-temperature properties of normal and HF metals. However, since the 1990’s

an increasing number of HF systems has been reported to show strong deviations from

the LFL theory; the so called non-Fermi-liquid (NFL) behavior. Up to now, a theoretical

model which yields an universal description of NFL behavior is not available. However,

different mechanisms have been proposed to describe the NFL properties, i.e., the prox-

imity to a quantum critical point (QCP) at which the magnetic-transition temperature

is continuously tuned to zero. The properties in the vicinity of this second-order zero-

temperature quantum phase transition (QPT) are determined by quantum fluctuations

rather than thermal fluctuations, leading to anomalous temperature dependencies of

the thermodynamic and transport properties even at finite temperatures.

In this work, we focuss on the study of the putative pressure-induced magnetic

QCPs in YbIr2Si2 and CeRuPO. In recent years YbRh2Si2 has attracted considerable
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attention as being the first ordered Yb-based HF metal situated in the vicinity to

a QCP exhibiting pronounced NFL behavior (e.g., Trovarelli 2000a, Trovarelli 2000b,

Gegenwart 2002, Custers 2003). The close vicinity to a QCP is evidenced by a magnetic

transition at TN = 70 mK, which can be suppressed either by the application of a small

magnetic field (Gegenwart 2002) or a small negative chemical pressure (Mederle 2002).

Thus, a drawback of YbRh2Si2 is that the QCP can only be reached by applying an

external magnetic field or by chemical substitution. Both are known to affect the

behavior in the quantum critical regime; the first one by breaking the time-reversal

symmetry and the latter one by introducing additional disorder. The ambient-pressure

thermodynamic and transport properties of YbIr2Si2 indicate that this system is placed

on the PM side of a QCP, in contrast to its Rh-homolog which is just on the magnetic

side (Hossain 2005). Since the magnetic trivalent Yb ion is smaller than the non-

magnetic divalent one, pressure favors the magnetic state in Yb compounds. Application

of pressure on YbIr2Si2 is expected to tune the system through a QCP, providing a

unique opportunity to investigate the physical properties at and around a magnetic

QCP in a clean stoichiometric Yb system. Previous measurements on YbIr2Si2 under

pressure suggest that a ferromagnetic (FM) QPT might exist in this system under

sufficiently high pressures (Yuan 2006). Therefore, we performed a detailed study on

the effect of pressure on YbIr2Si2 by means of electrical resistivity and X-ray powder-

diffraction measurements.

The heavy-fermion compound CeRuPO is a rare example of a FM Kondo-lattice

system with an ordering temperature of about TC = 14 K at ambient pressure and a

Kondo temperature on the order of TK ≈ 10 K (Krellner 2007). So far, the behavior at a

FM QCP in a Kondo-lattice system is not settled. Therefore, we investigated the effect

of pressure on the FM order in CeRuPO, where pressure is expected to suppress the FM

ordering temperature. Furthermore, CeRuPO crystallizes in the same type of structure

as the compound series RTPnO (R: rare earth, T: transition metal, Pn: P or As) which

has started to attract considerable attention because of the discovery of superconduc-

tivity with a transition temperature exceeding 50 K (e.g., Chen 2008, Kamihara 2008).

Starting from these premises, pressure studies on CeRuPO are important and are ex-

pected to shed new light on quantum critical phenomena.

This thesis is divided into five chapters. After this introduction, Chapter 1 sum-

marizes the theoretical concepts related to the different physical phenomena observed

in the studied materials and which are important for the understanding of the ex-

perimental results. Chapter 2 describes the experimental techniques employed in this

work. In Chapter 3 the effect of pressure on YbIr2Si2 studied by electrical resistivity

and X-ray powder-diffraction measurements is discussed. Results of electrical-resistivity

measurements on Yb(Rh0.94Ir0.06)2Si2 under pressure are also included in this chapter.

High-pressure investigations on CeRuPO by means of electrical resistivity and a.c. sus-

ceptibility are presented in Chapter 4. At the end, Chapter 5 summarizes and concludes

this thesis.



1 Theoretical concepts

1.1 Heavy-fermion systems

Heavy-fermion (HF) systems are intermetallic compounds containing rare-earth or

actinide elements with partially filled 4f - and 5f -electron shells, respectively. The

name of this class of materials is connected to the high effective mass, m∗, of their

conduction electrons. This heavy mass manifests itself, for example, in a large elec-

tronic specific heat or Pauli susceptibility at low temperatures. An interesting aspect

of the HF systems is that a variety of unusual low-temperature properties can occur

as a result of different ground states. In this chapter, the presentation of the complex

properties of this class of materials is restricted to those that are important for the

understanding of the materials studied in this work. For a more detailed discussion on

HF compounds the reader is referred to review articles, e.g., Stewart 1984, Fulde 1988,

Grewe and Steglich 1991, and Stewart 2001.

At elevated temperatures, HF metals exhibit properties resembling those of con-

ventional metals with weakly interacting magnetic moments immersed in a sea of con-

duction electrons. The electronic transport properties are dominated by incoherent

scattering of the conduction electrons off the local moments. As the temperature is

reduced below a characteristic temperature, a crossover to a coherent scattering at low

temperatures is observed. The low-temperature properties of HF metals display sim-

ilarities to those of normal metals. Thus, the thermodynamic properties of the HF

systems may be described in terms of the Landau Fermi-liquid (LFL) theory.

1.1.1 Single-impurity Kondo effect

In the early 1930’s a minimum of the electrical resistivity, ρ(T ), followed by an

increase toward lower temperatures, was observed in simple metals such as gold or

copper with small amount of magnetic impurities (e.g., Fe). This phenomenon was

theoretically not understood before Kondo’s work in 1964 (Kondo 1964). His theory
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explains the upturn of the resistivity at low temperatures by considering the scattering

of the conduction electrons off a single magnetic ion in an otherwise non-magnetic sea of

conduction electrons. In general, the single-impurity Kondo effect is observed in diluted

alloys with a small amount of 3d or 4f impurities, in which the magnetic moments do not

interact, directly or indirectly, due to the large distance in between them. The important

aspect of this scattering mechanism is that the resistance increases logarithmically upon

lowering the temperature. The above-mentioned resistance minimum is caused by an

interplay between the T 5-dependent resistivity, due to the electron-phonon interaction

dominating the resistance at high temperatures, and the logarithmically increasing spin-

dependent scattering at low temperatures. It turns out that the theoretical estimations

made by Kondo are valid only above a characteristic temperature, which is known

as the Kondo temperature, TK . Below it, Kondo’s prediction leads to an unphysical

result, namely the resistance diverges as T → 0. Known as the “Kondo problem”, the

behavior of ρ(T ) at low temperatures was solved by Wilson using the renormalization-

group technique (Wilson 1975). Within this framework, the exact solution at T = 0

consists in a non-magnetic spin-singlet state formed by an antiparallel coupling between

the impurity spin and the conduction electron spins. In the simplest model, the s − d

model (Wilson 1975), a single impurity spin S = 1
2

is coupled by an exchange interaction

J to the conduction electrons of the host metal. This model is also valid for systems

containing a 4f impurity embedded in a non-magnetic metallic host. The classical

exchange Hamiltonian can be written as

H = −Js · S, (1.1)

where s is the conduction electron spin. The exchange-coupling constant, J , depends

on the hybridization strength or matrix element between the impurity spin and the

conduction electron, Vs−f , and the binding energy of the 4f level, ε4f , as J = −V 2
s−f

ε4f
.

The temperature dependence of the thermodynamic properties in the single Kondo

impurity case was derived applying the Bethe-Ansatz on the classical exchange Hamil-

tonian (Desgranges 1982, Andrei 1983). The Coqblin-Schrieffer model generalizes the

s − d model for effective impurity spins larger than 1/2 (Coqblin 1969). Later, the

spin-orbit coupling and crystalline electric field (CEF) effects were included in these

models leading to a good agreement between the experiments and the theoretical esti-

mations (Rajan 1983, Desgranges 1985, Desgranges 1986). Today, there exists a variety

of theoretical models describing the single-impurity Kondo problem at different levels

or complexity and a number of theoretical approaches have been used to solve these

models (Hewson 1997).

The physical properties of diluted Kondo systems may be classified with respect to
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the Kondo temperature. TK determines the characteristic energy scale of the interaction

between the magnetic impurity and the conduction electrons. It is defined as

kBTK ∝ 1

N(EF )
exp

(
− 1

|JN(EF )|
)

, (1.2)

where kB is the Boltzmann constant and N(EF ) represents the electronic density of

states (DOS) at the Fermi level, EF .

• At T 	 TK the temperature dependencies of the resistivity and specific heat

resemble those of normal metals. The impurity spin behaves as free magnetic

moment giving rise to a magnetic susceptibility, χ(T ), displaying a Curie-Weiss-

type behavior. As T → TK the resistivity follows Δρ(T ) = (ρ(T ) − ρ0) ∝ − ln T ,

where ρ0 is the residual resistivity.

• At very low temperatures, T 
 TK , the transport properties are well described

within the Landau Fermi-liquid formalism which is addressed in Section 1.2.

As soon as the magnetic moments are completely compensated, χ(T ) shows a

temperature-independent Pauli susceptibility.

• At T = 0, the properties are characteristic of a non-magnetic spin-singlet state.

The magnetic susceptibility and the electronic specific-heat coefficient are en-

hanced compared with those in a normal metallic behavior, while ρ(T ) saturates

at a constant value ρ0. Moreover, the hybridization between the 4f and the con-

duction electrons gives rise to two peaks in the DOS: one broad peak centered at

the position of the 4f level, below EF , and a narrow peak located at the Fermi

level which has the width of the order of kBTK and is known as the Abrikosov-Suhl

or Kondo resonance peak.

1.1.2 Kondo-lattice systems and RKKY interaction

The single-impurity Kondo effect is caused by the antiferromagnetic (AFM) ex-

change interaction between a small amount of non-interacting magnetic impurities and

conduction electrons. The situation changes, if the localized magnetic moments form

a dense periodic array. Thus, the so-called Kondo-lattice systems can be viewed as a

lattice of f electrons, each with a magnetic moment, embedded in a metallic host. At

high temperatures the physical properties of these dense f -electron materials are similar

to those of the single-impurity Kondo systems, but marked differences are observed at

low temperatures. An alteration in physical properties can be clearly distinguished in

the low-T resistivity, where due to the periodicity of the arrangement of the f electrons


