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Chapter 1

Introduction

The Stochastic Dynamic Distance Optimal Partitioning (SDDP) problem -
an Operations Research problem - was the motivation for the investigations
presented in this book.

As evident from the name of the problem, investigations in two different
mathematical fields were necessary for its treatment, i.e. in stochastic dy-
namic programming and in combinatorics (”Partitioning”).

This book therefore, apart from the introduction, covers the following
three chapters

2 DA Stochastic Dynamic Programming with Random Disturbances,

3 The Problem of Stochastic Dynamic Distance Optimal Partitioning
(SDDP),

4 Partitions-Requirements-Matrices (PRMs).

DA (”decision after”) stochastic dynamic programming with random dis-
turbances is characterized by the fact that these random disturbances are
observed before the decision is made at each stage.

In the past only very moderate attention was given to problems with this
characteristic (see also Section 1.1).

Examples of DA models are SDDP problems and certain inspection-replacement
problems. (Also refer to connections with k-server problems and metric task
systems at the end of Section 1.2.)
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In Chapter 2 specific properties of DA stochastic dynamic programming
problems are worked out for theoretical characterization and for more effi-
cient solution strategies of such problems.

In order to understand this chapter, and the book altogether, previous
knowledge about stochastic dynamic programming and Markov decision
processes (MDPs) is useful, however not absolutely necessary since the con-
cerned models are developed from scratch. (Basic knowledge can be found
in [7], [12], [28], [16] or [31].)

In Chapter 3 we formulate and discuss in detail the problem of Stochastic
Dynamic Distance Optimal Partitioning (SDDP).

SDDP problems are extremely complex.
Superordinately regarded, SDDP problems are DA stochastic dynamic

programming problems (Stochastic Dynamic DP).
It requires a certain initial effort, however, in order to compute the real in-

put data for the DA stochastic dynamic programming problem (SD Distance
optimal P).

Furthermore, the problem shows combinatorial aspects (SDD Partitioning).
The understanding for the formulation of the problem and the basic meth-

ods of its solution requires knowledge from Section 2.1 (at least from the
beginning of this section) and absolutely from Section 2.3.

However, an important statement concerning certain SDDP problems is
proven at the end of Chapter 4, only after several combinatorial considera-
tions.

Partitions-requirements-matrices (PRMs) (Chapter 4) are matrices of tran-
sition probabilities of SDDP problems which are formulated as Markov de-
cision processes (MDPs).

PRMs ”in the strict meaning” include optimal decisions of certain SDDP
problems, as is shown toward the end of Chapter 4.

PRMs (in the strict meaning) themselves represent interesting (almost
self-evident) combinatorial structures, which are not otherwise found in lit-
erature.

We therefore ensure that the treatise of Chapter 4 can essentially be un-
derstood independent of Chapters 2 and 3.
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if one is only interested in PRMs.

Retrospectively, in relation to the topic of ”optimal dominant policies”
of MDPs, PRMs in the strict meaning include policies of certain SDDP
problems for which the ”condition of dominance” is typically infringed on,
however only to a slight extent such that a generalization of the concept of
”dominant policies” seems possible.

We now discuss the contents of the chapters in more detail.

1.1 Chapter 2 Contents

In Section 2.1 we introduce the DA model of stochastic dynamic program-
ming with random disturbances and give the corresponding functional equa-
tion.

In Section 2.2 a ”certainty equivalence principle” is formulated and also
proven in cases of DA models with linear dynamics and quadratic criteria.

Markov decision processes which result from DA models under appropriate
assumptions (DA MDPs) are investigated in Section 2.3.

In literature the state space, which is used for DA MDPs, is the cross
product set of the origin state space and the disturbance space.

However, such a state space is markedly larger than the original state
space.

Moreover, corresponding matrices of transition probabilities would have
many zeros, in general. An analogous situation is found in linear program-
ming: the classical transportation problem which can be solved by the Sim-
plex algorithm. Special solution methods for this transportation problem
have been developed (for example the ”MODI-method”, refer to [30], Sec-
tion 2.8.9).

In Section 2.3 we keep the origin state space when modelling DA models
as MDPs. In this way special structures of decisions follow.

Relationships to Chapter 3 specifically marked and they can be omitted
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corresponding ”neighbouring” decisions.

An effect of this structure of decisions is that optimal decisions imply
an ”almost-partial order” of the states, if the underlying average one-step
reward functions do not depend on the decisions.

Thus, the solution of a DA MDP by solving a corresponding parameterized
DA MDP in terms of a continuation of the solutions of the parameterized
problem arises as one variant for solving DA MDPs, for which the Howard
algorithm (policy iteration) is adapted (Section 2.3.4). For this, the un-
derlying internal costs and hence the average one-step reward functions are
considered in dependence on one parameter such that these costs do not de-
pend on the decisions for the initial parameter. Then, the adapted Howard
algorithm yields a purposeful computation for the solution. Furthermore,
under certain additional conditions, this solution method is a greedy algo-
rithm.

Section 2.3.3 includes special considerations of DA MDPs with ”distance
properties” and ”dominant policies”.

”Distance properties” can also be found in flow problems, metric task
system or k-server problems. In particular, we use the statements of this
section for SDDP problems.

The ”dominance of Markov chains” can be seen in Daley 68 (see [10]).
We can apply this concept to Markov chains which correspond to policies

of MDPs. However, if we want to transfer this concept to the MDPs them-
selves then convenient properties are also required for the average one-step
reward functions (and for the corresponding policies).

If dominant policies should also be optimal, further strong conditions
(which contain comparisons of any feasible policies with the dominant pol-
icy) are required.

The question which follows is: can we find (useful) MDPs which fulfil all
of these conditions?

A certain kind of equipment replacement models with dominant policies
can be found in Puterman [31]. However, in these models only two different
decisions are possible.

Here, the corresponding decisions are characterized by a ”simple” struc-
ture. The transition probability matrices differ by only two elements for
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The chance of finding MDPs with more than two decisions which fulfil
these conditions is better for MDPs which are based on DA models, due to
their decision structures.

Some SDDP problems have optimal dominant policies (Section 4.6.2.2).
For other SDDP problems we will consider the above-mentioned interest-

ing effect in which the conditions of dominance are infringed on, however
only to a slight extent.

The state spaces of SDDP problems are inherently finite. Therefore, we
will also concentrate our efforts on finite-state models in Chapter 2. Notes
on countable-state models can be found in Puterman [31]; more information
can be found here at the beginning of Section 2.3.

1.2 Chapter 3 Contents

In Chapter 3 the ”Problem of Stochastic Dynamic Distance Optimal Par-
titioning (SDDP)” is described in detail. Possibilities and methods of its
exact or approximate solution are discussed.

A problem in industry, which contains an optimal conversion of moulds,
supplied the origin of investigations.

Essentially, SDDP problems include the following practical facts:

· A fixed number of machines is given. (∗)
(Moulds are also conceivable.)

· Different types of parts can be produced by these machines. For this
purpose the machines have to be converted to states, which in accor-
dance with the types of the parts. Costs are incurred. (∗∗)

· The production takes place in successive stages (periods).

· In a single stage, one part (at most) can be produced by one machine.

· At each stage a requirement of parts (of several types) is to be met.

Initially, probability functions of the requirements are given.
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The realizations of the requirements are known at the beginning of
the stages (before decisions about conversions of machines have to be
made).

· The objective is to minimize the expected cost of the conversions over
all stages (or the average expected cost per stage). (To accomplish
this we must decide which machine should be converted into which
state in each stage.)

Thus, SDDP problems are DA stochastic dynamic programming problems.

More specifically, from a mathematical view point, we could designate this
practical problem as a stochastic dynamic transportation problem, since
throughout the stages feasible solutions of transportation problems must
be determined (see (∗∗)). (We have also used this designation in previous
papers.)

Here, however designating this problem as a stochastic dynamic distance
optimal partitioning problem (SDDP) seems more appropriate. Partitioning
means partitions of the number of machines into numbers of machines which
are in the same state. The number of machines is therefore constant (see
(∗)).

We will thus use this designation in the future.
(In this way we also emphasize the conceptual distinguishment of the des-

ignation of our problem from the typical stochastic dynamic transportation
problems, see Arnold [4].) 1

In this mathematical model, partitions of integers are the ”states” of the
DA stochastic dynamic programming problems (ordered partitions in gen-
eral and unordered partitions in the case of certain reduced SDDP prob-
lems).

Partitioning the integers as ”states” involves the combinatorial aspects
of SDDP problems, which can also be observed in ”matrices of transition
probabilities” and ”average one-step reward functions” of SDDP problems,
modelled as DA MDPs.

It can therefore, only in Chapter 4 by means of combinatorial consider-
ation, be shown that decisions for feasible states with least square sums of

1Further comments in connection with transportation problems and corresponding ref-
erences can be found in the preface of [22].
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their parts are in every case optimal for special SDDP problems.

Partitions of integers as states of DA MDPs require an enormous amount
of storage space for the corresponding computer programs.

Furthermore, many transportation problems have to be solved (see (∗∗))
in order to compute ”average one-step reward functions” for the SDDP
problems, modelled as DA MDPs.

Thus, investigations of inherent characteristic structures of SDDP prob-
lems are also important as a basis for heuristics.

Finally, we refer to connections of SDDP problems with other problems
in operations research and informatics such as stochastic dynamic facility
location problems (refer to [27]) or metric task systems and more specific
k-server problems, see [8], Chapter 10 and [5], for instance.

Since the current request, which is to be fulfilled, is known (and without
knowing the future requests) k-server problems can also be initially labeled
as a certain kind of DA model. Furthermore, distance properties are also
assumed for k-server problems. However, on-line algorithms are often the
center of attraction for consideration of k-server problems.

In contrast, we assume probability functions for requirements of SDDP
problems and consider SDDP problems as stochastic dynamic programming
problems with the aim to minimize the expected cost or the average expected
cost per stage. Typical characteristics of SDDP problems as stochastic dy-
namic programming problems, in particular Markov decision process, are
worked out.

Furthermore, let us note that we consider a number of machines which are
in the same state (in the terms of k-server problems, on the same point), in
general, and many machines must convert at the beginning of each equidis-
tant stage.

1.3 Chapter 4 Contents

Partitions-Requirements-Matrices (PRMs) are the main topic of Chapter 4.

If SDDP problems are modelled as DA MDPs, then the matrices of tran-
sition probabilities are called ”general PRMs”.
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The strict meaning of PRMs assumes that the costs of converting the ma-
chines into different types are identical and the requirements are identically
distributed. Then in every case decisions for feasible states with least square
sums of their components lead to PRMs (in the strict meaning).

The definition of PRMs (in the strict meaning) includes that PRMs can
be initially computed by means of simple enumeration, however a laborious
method. In addition, there is a main difficulty to deal with: No formulas
are known for most of the elements in PRMs. Due to this lack of formulas,
PRMs themselves represent interesting (almost self-evident) combinatorial
structures.

Properties which are associated with SDDP problems (modelled as DA
MDPs), besides the search for effective methods to compute the elements of
PRMs, are in the realm of investigation of PRMs (in the strict meaning) in
this chapter.

Thus in Section 4.6 so-called ”Poisson equations” are considered. That
their solutions are ”monotone” is shown in many cases. This means that,
in every case, decisions for feasible states with least square sums of their
components are optimal for the corresponding SDDP problems.

The above-mentioned SDDP problems, for which the ”condition of dom-
inance” is infringed on, however only to a slight extent, are also in this set
of SDDP problems.

A more detailed specification of the content of Chapter 4 can be found at
the beginning of this chapter.



Chapter 2

DA Stochastic Dynamic
Programming with Random
Disturbances

It is assumed for many concepts in the theory of stochastic dynamic pro-
gramming that random disturbances are observed after the decision is made
at each stage. (For instance, refer to Bertsekas [7], Schneeweiss [33], Dinkel-
bach [11].)

We denote problems for which this is assumed as ”Decision Before” mod-
els (DB models).

Conversely, we call problems where random disturbances are observed be-
fore the decision is made at each stage ”Decision After” models (DA models).

We began to take notice of DA models with our investigation of Stochastic
Dynamic Distance Optimal Partitioning (SDDP) problems 1 (see [19], [20],
[22]).

In general, not much information exists dealing only with DA modelled
problems.
We can find some, however, included in a book by Sebastian and Sieber [34].
Here, situations in which incomplete information is given are described by

1In previous papers, SDDP problems were termed stochastic dynamic transportation
problems, see also Section 1.2.
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with n = 1).
Dreyfus and Law give an example in relation to certainty equivalence

and also an example of a stochastic equipment inspection and replacement
model, where some components of the random vector are observed after the
decision is made (as usual) but some components are observed before (see
[12], pages 189 and 137).

(The k-server problems mentioned at the end of Section 1.3 also show the
”DA” property.)

On the one hand, DA models belong to the extensive group of stochastic
dynamic programming problems, but on the other hand DA models show
peculiarities.

The complexity of such problems (refer here also to the inspection/replacement
problem by Dreyfus and Law) is one aspect of the motivation for the further
consideration of DA models.

An introduction to the extended content of Chapter 2 has already been
given in Section 1.1.

2.1 The DA Model

In the following we use

N ∈ N ∪ {∞} the horizon

t ∈ {1, 2, ..., N} numbers of stages

S state space

s ∈ S states

B disturbance space

w ∈ B random disturbances

A decision space

x ∈ A decisions (or controls)

means of operators as starting points for further investigations (see [34], 2.7
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(Questions of measurability are skipped for the most part. In the beginning,
let S and A be Borel spaces and let the values of w be elements of a Borel
space. Afterward we often assume S ⊆ Zn (or Rn) and so on. We will use
the same notations for the random vectors and their realizations.)

The above data are written with the subscript t in order to attach the
time to the stages t.

Furthermore,

Kt : St × Bt × At → R+ stage - cost (or - return) functions

Gt : St × Bt × At → St+1 transition functions

denote (measurable) functions.

Decision spaces At can depend on previous states and disturbances.

We now introduce the basic problem of the DA model:

(DAP):

Let DA models be closed-loop optimization problems (i.e. feedback con-
trol, refer to [7], I, page 4 or [27], Section 2.4): More precisely, this means
that we postpone making the decision xt until the last possible moment
(time t) when the current state st and (in the case of a DA model) the re-
alization of the random vector wt will be known. We assume that an initial
state s1 ∈ S1 and an initial realization w1 of the random disturbances are
given.

A policy

F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )}
is to be found so that

E
w2,...,wN

(
N∑

t=1
Kt(st, wt, xt)|s1, w1

)
→ min

= K1(s1, w1, x1) + E
w2,...,wN

(
N∑

t=2
Kt(st, wt, xt)|w1, s2

)
→ min
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subject to the constraints

st ∈ St, t = 2, · · · , N,

xt ∈ At(st, wt), t = 1, · · · , N

(dependences At(st, wt) with st = {s1, . . . , st} are also conceivable),

st+1 = Gt(st, wt, xt), t = 1, . . . , N − 1 (dynamic constraints).

(The objective function always exists when Kt ≥ 0, but it may have the value
∞ without some additional assumptions.) We assume that the distribution
functions and the densities of the sequence of disturbances
{wt : t = 1, . . . , N} are known and that all (following) conditional expected
values exist.

Remarks 2.1.1. The dependence of At on wt is a peculiarity of DA models.
In DA models more information is known before the decisions are made at
each stage than in the usual DB models, namely xt ∈ At(st,wt).

a) b)

G
t

x
t

s

w
t

t
G

t

x
t

s

w
t

t

Feedback control Feedback control
DA models DB models

(with analogous symbols)

Figure 2.1.1.
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Of course DA models are also stochastic dynamic programming problems.
When a decision xt is made, then the realizations wt+1, wt+2, · · · of the dis-
turbances at the next stages are not known. The cost of the next stages also
depends on st+1 = Gt(st, wt, xt).

The Optimal Value Function for the Remaining Periods and the
Functional Equation

We use Ft = {xt(st, wt), xt+1(st+1, wt+1), . . . , xN (sN , wN )}, t = 1, ...,N for
any admissible policy F and the symbol wt : = (s1, w1, . . . , wt). (An ad-
missible policy F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )} means
xt′ ∈ At′(st′ , wt′) ∀ st′ ∈ St′ , ∀ t′ ∈ {1, ..., N}.)

The optimal value function for the remaining periods t, . . . , N is

ft(st , wt) = min
Ft

E
wt+1,...,wN

(
N∑

t′=t

Kt′(st′ , wt′ , xt′)|wt

)

= min
Ft

(
Kt(st, wt, xt)+ E

wt+1,...,wN

(
N∑

t′=t+1

Kt′(st′ , wt′ , xt′)|wt

))
(2.1.1)

for t = 1, ..., N − 1,

fN (sN , wN ) = min
FN

KN (sN , wN , xN )

for DA models.

We define
fN+1 ≡ 0. (2.1.2)

The functional equation

ft(st, wt) = min
xt∈At(st,wt)

(
Kt(st, wt, xt) + E

wt+1

(ft+1(st+1, wt+1)|wt)
)

,

(2.1.3)
t = N, . . . , 1

follows.
In the case that an optimal policy exists the functional equation can be

proved directly by means of mathematical induction (refer also to Sebastian
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and Sieber [34], general formula (2.188) and the upper remarks on page 147):

Proof.

fN (sN , wN ) := min
FN

KN (sN , wn, xN ) (for t = N).

Step 1.

(beginning of mathematical induction t = N − 1)

fN−1(sN−1, wN−1)

:= min
FN−1

(
KN−1 (sN−1, wN−1, xN−1) + E

wN

(KN (sN , wN , xN ) | wN−1)
)

(see (2.1.1) for t = N − 1)

= min
xN−1∈AN−1(sN−1,wN−1)

xN∈AN (sN ,wN )

(
KN−1(sN−1, wN−1, xN−1)+

E
wN

(KN (sN , wN , xN ) | wN−1)
)

= min
xN−1∈AN−1(sN−1,wN−1)

{
KN−1(sN−1, wN−1, xN−1)+

min
xN∈AN (sN ,wN )

(
E
wN

(KN (sN , wN , xN ) | wN−1)
)}

.

(Here min
xN∈AN (sN ,wN )

. . . means, in detail, min
xN (wN )∈AN (sN ,wN )

. . .

∀ wN ∈ BN .)

We now use the relation min
x

E{φ(x)} = E
{

min
x

φ(x)
}

.

= min
xN−1∈AN−1(sN−1,wN−1)

{
KN−1(sN−1, wN−1, xN−1)+

E
wN

(
min

xN∈AN (sN ,wN )
KN (sN , wN , xN ) | wN−1

)}
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= min
xN−1∈AN−1(sN−1,wN−1)

(
KN−1(sN−1, wN−1, xN−1)+ E

wN

(fN (sN , wN ) | wN−1)
)
.

Step N − t∗ :

Let us now assume

ft(st, wt) = min
xt∈A(st,wt)

(
Kt(st, wt, xt) + E

wt+1

(ft+1(st+1, wt+1) | wt)
)

(*)

for t = N, N − 1, . . . , t∗ + 1 (t∗ + 1 > 1).

We will then prove the functional equation for t = t∗ :

ft∗(st∗ , wt∗) := min
Ft∗

(
Kt∗(st∗ , wt∗ , xt∗)+

E
wt∗+1,...,wN

(
N∑

t′=t∗+1

Kt′(st′ , wt′ , xt′) | wt∗)
)

(see (2.1.1))

= min
xt∗∈At∗ (st∗ ,wt∗ )

...
xN∈AN (sN ,wN )

(
Kt∗(st∗ , wt∗ , xt∗) +

N∑
t′=t∗+1

E
wt′ ,...,wN

(Kt′(st′ , wt′ , xt′) | wt∗)

)

= min
xt∗∈At∗ (st∗ ,wt∗ )

...
xN∈AN (sN ,wN )

{
Kt∗(st∗ , wt∗ , xt∗) + E

wt∗+1,...,wN

(Kt∗+1(st∗+1, wt∗+1, xt∗+1)

+ E
wt∗+2,...,wN

(Kt∗+2(st∗+2, wt∗+2, xt∗+2)

+ · · · + E
wN

(KN (sN , wN , xN ) | wN−1) | . . . | wt∗+1) | wt∗)
}

= min
xt∗∈At∗ (st∗ ,wt∗ )

{
Kt∗(st∗ , wt∗ , xt∗)+

E
wt∗+1,...,wN

(
min

xt∗+1∈At∗+1(st∗+1,wt∗+1)
(Kt∗+1(st∗+1, wt∗+1, xt∗+1)
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+ · · · + E
wN

( min
xN∈AN (sN ,wN )

KN (sN , wN ) | wN−1) | . . . ) | wt∗
)}

.

Now, we use (*) for t = N,N − 1, . . . , t∗ + 1.

= min
xt∗∈At∗ (st∗ ,wt∗ )

(
Kt∗(st∗ , wt∗ , xt∗) + E

wt∗+1

(ft∗+1(st∗+1, wt∗+1) | wt∗)
)
. �

For subsequent sections we introduce here:

The ”DA Decision Functions” and Additional Definitions
(which are based on DA models)

In DA models the state st+1 is (for given st, wt) completely determined
by the decision (in contrast to DB models). Thus, we can introduce:
the DA decision sets

Ât(st, wt) := {s′ | s′ = Gt(st, wt, xt) with xt ∈ At(st, wt)} (2.1.4)

for given st ∈ St , wt ∈ Bt,

where s′ ∈ Ât(st, wt) are called feasible states,

internal costs

ĉt(st, wt, s
′) := min

{
Kt(st, wt, xt)|xt : s′ = G(st, wt, xt)

}
with s′ ∈ Ât(st, wt)

(2.1.5)

and DA decision functions

d̂t : St × Bt → St+1

with d̂t(st, wt) = s′ ∈ Ât(st , wt).
(2.1.6)

Finally, we use

Definition 2.1.1. The set of DA decision functions is the set

D̂t := {d̂t| d̂t : St × Bt → St+1 with d̂t(st, wt) ∈ Ât(st , wt)}
for given St, Bt, St+1 and DA decision sets Ât.
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In addition, single maps

(st, wt) → s′ (by d̂)

this means d̂t(st, wt) = s′

⎫⎬
⎭ (2.1.7)

for st ∈ St , wt ∈ Bt are called single decisions.

If St and Bt are finite sets, then d̂t will include |St| · |Bt| single decisions
(where |St| and |Bt| denote the numbers of elements in the sets St and Bt,
respectively).

With this in mind Figure 2.1.1 a) can be replaced by

s

w
t

t

dt
^

Figure 2.1.2.

We can see that xt and Gt are combined into d̂t.

(DAP) can then be represented in the following way:

(DAPa):

A policy

{d̂1(s1, w1), d̂2(s2, w2), . . . , d̂N (sN , wN )}
is to be found so that

E
w2,...,wN

(
N∑

t=1
ĉt(st, wt, st+1)|s1, w1

)
→ min
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subject to the constraints

st ∈ St, t = 2, · · · , N,

d̂t(st, wt) ∈ Ât(st, wt), t = 1, · · · , N,

st+1 = d̂t(st, wt), t = 1, . . . , N − 1.

If (DAPa) exists under the following assumptions, we use the symbol:

(DAP̄a).

This indicates (DAPa) with

· stationary properties: the sets and functions Bt, St, Ât, d̂t, ĉt are the
same at each stage and will be written as B, S and so on,

· B and S are finite sets,

· q(w)(q : B → (0, 1)) denote the probabilities of random disturbances
and these q(·) are also the same at every stage.

2.2 The Certainty Equivalence Principle

For many DB models with quadratic cost functionals and linear dynamics
(so-called quadratic linear problems) it is possible to replace the random
disturbances with their expected values and to then solve the yielded de-
terministic problems. The solutions are the same (certainty equivalence
principle). We have found a similar statement for DA models.

Let us begin by considering the following example.

Example 2.2.1. We contemplate the stochastic dynamic programming prob-
lems

E

(
N=3∑
t=1

(
(xt)2 + (st)2

)) → min,

where s1 ∈ R or s1 ∈ R and w1 ∈ R are given

and st+1 = st + wt + xt,
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xt ∈ R.

Here, {wt}t=1,2,3 is a sequence of independent random disturbances with re-
alizations wt ∈ R.

Since the decision spaces (At(st, wt) =)R (at each stage) are independent
of wt, we can classify such stochastic dynamic programming problems as DA
models or as DB models (with the same data, but xt(st,wt) for DA models
and xt(st) for DB models).

The optimal solution of the DB modeled problem is

xN = x3 = 0

xN−1 = x2 = −s2−E(w2)
2

xN−2 = x1 = −3s1−E(w2)−3E(w1)
5 .

(We can calculate this by means of the Bellman-principle or the certainty
equivalence principle.)

The optimal solution of the DA modeled problem is
xN = x3 = 0

xN−1 = x2 = −s2−w2
2

xN−2 = x1 = −3s1−E(w2)−3w1

5 .

(At the beginning we have calculated this by means of the Bellman-principle,
see (2.1.3).)

Obviously, the minimal expected cost for the DA model are not greater
than the cost for the DB model since every policy of the DB model is also
possible for the DA model (At(st, wt) are independent of wt).

Example 2.2.1 demonstrates the strong relationship between the solutions
of the DB and DA models.

We will now generalize the results of the example.
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Quadratic-Linear-Problems
Let us assume for (DAP) that

St = Rn, t = 1, . . . , N,

At = Rq, t = 1, . . . , N.

The dynamic constraints are

st+1 = Φtst + Γtxt + Πtwt for t = 1, . . . , N (2.2.1)

with given matrices Φt, Γt and Πt and a given s1 or given s1 and w1.
(These symbols are taken from the model in Schneeweiss [33], Section 11.3.)
The types of these matrices are determined by the types of the states,
disturbances and decisions.

If zt =
(
wt

1

)
, vt =

(
st

zt

)
, yt =

(
xt

vt

)
and Tt = (Γt, Φt, Πt, 0)

are used, then (2.2.1) has the form

st+1 = Ttyt.

The cost functional is

E

{
N∑

t=1
yT

t Wt,yyyt

}
→ min,

where the matrices Wt,yy have the following structure

Wt,yy =

(
Wt,xx Wt,xv

Wt,vx Wt,vv

)
=

⎛
⎜⎜⎜⎝

Wt,xx Wt,xs Wt,xz

Wt,sx Wt,ss Wt,sz

Wt,zx Wt,zs Wt,zz

⎞
⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Wt,xx Wt,xs Wt,xw Wt,x1

Wt,sx Wt,ss Wt,sw Wt,s1

Wt,wx Wt,ws Wt,ww Wt,w1

Wt,1x Wt,1s Wt,1w Wt,11

⎞
⎟⎟⎟⎟⎟⎟⎠
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with regard to vt, st and yt.

Let Wt,yy be symmetric matrices (without loss of generality) and let Wt,xx

be positive definite. Furthermore, let all matrices Vxx which are calculated
by means of the backward dynamic programming procedure be positive def-
inite.

Quadratic-linear-problems can be classified as DA models or as DB models
with the same data, however xt(st) is used for DB models and xt(st,wt) for
DA models (compare Example 2.2.1).

Theorem 2.2.1. (Certainty equivalence principle)
Let a quadratic-linear DB model and a quadratic-linear DA model with the
same data be given.

In addition, let

xN = 0,

xt = ϕ(E(wt), E(wt+1), · · · , E(wN−1)), t = N − 1, · · · , 1

be a representation of an optimal solution of the quadratic-linear DB model.

Then
xN = 0,

xt = ϕ(wt, E(wt+1), · · · , E(wN−1)), t = N − 1, · · · , 1

is an optimal solution of the quadratic-linear DA model.

Proof. The above symbols and the following representations are taken from
the model in Schneeweiss [33] (see Section 11.3) and they are applied to the
DA models here.

The functional equation for this DA problem is

ft(st, wt) = min
xt

{
yT

t Wt,yyyt+ E
wt+1

{
ft+1(st, wt+1)|wt

}}
t = N, · · · , 1,

fN+1 ≡ 0

(∗1)

(see (2.1.3)).


