Synthese und mechanische Eigenschaften ultrafeinkörniger ZrO₂(Y₂O₃) - Al₂O₃ Komposite aus metastabilen Pulvern

Synthese und mechanische Eigenschaften ultrafeinkörniger $ZrO_2(Y_2O_3)$ - AL_2O_3 Komposite aus metastabilen Pulvern

Vom Fachbereich Material- und Geowissenschaften der Technischen Universität Darmstadt zur Erlangung des akademischen Titels **Doktor-Ingenieur** (Dr.-Ing.) genehmigte Dissertation von

> Dipl.-Ing. Jens Suffner aus Bad Nauheim

Referent: Prof. Dr.-Ing. Horst Hahn Koreferent: Prof. Dr.-Ing. Jürgen Rödel

Tag der Einreichung: 01. 11. 2010 Tag der mündl. Prüfung: 21. 01. 2011

> Darmstadt 2011 D17

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

 Aufl. - Göttingen: Cuvillier, 2011 Zugl.: (TU) Darmstadt, Univ., Diss., 2011

978 - 3 - 86955 - 686 - 4

© CUVILLIER VERLAG, Göttingen 2011 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage 2011 Gedruckt auf säurefreiem Papier.

978-3-86955-686-4

"Die Wissenschaft fängt eigentlich erst da an, interessant zu werden, wo sie aufhört."

Justus von Liebig

* 12. Mai 1803, Darmstadt † 18. April 1873, München

Inhaltsverzeichnis

1	Einleitung									
2	Grui	Grundlagen								
	2.1	Strukt	ur und Eigenschaften ZrO_2 -basierter Komposite	3						
	2.2	Synthe	ese von Nanokompositen	7						
		2.2.1	Sintern nanokristalliner Pulver	7						
		2.2.2	Fortgeschrittene Sintertechnologien	12						
		2.2.3	Die metastabile Prozessroute	17						
	2.3	Superp	olastizität von feinkörnigen Materialien	24						
		2.3.1	Beschreibung des superplastischen Verformungsverhaltens	24						
		2.3.2	Verformungsverhalten von ${\rm ZrO}_2\text{-}{\rm basierten}$ Keramiken \hdots	34						
3	Exp	eriment	telle Durchführung und Analytik	43						
	3.1	Prober	herstellung	43						
		3.1.1	Plasmaspritzen	43						
		3.1.2	Feldunterstütztes Sintern	44						
		3.1.3	Hochdrucksintern	45						
	3.2	Mikros	strukturelle Charakterisierung	48						
		3.2.1	Röntgenbeugung	48						
		3.2.2	Hochauflösende Rasterelektronenmikroskopie	48						
		3.2.3	Transmissionselektronenmikroskopie	49						
		3.2.4	Raman-Spektroskopie	49						
		3.2.5	Dichtebestimmung	51						
		3.2.6	Simultane Thermoanalyse	52						
	3.3	Charal	kterisierung der mechanischen Eigenschaften bei Raumtemperatur.	53						
		3.3.1	Mikrohärtemessungen	53						
		3.3.2	Dynamisch-mechanische Analyse	53						
		3.3.3	Druckversuche	54						
		3.3.4	Biegeversuche	55						
		3.3.5	Impulsanregungsverfahren	55						
		3.3.6	Ultraschallmessung	56						
	3.4	Charal	kterisierung der Hochtemperatur-Verformungseigenschaften	57						
		3.4.1	Warmhärte	57						
		3.4.2	Hochtemperatur-Kompressionsversuche	58						

4	Kon	stitutionelle und strukturelle Charakterisierung	61
	4.1	Plasmagespritzte Schichten	61
		4.1.1 Charakterisierung des kommerziellen Ausgangspulvers	61
		4.1.2 Mikrostruktur gekühlt hergestellter Schichten	63
		4.1.3 Mikrostruktur konventionell hergestellter Schichten	66
		4.1.4 Metastabile Phasenbildung	67
		4.1.5 Mikrostruktur nach thermischer Behandlung	70
	4.2	Mikrostruktur der verdichteten Körper	75
		4.2.1 Charakterisierung des metastabilen Ausgangspulvers	75
		4.2.2 Feldunterstütztes Sintern des metastabilen Pulvers	81
		4.2.3 Hochdrucksintern des metastabilen Pulvers	87
	4.3	Zusammenfassung und Diskussion	92
		4.3.1 Plasmagespritzte Schichten	92
		4.3.2 Feldunterstütztes Sintern	94
		4.3.3 Hochdrucksintern	94
5	Chai	rakterisierung des Verformungsverhaltens	97
	5.1	Mechanische Eigenschaften plasmagespritzter Schichten	97
		5.1.1 Mikrohärte	97
		5.1.2 Dynamisch-mechanische Analyse	100
	5.2	Mechanische Eigenschaften der verdichteten Körper	102
		5.2.1 Härte der Keramiken	102
		5.2.2 Druckfestigkeit der Keramiken	104
		5.2.3 Biegefestigkeit und Elastizitätsmodul der Keramiken	106
	5.3	Hochtemperatur-Verformungsverhalten feldunterstützt gesinterter Kompo-	
		site	108
		5.3.1 Warmhärte	108
		5.3.2 Kompressionsversuche	109
		5.3.3 Mikrostrukturentwicklung während der Deformation	112
	5.4	$Hoch temperatur-Verformungsverhalten \ hoch druck gesinterter \ Komposite \ . \ .$	120
		5.4.1 Warmhärte	120
		5.4.2 Kompressionsversuche	122
		5.4.3 Mikrostrukturentwicklung während der Deformation	125
	5.5	Zusammenfassung und Diskussion	127
		5.5.1 Raumtemperatureigenschaften plasmagespritzter Schichten	127
		5.5.2 Raumtemperatureigenschaften der gesinterten Materialien	130
		5.5.3 Hochtemperateigenschaften der gesinterten Materialien	131
6	Disk	ussion des Deformationsmechanismus	133
7	Schl	ussfolgerung und Ausblick	139
Α	Anh	ang	143
	A.1 A.2	Schwingungsbanden der Raman-Spektren der hergestellten Materialien Raman-Spektren der Referenzproben	143 144

Literaturverzeichnis	145
Danksagung	161
Eidesstattliche Erklärung	163
Lebenslauf	165

Abbildungsverzeichnis

Abb.	2.1	Phasendiagramm $ZrO_2 - YO_{1,5}$	4
Abb.	2.2	Phasendiagramm ZrO_2 - Al_2O_3	5
Abb.	2.3	Schematischer Darstellung der Transportpfade während des Sinterns.	9
Abb.	2.4	Schematische Darstellung der Hochdruckmethoden.	15
Abb.	2.5	Druckverteilung innerhalb einer toroidalen Zelle	16
Abb.	2.6	Schematische Darstellung eines Plasmabrenners im Spritzbetrieb	21
Abb.	2.7	Schematische Darstellung des Beschichtungsvorgangs	22
Abb.	2.8	Typische Kriechkurve.	25
Abb.	2.9	Typischer Verlauf der Fließspannung in Abhängigkeit von der Dehnrate.	27
Abb.	2.10	Schematische Darstellung des Nabarro-Herring-Kriechens.	28
Abb.	2.11	Schematische Darstellung des diffusionsakkommodierten Korngrenz-	
	gleite	ens nach Ashby-Verrall	30
Abb.	2.12	Schematische Darstellung des auf Diffusionsprozessen basierenden	
	Akko	mmodationsmechanismus der Kornrotation	30
Abb.	2.13	Schematische Darstellung des Kern-Hülle-Akkommodationsprozesses	
	nach	Gifkins.	32
Abb.	2.14	Schematische Darstellung der Verformung entlang einer mesoskopi-	
	schen	Gleit- ebene	33
Abb.	2.15	Verlauf der Dehnrate gegenüber der Spannung, wie sie typisch für	
	stabil	lisiertes ZrO_2 ist	37
Abb.	2.16	Schematische Darstellung der Kompositmodelle zur Betrachtung der	
	mech	anischen Eigenschaften	42
Abb.	3.1	Zur Herstellung der Schichten verwendeter APS-Aufbau.	44
Abb.	3.2	Schematische Darstellung des verwendeten SPS-Systems	45
Abb.	3.3	Verwendetes Bridgman-Stempelsystem.	46
Abb.	3.4	Schematische Darstellung der für die Hochdrucksinterversuche ver-	
	wend	eten toroidalen Zelle.	47
Abb.	3.5	Dynamisch-mechanischer Analyseaufbau zur Durchführung der 3-	
	Punk	t Biegeversuche.	54
Abb.	3.6	Für Kriechversuche verwendeter Heißschmiedeaufbau.	59
Abb.	4.1	REM-Aufnahmen des Ausgangspulvers zur Herstellung der $ZrO_2(Y_2O_3)$	0.0
	- Al ₂	$ \bigcirc_3 \text{Beschichtungen.} \dots \dots$	62
Abb.	4.2	Röntgenbeugungsdiagramm des Ausgangspulvers zur Herstellung der	00
	ZrO_2	(Y_2O_3) - Al ₂ O ₃ Beschichtungen	62

Abb. 4.3 REM-Aufnahmen des polierten Querschnitts einer gekühlt prozessier-	
ten Beschichtung	64
Abb. 4.4 REM-Aufnahmen der Bruchfläche einer gekühlt prozessierten Be-	
schichtung	65
Abb. 4.5 REM-Aufnahmen der polierten Querschnittsfläche der konventionell	
prozessierten Beschichtung.	66
Abb. 4.6 REM-Aufnahmen der Bruchfläche einer konventionell prozessierten	
Beschichtung.	67
Abb. 4.7 Beugungsdiagramme der plasmagespritzten Schichten.	68
Abb. 4.8 Vergrößerte Darstellung des Diffraktogramms der konventionell her-	
gestellten Schicht	69
Abb. 4.9 GIXRD Beugungsdiagramme der plasmagespritzten Schichten	70
Abb. 4.10 Phasenanteile des tetragonalen $ZrO_2(Y)$ und des kubischen $ZrO_2(Y,Al)$	
in Abhängigkeit vom Abstand zur Grenzfläche	71
Abb. 4.11 Röntgenbeugungsdiagramme der plasmagespritzten Schichten nach	
thermischer Behandlung	72
Abb. 4.12 REM-Aufnahmen des Gefüges einer gekühlt prozessierten Beschich-	
tung nach thermischer Behandlung	73
Abb. 4.13 REM-Aufnahmen des Gefüges einer konventionell prozessierten Be-	
schichtung nach thermischer Behandlung	74
Abb. 4.14 REM-Aufnahme des metastabilen Ausgangspulvers	75
Abb. 4.15 Röntgendiffraktogramm des metastabilen Ausgangspulvers	76
Abb. 4.16 Raman-Spektren des Ausgangspulvers und des metastabilen Pulvers.	77
Abb. 4.17 HTXRD-Beugungsdiagramme des metastabilen Pulvers	79
Abb. 4.18 DSC-Kurve des metastabilen Pulvers	80
Abb. 4.19 Röntgendiffraktogramm de SPS-verdichteten Materials	82
Abb. 4.20 Raman-Spektren des SPS-verdichteten Materials	83
Abb. 4.21 REM-Aufnahmen des Gefüges des SPS-verdichteten Materials	84
Abb. 4.22 TEM- und STEM-Aufnahmen des SPS-verdichteten Materials	86
Abb. 4.23 HRTEM-Aufnahme und FFT des SPS-verdichteten Materials	87
Abb. 4.24 Röntgendiffraktogramm des HPHT-gesinterten Materials	89
Abb. 4.25 Raman-Spektren des HPHT-gesinterten Materials	90
Abb. 4.26 REM-Aufnahme des Gefüges des HPHT-gesinterten Materials	91
Abb. 5.1 Weibull-Verteilung der Mikrohartewerte der gekühlt prozessierten	00
	98
Abb. 5.2 Weibull-Verteilung der Mikrohartewerte der konventionell prozessier-	00
	98
Abb. 5.3 Abhangigkeit der Mikroharte plasmagespritzter Schichten von der	00
Porositat.	99 101
Abb. 5.4 Spannungs-Dennungs-Diagramme der gekunlt prozessierten Schicht.	101
ADD. 5.5 Spannungs-Dennungs-Diagramme der gekühlt prozessierten Schicht	101
nach thermischer Benandlung	101
ADD. D.O. Weibuli-Verteilung der Harte des SPS-gesinterten Materials	103

Abb.	5.7	Weibull-Verteilung der Härte des HPHT-gesinterten Materials 1	.03
Abb.	5.8	Last-Verschiebungskurve der SPS-verdichteten Keramik 1	05
Abb.	5.9	Last-Verschiebungskurve der HPHT-gesinterten Keramik 1	05
Abb.	5.10	REM-Aufnahme der Bruchfläche der SPS-verdichteten Keramik 1	.06
Abb.	5.11	Auftragung der Warmhärte der SPS-verdichteten Keramik 1	.08
Abb.	5.12	Arrhenius-Auftragung der Warmhärte der SPS-verdichteten Keramik. 1	.09
Abb.	5.13	REM-Aufnahmen der Vickerseindrücke nach den Warmhärtemessungen.1	10
Abb.	5.14	Darstellung der technischen Dehnung und der Druckkraft einer SPS-	
	verdic	chte- ten Keramik bei 1300 °C	11
Abb.	5.15	Bestimmung des Spannungsexponenten bei 1300 °C der SPS-verdichteten	
	Probe		11
Abb.	5.16	Kriechverformungskurven der SPS-verdichteten Keramik zwischen	
	1200 1	und 1350 °C	13
Abb.	5.17	Bestimmung der Aktivierungsenergie der SPS-verdichteten Keramik. 1	13
Abb.	5.18	Spannungs-Dehnungskurven der SPS-verdichteten Keramik bei 1300 °C	
	und k	onstanten Dehnrate	14
Abb.	5.19	REM-Aufnahme der SPS-verdichteten Keramik nach plastischer Ver-	
	formu	1ng	15
Abb.	5.20	Auftragung der Korngrößen der Matrixphase nach plastischer Verfor-	
	mung	zu unterschiedlichen plastischen Dehnungen	16
Abb.	5.21	STEM- und HRTEM-Aufnahme der SPS-verdichteten Keramik nach	
	der D	eformation. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	17
Abb.	5.22	STEM-Aufnahme und EDX-Analyse der SPS-verdichteten Keramik	
	nach e	der Deformation. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	19
Abb.	5.23	Auftragung der Warmhärte der HPHT-gesinterten Keramik 1	.21
Abb.	5.24	Arrhenius-Auftragung der Warmhärte der HPHT-gesinterten Keramik.	.21
Abb.	5.25	REM-Aufnahmen der Vickerseindrücke nach der Warmhärtemessung. 1	22
Abb.	5.26	Spannungs-Dehnungs-Diagramme der HPHT-gesinterten Keramik bei	
	1200°	$^{\circ}C$ und 1300 $^{\circ}C$ mit konstanter Dehnrate	23
Abb.	5.27	Darstellung der technischen Dehnung und der Druckkraft der HPHT-	
	gesint	erten Keramik bei 1300 °C.	124
Abb.	5.28	Auftragung der wahren Dehnraten als Funktion der jeweiligen wahren	
	Spanr	nungen bei 1300 °C für eine HPHT-gesinterte Probe 1	124
Abb.	5.29	Röntgenbeugungsdiagramm der HPHT-gesinterten Probe nach der	
	Defor	mation	.25
Abb.	5.30	REM-Aufnahmen der HPHT-gesinterten Probe nach der Deformation. 1	26
Abb.	6.1	Auftragung der normalisierten Spannung über der Dehnrate 1	.35
Abb.	A.1	Raman-Spektren der Referenzproben	44

Tabellenverzeichnis

Tab.	2.1 Modifikationen des ZrO_2	3
Tab.	2.2 Mechanische Kennwerte von $ZrO_2(Y_2O_3)$, Al_2O_3 und $ZrO_2(Y_2O_3)$ mit	
	20 Gew.% Al_2O_3	6
Tab.	2.3 Transportpfade des Sinterns	0
Tab.	2.4 Übersicht von metastabilen Phasen, die durch eine verminderte Korn-	
	größe stabilisiert werden	.2
Tab.	2.5 Gliederung der metastabilen Materialien nach Turnbull	.8
Tab.	2.6 Charakteristische Eigenschaften unterschiedlicher thermischer Beschich-	
	tungsverfahren. $\ldots \ldots 2$	20
Tab.	2.7 Zusammenfassung der Deformationsuntersuchungen an monoklinem	
	ZrO_2 3	6
Tab.	3.1 Probenbezeichnung der plasmagespritzten Schichten 4	3
Tab.	4.1 Zusammenfassung der Spritzparameter zur Herstellung der $ZrO_2(Y_2O_3)$	
	- Al_2O_3 Beschichtungen.	53
Tab.	4.2 Dichten und Porositäten der $ZrO_2(Y_2O_3)$ - Al ₂ O ₃ Schichten bestimmt	
	mittels Helium-Pyknometrie und REM-Bildanalyse 6	55
Tab.	4.3 Dichte und Porosität der ausgelagerten Schichten	'2
Tab.	4.4 Raman-Schwingungsbanden der verschiedenen Polymorphe des ZrO_2 . 7	78
Tab.	4.5 Experimentelle Parameter für das feldunterstützte Sintern und Zu- sammenfassung der Dichten (nach Archimedes) der zugehörigen verdichte-	
	ten Körper.	31
Tab.	4.6 Experimentelle Parameter für das Hochdrucksintern und Zusammen-	
	fassung der Dichten (nach Archimedes) der zugehörigen verdichteten Körper. 8	37
Tab.	5.1 Zusammenfassung der mechanischen Eigenschaften der hergestellten	
	Beschichtungen)()
Tab.	5.2 Zusammenfassung der mechanischen Kennwerte der verdichteten Pro-	
	ben bei Raumtemperatur)4
Tab.	6.1 Zusammenfassung der in dieser Arbeit ermittelten thermomechani-	
	schen Kennwerte und aus Literaturstellen mit ähnlicher Zusammensetzung. 13	54
Tab.	6.2 Zusammenfassung von in der Literatur bestimmten Aktivierungsener- gien für die Eigendiffusion in $ZrO_2(Y)$	37

Tab.	A.1	Identifizierte	Schv	wing	ungs	sband	en in	den	Ran	nan-	Spe	ktr	en	de	r ł	ner	ge-	
	stellt	en Materialie	n.												•			143

1. Einleitung

Keramische Werkstoffe haben in den letzten Jahrzehnten einen immer größer werdenden Stellenwert als Konstruktionswerkstoff erlangt. Dies ist auf die besonderen Eigenschaften der Keramiken im Vergleich zu Metallen, wie z.B. hohe thermische Beständigkeit, Korrosionsbeständigkeit, Verschleißbeständigkeit, hohe Härte und hohe Steifigkeit bei geringer Dichte, zurückzuführen. Ein wichtiges Gefügemerkmal ist dabei die Korngröße. Viele mechanische Eigenschaften hängen mit der Korngröße des Werkstoffs zusammen und lassen sich wie z.B. die Härte durch eine Reduzierung der Korngröße noch weiter steigern.

Keramiken werden konventionell über das Sintern von Pulverpresslingen in einen dichten Körper überführt. Durch diesen thermischen Bearbeitungsschritt kommt es neben der Verdichtung allerdings auch zur Vergröberung des Gefüges. Aufgrund der verbesserten Eigenschaften nanokristalliner (Korngröße ≤ 100 nm) und ultrafeinkörniger Materialien (Korngröße 100 nm bis 1000 nm), werden viele Versuche unternommen, Kornwachstum zu reduzieren, während gleichzeitig vollständig dichte Massivproben erzielt werden. Viele dieser Methoden zielen dabei auf die Optimierung des Sinterprozesses hin. Speziell fortgeschrittene Syntheseverfahren haben dabei in den letzten Jahren immer mehr an Bedeutung gewonnen. Besonders die feldunterstützten Sinterverfahren SPS (*spark plasma sintering*), PECS (*pulsed electric current sintering*) und FAST (*field-assisted sintering technique*) finden in vielen Bereichen verstärkt Anwendung. Sie erlauben sehr schnelle Heizraten und nur geringe Haltezeiten von wenigen Minuten werden benötigt um dichte Keramiken zu synthetisieren. Eine große Bandbreite an refraktären Materialien lässt sich auf diese Weise auch ohne die Verwendung von Sinterhilfsmittel verdichten. Eine Übersicht findet sich z.B. in Referenz [Orru et al. 2009].

Neben der Verwendung aufwendiger Sintermethoden bietet aber auch die Struktur und Zusammensetzung des eingesetzten Pulvers viel Spielraum, um das endgültige Gefüge zu beeinflussen. Ein vielversprechendes Verfahren ist die metastabile Prozessroute [Kear & Mukherjee 2007]. Metastabile übersättigte Mischkristalle werden als Ausgangspulver für die Verdichtung eingesetzt, welche sich unter dem thermischen Prozessierungsschritt unter Ausscheidung einer unlöslichen Zweitphase zersetzen. Diese Ausscheidungen hindern das Kornwachstum während des Sinterns und sorgen so für eine ultrafeinkörnige Mikrostruktur. Auf diese Weise konnten dichte Keramiken mit Korngrößen < 100 nm hergestellt werden [Jayaram et al. 1998].

Eine besondere Eigenschaft tritt nur bei Keramiken mit einem Gefüge auf, welches Korngrößen < 1 µm aufweist: Die strukturelle Superplastizität [Wakai 1986a]. Durch die geringen Korngrößen können Keramiken bei homologen Temperaturen von 0,5-0,6 T/T_m

(wobei T_m der Schmelzpunkt des Materials darstellt) zu großen plastischen Dehnungen verformt werden. Es existieren zahlreiche Berichte in der Literatur über das superplastische Verformungsverhalten von ZrO_2 -basierten Kompositen, wobei diese aber immer noch kein konsistentes Bild des Verformungsverhaltens ergeben.

Die vorliegenden Ergebnisse wurden im Rahmen des von der Europäischen Union (EU) geförderten Projektes NAMAMET (*NAnostructured MAterials through MEtastable Transformations*) durchgeführt. Ziel dieses Projektes war die Herstellung von Werkstoffen mit ultrafeinkörnigem Gefüge über die Umwandlung metastabiler Phasen. Das Projekt deckte eine große Bandbreite an Werkstoffklassen wie Oxidkeramiken ($ZrO_2(Y_2O_3) - Al_2O_3$ und $Al_2O_3 - TiO_2$), Nichtoxidkeramik (TiC - TiB₂), Metall-Keramik-Verbundwerkstoff (Ti - $Al_2O_3 - TiC$) und intermetallische Verbindungen (NiTi, NbAl₃) ab. Die Verdichtung erfolgte über verschiedene fortgeschrittene Verdichtungsverfahren, wie Hochdrucksintern (HPHT), SPS, gasdynamische Verdichtung oder Extrusion. Diese wurden eingesetzt, um Kornwachstum so gering wie möglich zu halten. Weiterhin bieten sie zum Teil die Möglichkeit zum Erhalt der metastabilen Strukturen.

Diese Arbeit beschränkt sich rein auf die Betrachtung des $ZrO_2(Y_2O_3)$ - Al₂O₃-Materials, das per SPS und HPHT verdichtet wurde. Ausgehend davon lässt sich das Projekt in drei Bestandteile unterteilen: Herstellung und Charakterisierung plasmagespritzter Schichten, Herstellung und Charakterisierung der verdichteten Körper und superplastisches Verformungsverhalten der verdichteten Körper.

Schichten werden dazu über atmosphärisches Plasmaspritzen unter Verwendung von Substraten, die mit flüssigem Stickstoff gekühlt wurden, hergestellt. Die hergestellten Schichten sollen dabei hinsichtlich des Effektes der Kühlung auf die Mikrostruktur und die mechanischen Eigenschaften untersucht werden. Diese metastabile Schichten dienen als Ausgangsmaterial für die Verdichtungsversuche. Dazu werden sie in der Kugelmühle in ein Pulver umgewandelt, welches anschließend sowohl in der SPS, als auch unter Hochdruck, gesintert wird. Die synthetisierten keramischen Körper werden ebenfalls hinsichtlich der Phasenentwicklung während des Sinterns untersucht. Dabei steht die Untersuchung auf verbliebene Metastabilität bei kleiner Korngröße und vollständiger Dichte im Vordergrund. Das superplastische Verformungsverhalten soll für beide Verdichtungsreihen mit Warmhärteversuchen und ausgehend von dieser ersten Charakterisierung anschließend mit Hochtemperaturkompressionstests deformiert werden. Ziel dieser Versuche ist die Bestimmung der thermomechanischen Parameter, aus denen im Vergleich mit der Mikrostruktur der deformierten Probe und den in der Literatur beschriebenen Werten ein Modell der Verformung, sowie der Einfluss der Metastabilität auf das Verformungsverhalten, abgeleitet werden soll.

2. Grundlagen

2.1. Struktur und Eigenschaften ZrO₂-basierter Komposite

Reines ZrO_2 existiert bei Raumtemperatur in der monoklinen Phase und geht mit steigender Temperatur in Phasen mit steigender Dichte und Kristallsymmetrie über, bevor es bei 2716 °C schmilzt:

Monoklin $\stackrel{1170\,^{\circ}\text{C}}{\longleftarrow}$ tetragonal $\stackrel{2370\,^{\circ}\text{C}}{\longleftarrow}$ kubisch $\stackrel{2716\,^{\circ}\text{C}}{\longleftarrow}$ Schmelze

Eine Zusammenfassung der strukturellen Eigenschaften der verschiedenen Kristallstrukturen des ZrO_2 ist in Tab. 2.1 zu finden. Betrachtet man das System während des Abkühlens, so sind beide fest-fest Phasenübergänge $kubisch \rightarrow tetragonal$ und $tetragonal \rightarrow monoklin$ mit Volumenzunahmen von 1,3 % bzw. 5,3 % verbunden.

Speziell der Phasenübergang von der tetragonalen hin zur monoklinen Phase führt aufgrund der großen Expansion zur Bildung von Rissen, die bis hin zur kompletten Desintegration des keramischen Bauteils führen. Aus diesem Grund ist die Verwendung von reinem Zirkonoxid für technische Zwecke nicht geeignet. Durch die Verwendung von na-

Modifikation	monoklin	tetragonal	kubisch
Raumgruppe	$P2_1/c$	$P4_2/nmc$	${\rm Fm}\overline{3}{ m m}$
Gitterkonstanten:			
a $[\mathring{A}]$	$5,\!1505$	$3,\!5984$	5,0880
b [Å]	5,2116	$3,\!5984$	5,0880
c [Å]	$5,\!3173$	$5,\!1520$	5,0880
β [°]	$99,\!23$	90,00	90,00
Dichte $[g/cm^3]$	$5,\!809$	$6,\!134$	6,214
PDF #*	01-078-1807	00-050-1089	03-065-0461

Tab. 2.1.: Zusammenfassung der strukturellen Parameter der verschiedenen Modifikationen des ZrO_2 .

* Daten der Pulverbeugungsdatenbank (powder diffraction file)