

Modeling, Analysis, and Optimization

of Automotive Networks

Der Technischen Fakultät der

Universität Erlangen-Nürnberg

zur Erlangung des Grades

D O K T O R - I N G E N I E U R

vorgelegt von

Martin Lukasiewycz

Erlangen 2010

Als Dissertation genehmigt von der Technischen Fa-

kultät der Universität Erlangen-Nürnberg

Tag der Einreichung: . 04.06.2010

Tag der Promotion: . 28.07.2010

Dekan: . Prof. Dr.-Ing. Reinhard German

Berichterstatter: .Prof. Dr.-Ing. Jürgen Teich

. Prof. Dr. sc. Samarjit Chakraborty

�

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliographie; detaillierte bibliografische Daten sind im Internet über

http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2010

Zugl.: Erlangen-Nürnberg, Univ., 2010

978-3-86955-414-3

BibliografischeiInformationideriDeutscheniNationalbibliothek

CUVILLIER VERLAG, Göttingen 2010

Nonnenstieg 8, 37075 Göttingen

Telefon: 0551-54724-0

Telefax: 0551-54724-21

www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung

des Verlages ist es nicht gestattet, das Buch oder Teile

daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)

zu vervielfältigen.

1. Auflage, 2010

Gedruckt auf säurefreiem Papier

978-3-86955-414-3

Audi-Dissertationsreihe, Band 36

Acknowledgments

I would like to express my deepest gratitude to my supervisor Prof. Dr.-Ing.

Jürgen Teich and my sponsor AUDI AG which made this thesis possible. It

is also a pleasure to thank Dr.-Ing. Uwe Koser for his encouragement and his

efforts regarding the cooperation between the University of Erlangen-Nuremberg

and the AUDI AG in Ingolstadt.

The past three years gave me the opportunity to get in touch with many

people in both academia and industry who were inspiring, supportive, or sim-

ply entertaining. In this short acknowledgment, most of them remain unnamed

but they should be certain that they are not unnoticed. In particular, I thank

my friend and colleague Michael Glaß for his kind support and his help with

numerous publications that pave the long road towards this thesis. I also owe

my gratitude to my friend and supervisor at AUDI Richard Regler for his pa-

tience, confidence, and encouragement while giving me valuable insights in the

automotive domain.

iii

Contents

1 Introduction 1

1.1 Meta-heuristic Optimization of Constrained Combinatorial Prob-

lems . 3

1.2 Design Space Exploration of Networked Embedded Systems . . 4

1.3 FlexRay Scheduling . 6

2 Meta-heuristic Optimization of Constrained Combinatorial Problems 7

2.1 Introduction . 7

2.2 Related Work . 10

2.2.1 Meta-heuristic Optimization 10

2.2.2 Constraint Handling . 13

2.2.3 Hybrid Optimization Approaches 15

2.3 Pseudo-Boolean Problem . 16

2.3.1 Solver . 17

2.3.2 Constraint Normalization 18

2.3.3 Constraint Linearization 20

2.4 Feasibility-preserving Decoding 22

2.4.1 Mixed Encoding . 23

2.4.2 Continuous Encoding . 23

2.4.3 Discrete Encoding . 24

v

Contents

2.5 Feasibility-preserving Operators 25

2.5.1 Neighborhood Operator 26

2.5.2 Mutate Operator . 26

2.5.3 Crossover Operator . 27

2.6 Experimental Results . 28

2.6.1 PB Evaluation . 29

2.6.2 Multi-objective . 44

2.7 Summary . 48

3 Design Space Exploration of Networked Embedded Systems 51

3.1 Introduction . 51

3.2 Related Work . 55

3.2.1 Design Space Exploration 56

3.2.2 Timing Analysis . 57

3.2.3 Exploitation of Data Redundancy 58

3.2.4 Robust Design . 59

3.3 Design Space Exploration Model 60

3.3.1 Basic Model . 61

3.3.2 Extended Model . 65

3.4 Timing Analysis . 73

3.4.1 Compositional Timing Analysis 74

3.4.2 Efficient Fixed Point Iteration 76

3.5 Exploitation of Data Redundancy 85

3.5.1 Model . 88

3.5.2 Identifying Data Redundancy 90

3.5.3 Reliability as an Optimization Objective 96

3.6 Robust Design . 101

3.6.1 Robustness Evaluation 102

3.6.2 Robustness Optimization 109

3.7 Experimental Results . 111

3.7.1 Synthetic Results . 113

3.7.2 Case Study Results . 123

3.7.3 Timing Analysis . 134

3.7.4 Exploitation of Data Redundancy 135

3.7.5 Robust Design . 138

vi

3.8 Summary . 146

Contents

4 FlexRay Scheduling 149

4.1 Introduction . 149

4.2 Related Work . 151

4.3 Problem Definition . 153

4.3.1 Scheduling Requirements 153

4.3.2 AUTOSAR Interface Specification 154

4.4 Schedule Optimization . 155

4.4.1 Problem Transformation 156

4.4.2 Bin Packing . 161

4.4.3 Reordering for Extensibility 166

4.5 Experimental Results . 168

4.5.1 Schedule Optimization 170

4.5.2 Incremental Scheduling 171

4.5.3 Scalability Analysis . 172

4.5.4 Slot Size Exploration . 173

4.5.5 Supportive Test Case . 173

4.5.6 Summary . 176

5 Conclusion and Future Work 179

5.1 Summary . 179

5.2 Future Work . 180

6 German Abstract 183

Bibliography 187

List of Symbols 215

Acronyms 219

Index 221

vii

1
Introduction

Since many years, the automotive industry is an important key driver in embed-

ded system design and development. The vast majority of current technical in-

novations in modern vehicles such as advanced driver assistance systems or mul-

timedia systems are realized or supported by electronic solutions. As a result,

the amount of software and hardware in modern vehicles dramatically increased.

Numerous distributed functions carry out safety, comfort, and driver-assistance

functionality. In general, this functionality is developed separately and provided

as hardware either by the vehicle manufacturer or a supplier. Here, the basic

hardware unit is the Electronic Control Unit (ECU), i.e., a self-contained com-

puter system often comprising its own operating system. Within an automotive

network, the ECUs are interconnected via buses and gateways to enable the

collaborative functionality.

As a result of the increased functionality, the number of ECUs has increased

dramatically for top-of-the-range vehicles. The distribution of ECUs that are

mounted either in protected mounting spaces or at their places of activity re-

quires an integration of a complex bus system. Automotive networks are charac-

terized by their heterogeneity comprising different bus systems such as Control

Area Network (CAN) [CAN], Local Interconnect Network (LIN) [LIN], Media

Oriented Systems Transport (MOST) [MOS] or FlexRay [FC05]. Each of these

bus systems was developed for the automotive domain and answers its special

purpose. The most common bus system for the communication between ECUs

1

1. Introduction

is the event-triggered CAN bus as well as the FlexRay bus that contains both a

time-triggered and an event-triggered segment and allows a significantly higher

data rate than the CAN bus. The MOST bus establishes a communication

via fiber at a high data rate and is particularly used for multimedia applica-

tions. Operating at a low data rate, the LIN bus system is a time-triggered bus

used for the connection of sensors and actuators to ECUs. Commonly, the bus

systems are mutually interconnected via one or more gateways resulting in a

heterogeneous topology.

The distributed functions implemented on the ECUs establish a communica-

tion by messages that are generally periodic or defined by a minimal inter-arrival

time. In particular, critical functions such as airbag or engine functions impose

severe requirements on the underlying system for a guaranteed functionality.

Moreover, upcoming x-by-wire systems that aim to replace mechanical or hy-

draulic systems will increase the data traffic of future networks even further.

Due to the complexity and heterogeneity of state-of-the-art automotive ECU

networks, the design of these networks becomes a challenging task. Currently,

several essential design tasks such as the topology determination, function dis-

tribution, message routing and priority assignment of tasks and messages are

performed separately and manually. This procedure has several drawbacks as it

tends to be time-consuming, error-prone and might result in suboptimal imple-

mentations. The design of automotive systems has not only to consider the vast

number of design decisions but also a high number of generally conflicting ob-

jectives such as monetary costs, energy consumption, robustness, or reliability.

Thus, an automatic design approach becomes necessary to relieve the designer

from the burden to optimize this network hand.

There exist some commercial tools to support the designer in the automotive

domain, e.g., PREEvision [PRE], SymTA/S [HJRE04], or chronSIM [chr].

PREEvision is a widely used tool in the automotive domain to document and

model the system. It lacks an automatic optimization of the discussed essential

design tasks. The design tools SymTA/S and chronSIM allow to verify and

test the real-time properties of functions either by a formal approach or sim-

ulation, respectively. Tools such as SymTA/S are only capable of optimizing

the priorities of messages and tasks but do not optimize the system by any

other respect. In contrast, the work at hand proposes an efficient optimiza-

tion approach for automotive networks that concurrently performs a topology

2

1.1 Meta-heuristic Optimization of Constrained Combinatorial Problems

determination, function distribution, message routing and priority assignment

of tasks and messages. The optimization considers multiple objectives such

as monetary costs, energy consumption, end-to-end latencies, robustness, and

reliability. Additionally, this work contributes a scheduling approach for the

FlexRay bus that outperforms known approaches by the quality of the results

in terms of number of allocated slots as well as by the significantly decreased

runtime required to obtain a schedule.

The major contributions and achievements of this thesis are explained in the

following paragraphs in more details.

1.1 Meta-heuristic Optimization of Constrained

Combinatorial Problems

In the work at hand, a design space exploration that may automatically optimize

automotive networks is proposed. This optimization requires a more flexible and

efficient approach than is achievable by either Integer Linear Programming (ILP)

or meta-heuristic approaches such as an Evolutionary Algorithm (EA). While

an ILP is restricted to a single linear objective function, the meta-heuristic op-

timization performs not well in the presence of a high number of stringent con-

straints. To overcome these drawbacks, a novel constraint handling technique in

meta-heuristic optimization is presented. This feasibility-preserving approach

is a hybrid solution that combines the benefits of ILP and meta-heuristic opti-

mization.

The experimental results of several random test cases from various domains

give evidence of the benefits of this technique. Compared to a common penalty

or repair approach, respectively, the proposed feasibility-preserving approaches

show a better convergence for all test cases. In addition to that, the feasibility-

preserving approaches even perform well on test cases where the common ap-

proaches fail to find even a single feasible solution.

This novel feasibility-preserving optimization approach and the detailed ex-

perimental results are presented in Chapter 2.

3

1. Introduction

1.2 Design Space Exploration of Networked

Embedded Systems

The proposed design space exploration may concurrently optimize the topol-

ogy, function distribution, message routing, and parameters. This graph-based

design space exploration is based on the Y-chart approach that maps an ap-

plication, i.e., distributed functions, to an architecture such as ECUs, sensors,

actuators, and buses. A model is introduced that is capable of modeling multi-

hop and multicast communication as it is required in the automotive domain.

In order to leverage the proposed optimization approach, a binary encoding of

the design space exploration becomes necessary. The work at hand presents

an efficient binary encoding of the model for networked embedded systems in-

cluding a preprocessing algorithm to restrict the search space effectively. The

experimental results give evidence of a fast convergence towards the optimal im-

plementations also for large and complex problems with multiple objectives. As

a result, the presented approach is superior compared to optimization methods

known from literature.

Real-time and performance properties are essential for the correct function-

ality of distributed functions in automotive systems. This work presents a com-

positional timing model that takes advantage of the seamless combination of

different analysis techniques. Based on this generalized formal timing analysis

technique, a fine-grained fixed point iteration is proposed to deal efficiently with

cyclic dependencies. Since the presented fine-grained approach always requires

less computational steps than existing global approaches, it is capable of de-

livering performance metrics such as end-to-end delays very efficiently, and is

therefore more scalable. In particular, it is proven that the fine-grained approach

scales linearly compared to global approaches with a polynomial computational

effort. An efficient approach is proposed that is able to break cyclic depen-

dencies in the analysis, such that the fixed point iteration may not be applied

globally, but can be applied separately to different subparts of the communica-

tion architecture.

The increasing complexity and number of electronic solutions in automotive

systems that carry out critical functionality such as airbag or engine functions

call for a formal reliability analysis and optimization technique. The work at

4

1.2 Design Space Exploration of Networked Embedded Systems

hand presents a system-level design methodology for automotive networks that

is capable of analyzing the reliability as well as exploiting existing data re-

dundancy to increase reliability. The presented approach not only supports a

reliability-aware design from scratch, but also enables the redesign of existing

systems to increase the reliability at the expense of a minimal communication

overhead. Several algorithms are proposed in order to automatically identify in-

herent data redundancy and an extension of the design space exploration model

and encoding is presented that allows to exploit the revealed data redundancy. A

symbolic analysis is proposed that quantifies the reliability of a system, enabling

the usage of reliability as one of multiple conflicting optimization objectives.

Early decisions in embedded system design may be revised in later stages

resulting in additional costs. This work presents a methodology to evaluate and

optimize the robustness of an embedded system in terms of invariability in case

of design revisions. A method that quantifies the expected additional costs as

the robustness value is proposed. Since the determination of the robustness

based on arbitrary revisions is computationally expensive, an efficient set-based

approach that uses a symbolic encoding is presented. Moreover, a methodology

for the integration of the optimization of the robustness in the design space

exploration is proposed. Based on an external archive that accepts also near-

optimal solutions, this robustness-aware optimization is efficient since it does

not require additional function evaluations as previous approaches.

Several realistic case studies give evidence of the benefits of the proposed

methodologies. These case studies comprise the ECU design of a Motion-JPEG

decoder, automotive network integration, and an automotive network explo-

ration.

The design space exploration of networked embedded systems including the

extended exploration model, the improved real-time analysis technique, the re-

liability analysis, and the robust design methodology is presented in Chapter 3.

The chapter also presents detailed experimental results based on synthetic and

realistic test cases.

5

1. Introduction

1.3 FlexRay Scheduling

The novel FlexRay [FC05] bus is going to sustainably change the design paradigm

in the automotive domain. The currently prevailing CAN bus in the automo-

tive domain is event-triggered and restricted to a low data rate. In contrast,

the FlexRay bus offers both a static and dynamic segment with a high data

rate. While the dynamic event-triggered segment is mostly used for mainte-

nance and diagnosis data, the static time-triggered segment is used for critical

application data. It is projected that first x-by-wire systems will be imple-

mented on the FlexRay bus. However, the FlexRay protocol requires a large

set of parameters but also a predefined scheduling of messages. In particular,

scheduling the static segment in compliance with AUTomotive Open System

ARchitecture (AUTOSAR) specification [AUT08] that provides a multiplexing

scheme to extended to utilization of the bus becomes a challenging task.

The work at hand presents a FlexRay scheduling approach for the static seg-

ment based on two-dimensional bin packing. For this purpose, a transformation

of the slot packing to bin packing and vice versa is presented. A proof shows

the correctness of the transformation. For the bin packing a common greedy

heuristic might be applied. In order to achieve an optimal schedule in terms of

a minimal number of allocated slots, an ILP approach is presented that takes

advantage of the problem specific constraints. This efficient encoding is further

improved by additional constraints that minimize the search space effectively.

In order to determine and improve the extensibility of given FlexRay schedules,

an extensibility metric as well as a heuristic for the optimization of partially

allocated slot is presented.

The experimental results show that the runtime of the transformation is neg-

ligible. For a given case study, the proposed approach is compared to the results

obtained by a commercial tool. The proposed approach is four orders of mag-

nitude faster and is capable of delivering the optimal schedule in terms of the

allocated slots such that the result from the commercial tool is improved by

two slots. The essentially improved runtime allows integrating this scheduling

approach into an efficient design space exploration.

This FlexRay scheduling approach including the detailed experimental results

is presented in Chapter 4.

6

2
Meta-heuristic Optimization of

Constrained Combinatorial Problems

2.1 Introduction

This chapter introduces a novel optimization approach for discrete multi-ob-

jective optimization problems. This efficient optimization is essential for an

effective Design Space Exploration (DSE) in the automotive domain. In par-

ticular, the optimization problems in the automotive domain are characterized

by a huge search space due to the problem size and complexity as well as by

stringent constraints due to several domain-specific requirements. In the follow-

ing, the proposed efficient optimization is introduced and compared on a set of

test cases from different domains before it is applied successfully to the DSE of

automotive networks in Chapter 3.

Meta-heuristic algorithms are successfully applied to many complex optimiza-

tion problems. In particular, some of these meta-heuristic optimization algo-

rithms like Evolutionary Algorithms (EAs) perform very well on multi-objective

problems. A major shortcoming of these meta-heuristic optimization algorithms

is the missing of capability of innately handling arbitrary constraints. Though

several generic and specific methods were researched to overcome this drawback,

these methods tend to perform badly in case of a general constrained combina-

torial problem where the search space is discrete and linearly constrained. Such

7

a constrained combinatorial problem is defined as follows:

2. Meta-heuristic Optimization of Constrained Combinatorial Problems

Definition 2.1 (Constrained Combinatorial Problem)

minimize f(x)

subject to:

Ax ≤ b with x ∈ {0, 1}n, A ∈ Z
m,n, b ∈ Z

m

The objective function f might be multi-dimensional and non-linear. In single-

objective optimization, the feasible set of solutions is totally ordered, whereas in

multi-objective optimization problems, the feasible set is only partially ordered

and, thus, there is generally not only one global optimum, but a set of Pareto-

optimal solutions. A Pareto-optimal solution is better in at least one objective

when compared to any other feasible solution. The search space X = {0, 1}n
is restricted to binary values, but allows integer values by a binary encoding.

The feasible search space Xf ⊆ X is restricted by a set of constraints which are

subsumed in the stated matrix inequation Ax ≤ b. Thus, the constraints have

to be linear or linearizable.

In case of a relatively small feasible search space, common constraint-handling

methods like penalty functions or local repair algorithms are more focused on

the search for feasible solutions than on the optimization of the objectives. Fig-

ure 2.1 illustrates the shortcomings of a variation of a feasible solution in a

constrained search space where the resulting solutions might become infeasible.

As a result, only a slow convergence towards the optimal solutions is reached

typically. In some cases it might even happen that the meta-heuristic opti-

mization algorithm is not able to find even a single feasible solution. On the

other hand, using exact approaches like Integer Linear Programming (ILP) is

prohibited by the condition that the objective function is multi-dimensional and

non-linear.

To overcome the drawbacks of known optimization methods for the con-

strained combinatorial problem, a novel approach is proposed in this chapter.

This hybrid approach combines the benefits of ILP and meta-heuristic opti-

mization methods, particularly EAs. Since the constraints in Definition 2.1

are restricted to binary variables, a backtracking-based ILP solver might be

used to find feasible solutions. This so-called Pseudo-Boolean (PB) solver is in-

corporated into the meta-heuristic optimization process to enable a constraint

8

handling and preserve the feasibility of the solutions.

2.1 Introduction

x3

x1

x2

Solution Space

xa

Figure 2.1: Illustration of a common operator that varies a solution xa in a con-

strained search space. The circles correspond to feasible solutions.

The variation of solution xa may result in infeasible solutions.

Two basically different approaches are proposed that allow integrating a PB

solver in the optimization process. First, a decoding approach is presented where

the meta-heuristic is used to vary the branching strategy of a PB solver instead

of varying the solutions directly [LGHT07]. As a result, the PB solver is used

with the branching strategy to obtain feasible solutions. The second approach

presents feasibility-preserving operators that are used by the optimization algo-

rithm to vary the solutions inside the feasible search space [LGHT08b, LGT08].

For each operator an individual scheme for the branching strategy for PB solver

is proposed. In case of an unconstrained problem, these operators degrade to

the known bitwise operators. In particular, this work presents neighborhood,

mutation, and crossover operators.

Several test cases give evidence of the benefits of the feasibility-preserving

optimization approaches. A random set of single-objective test cases is selected

from the PB Evaluation [MR09]. These test cases allow a fair comparison of

the feasibility-preserving techniques with a penalty approach based on the con-

vergence towards the optimal objective value. Additionally, two-dimensional

optimization problems show the applicability in the multi-objective domain.

An introduction of the meta-heuristic optimization of the constrained combi-

natorial problem is given as follows:

9

2. Meta-heuristic Optimization of Constrained Combinatorial Problems

• An extensive presentation of related work. (cf. Section 2.2)

• A detailed introduction on the PB problem. (cf. Section 2.3)

In summary, this chapter provides the following contributions to the con-

strained combinatorial problem as defined in Definition 2.1:

• A decoding scheme based on a PB solver that ensures the feasibility of

solutions. (cf. Section 2.4)

• An operator scheme based on a PB solver that preserves the feasibility of

solutions. (cf. Section 2.5)

• A meaningful set of test cases that gives evidence of the superiority of

the proposed methods compared to known constraint handling methods

in meta-heuristic optimization. (cf. Section 2.6)

2.2 Related Work

This section discusses existing work related to meta-heuristic optimization and

constraint handling methods known from literature. Finally, known hybrid opti-

mization algorithms that combine exact and heuristic algorithms are discussed.

2.2.1 Meta-heuristic Optimization

Meta-heuristic optimization methods are commonly used for complex prob-

lems where common optimization techniques like Linear Programming (LP),

Quadratic Programming (QP), Geometric Programming (GP), etc. are not ap-

plicable due to their restrictive expressiveness. This is often the case if the

problem has multiple non-linear objectives or constraints as well as a complex

underlying problem representation.

The domain of meta-heuristic optimization comprises methods such as Evolu-

tionary Algorithm (EA) approaches [Bäc96], Simulated Annealing (SA) [KGV83,

Čer85], and Particle Swarm Optimization (PSO) [KE95]. The abovementioned

meta-heuristic optimization algorithms are inspired by nature and, therefore,

also embraced by the term Evolutionary Computation (EC) [Fog95].

10

2.2 Related Work

An EA is a population-based optimization algorithm inspired by biological

evolution. The first EAs were developed independently by different research

groups around the world in the 1960s. Lawrence J. Fogel coined the term Evo-

lutionary Programming in 1962 [Fog62, FOW66] for his evolutionary approach

to solve prediction models. Also in 1962, John H. Holland initiated the Genetic

Algorithm (GA) approaches [Hol62] resulting in a pioneering book published in

1975 [Hol75]. His work was motivated by the development of robust adaptive

systems. The work on the Evolution Strategy (ES) started in the 1960s and

was further developed in the 1970s by Ingo Rechenberg and Hans-Paul Schwe-

fel [Rec71, BS02]. The ES approaches were used to solve continuous parameter

optimization problems. All these approaches share the common idea of using

reproduction and natural selection. Therefore, these approaches are commonly

embraced by the term EA. Numerous books have been published on the EA

topic such as [Dav91, Mic96, BNKF98].

The main procedure of an EA is based on the reproduction and selection that

are performed alternately in an iterative process to optimize a given objective.

The reproduction creates new individuals from the current population using the

mutation and crossover operators. These crossover and mutation operators are

problem specific. There exist numerous general-purpose crossover and mutation

operators for real, integer, binary values and also for problem specific data-

structures. The task of the selection is to remove the worst individuals to

ensure a convergence of the algorithm towards the optimal solutions. For single-

objective optimization this might be a pure elitism selection that always removes

the worst individuals or a probabilistic method like the roulette wheel selection.

In recent years, huge efforts were made to adapt the selection to multi-

objective problems. The best known and commonly used algorithms for multi-

objective selection are the Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[ZT99, ZLT02], the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

[SD94, DAPM00], and the Indicator Based Evolutionary Algorithm (IBEA)

[ZK04].

Simulated Annealing

SA is an optimization algorithm inspired by the annealing process in metal-

lurgy. It is a further development of the Metropolis algorithm [MRR+53] and

was developed independently by Kirkpatrick et al. in 1983 [KGV83] and Černỳ

in 1985 [Čer85].
11

Evolutionary Algorithms

2. Meta-heuristic Optimization of Constrained Combinatorial Problems

The algorithm varies a single solution by a neighborhood operator. The com-

mon neighborhood operator for binary problems is a bit flip or the sampling

from a normal distribution for real-valued problems. However, also problem-

specific neighbor operators were studied and successfully applied to arbitrary

problems. The common SA improves a single solution iteratively. A new solu-

tion is either accepted or rejected based on a probability value that is calculated

using a continuously decreasing temperature function.

The general SA is a single-objective optimization algorithm. However, also

multi-objective variants were studied [TK07, BSMD08]. A further extension

of the SA is the Tabu Search (TS) [Glo89, Glo90] where each found solution

is excluded from the search space to enable a faster convergence towards the

optimal solution.

Particle Swarm Optimization

PSO is an optimization algorithm based on swarm intelligence using social-

psychological principles. It was first published in 1995 by James Kennedy and

Russell C. Eberhart [KE95].

The main procedure is based on particles that are moving in the search space.

As a result, the algorithm mainly targets continuous problems. A swarm consists

of multiple particles that change their position on each iteration. One single

particle is attracted by its local best position and the global best particle. Here,

the quality of an particle depends on the objective function. There exist several

variations including extensions for multi-objective optimization [CCPL04].

Miscellaneous methods

In addition to the abovementioned meta-heuristic optimization algorithms

there exist other approaches which are outlined in the following. Differen-

tial Evolution (DE) [SP95] is an optimization approach tailored for contin-

uous search spaces and shares several similarities with PSOs. Ant Colony

Optimization (ACO) [DMC96] is restricted to optimize paths through graphs

inspired by ant behavior. Meta-heuristic algorithms like Artificial Immune

Systems (AIS) [FPAC94], Harmony Search (HS) [GKL01], and many others

are tailored for specific optimization problems. Moreover, there exist various

hybrid combinations of the discussed algorithms.

12

2.2 Related Work

2.2.2 Constraint Handling

Though the meta-heuristic optimization algorithms generally aim to optimize

unconstrained problems, several different approaches that aim to extend the

optimization algorithms for constraint handling exist. These approach are dis-

cussed in detail in [MS96, CC02] and outlined in the following.

The most common approach to incorporate constraints into meta-heuristic

optimization is the usage of penalty functions [SC95]. A constrained problem is

transformed into an unconstrained problem such that a penalty function dete-

riorates the objective function depending on the violation of the constraints.

The basic implementation is based on static penalty functions. Here, the pe-

nalization of infeasible solutions is performed by adding a weighted distance to

the feasible region to the objective value [RPLH89]. This requires an appro-

priate constant weight for each constraint that has to be determined manually.

To overcome this drawback, dynamic penalty functions change these weights

depending on the current iteration of the optimization algorithm [JH94, Ols94].

In particular, the weights are monotonically increasing such that the solutions

are penalized more and more with a proceeding optimization. This ensures an

exploration of the complete search space in the early phase of the optimiza-

tion while eventually the solutions move to the feasible region. All penalty

approaches share the disadvantage that without a proper parameter set they

might get stuck in local optima or deliver too few feasible solutions. A more

sophisticated method is the adaptive penalty function [BHAB97]. In this case,

the penalty function is controlled by a feedback from the current search process.

Nevertheless, also adaptive approaches require an appropriate parameter set.

Rejecting infeasible solutions requires no parameters and is computationally

efficient since the determination of the objective functions is not required [Sch81].

However, if the feasible region is relatively small, this approach might take a

very long time until a single feasible solution is found. A more sophisticated

method that overcomes the drawbacks of rejecting infeasible solutions, is to put

feasible over infeasible solutions [PS93]. In this case, the infeasible solutions are

used to guide the algorithm towards the feasible search space by reducing the

constraint violation. This approach is still computationally efficient similar to

the rejection of infeasible solutions with the exception that the violation of all

constraints has to be determined. Nevertheless, this approach might get stuck

13

in local optima once a feasible solution is found.

2. Meta-heuristic Optimization of Constrained Combinatorial Problems

Handling the constraints as additional objectives was studied and summarized

in [HABRCC+04]. Either the violation of each constraint is an additional ob-

jective [FF95] or the sum of the violation is a single additional objective [CT97].

The drawbacks of these approaches are the increased complexity of the problem

by additional objectives and a slow convergence if the feasible region is relatively

small compared to the entire search space.

For some problems there exists a special representation or operators that pre-

serve the feasibility of the solutions. A popular example of this is the Traveling

Salesman Problem [LKM+99, GK00] where a permutation encodes the round

trip and the operators preserve the permutations. Some combinatorial prob-

lems allow simple repair algorithms that restore the feasibility of the solutions.

The 0/1 Knapsack Problem [ZT99] is a common example where removing items

from the knapsack repairs the solutions. For linear equality constraints, fea-

sibility can also be preserved by eliminating decision variables [MN95]. If not

all constraints are linear, this approach can at least be used to minimize the

search space and exclude some infeasible regions. In fact, if a simple repair

algorithm exists, also penalty functions guide the search fast towards the fea-

sible region [KBH94]. In case the objectives are not calculated for infeasible

solutions, this simple approach is nearly as effective as many problem specific

greedy repair algorithms.

In [Bel97], a repair approach of infeasible solutions based on the simplex

algorithm is presented. This approach is applied to real-valued problems and

is only focused on satisfying the constraints such that the information from the

repaired infeasible solution is discarded. This high degree of randomness results

in a rather slow optimization convergence.

A further constraint handling approach for EAs is a custom decoding strategy.

The information from the chromosome is decoded to the feasible search space.

In [KM98], a decoding for continuous constrained optimization problems is done

between a multi-dimensional cube and the feasible search space. However, this

decoder is using a problem-specific mapping and, moreover, cannot be applied

to discrete constrained problems.

In[CC02], Coello Coello outlines the prevailing difficulty of greedy repair al-

gorithms and feasibility-preserving methods:

14

