Christoph Kasseck

Frequenzbasierte optische Kohärenztomographie:

Von der Strukturdarstellung zur spektroskopischen Analyse

Frequenzbasierte optische Kohärenztomographie:

Von der Strukturdarstellung zur spektroskopischen Analyse

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs der Fakultät für Elektrotechnik und Informationstechnik an der Ruhr-Universität Bochum

von

Christoph Tobias Kasseck aus Hattingen

Bochum im Juli 2010

RUHR-UNIVERSITÄT BOCHUM

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2010 Zugl.: Bochum, Univ., Diss., 2010

978-3-86955-475-4

 © CUVILLIER VERLAG, Göttingen 2010 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2010

Gedruckt auf säurefreiem Papier

978-3-86955-475-4

Inhaltsverzeichnis

In	haltsv	verzeicl	hnis	ii			
Ał	Abbildungsverzeichnis						
1	Einf	ührung		1			
2	Gru	ndlager	1	4			
	2.1	Licht-l	Materie-Wechselwirkungen	4			
		2.1.1	Reflection	4			
		2.1.2	Streuung	6			
		2.1.3	Absorption	11			
		2.1.4	Dispersion	13			
	2.2	Optisc	che Interferometrie	13			
		2.2.1	Begriff der Kohärenz	14			
		2.2.2	Kohärenzfunktion, Kohärenzlänge und spektrale Breite	15			
		2.2.3	Interferenzerscheinungen	18			
	2.3	Übersi	icht zur optischen Kohärenztomographie	23			
		2.3.1	Von der optischen Interferometrie zur optischen Kohärenztomographi	.e 24			
		2.3.2	Entwicklungsgeschichte bis heute und Anwendungen	27			
		2.3.3	Entwicklungstendenzen und technologischer Ausblick	33			
3	Bild	gebung	g von Knochen mittels optischer Kohärenztomographie	38			
	3.1	Grund	lsätzliches zur Untersuchung von Knochen	38			
		3.1.1	Medizinische Grundlagen und Begriffe	39			
		3.1.2	Motivation der Bildgebung von Knochenkulturen	43			
	3.2	Verwe	ndete Systeme und Methoden	45			
		3.2.1	Präparation der Knochenproben	45			
		3.2.2	Verwendetes optisches Kohärenztomographiesystem	47			
		3.2.3	Verwendetes Röntgencomputertomographiesystem	48			
		3.2.4	Angewendete Histologiemethode	50			
	3.3	Die Oj	ptische Kohärenztomographie im Vergleich	52			
		3.3.1	Vergleich zur Histologie	52			
		3.3.2	Vergleich zur Mikrocomputertomographie	53			
	3.4	Diskus	ssion: Vergleich der Methoden	55			

4	Aufl	oau ein	es frequenzbasierten optischen Kohärenztomographiesy	/sto	em	าร		60
	4.1	Refere	enzprobe					60
	4.2	System	nkomponenten			•		62
		4.2.1	Lichtquelle			•		62
		4.2.2	Interferometer			•	•	65
		4.2.3	Spektrale Messgeräte			•		70
		4.2.4	Ansteuerung			•	•	72
		4.2.5	Bildgebung			•	•	74
	4.3	Vergle	ich der Entwicklungsschritte untereinander				•	76
		4.3.1	Einfluss des Galvoscanners			•	•	77
		4.3.2	Einfluss der kompakten Bauweise				•	79
		4.3.3	Einfluss des Spektrometers			• •	•	80
		4.3.4	Einfluss der Messparameter			• •	•	80
		4.3.5	Einfluss der Bildgebung			•	•	85
	4.4	Vergle	ich mit dem kommerziellen System Skin Dex300 $\ .\ .\ .$.			•		88
		4.4.1	Vergleich der Systemparameter			•		88
		4.4.2	Direkter Bildvergleich					89
		4.4.3	Optimierungsmöglichkeiten			•	•	91
E	Smal	let vooleo	niche freuensbesierte entische Kehörenstemesrenbie					06
5.1 Theorie				:				90 97
	-	5.1.1	Mathematische Grundlagen					97
		5.1.2	Interferenzsimulation					102
		5.1.3	Auswertungsalgorithmus					104
	5.2 Experimenteller Aufbau							106
		5.2.1	Lichtquelle und Optiken					106
		5.2.2	Spektroskopische Voruntersuchungen					109
		5.2.3	Systemparameter					115
	5.3	Messu	ngen					117
		5.3.1	Aufnahmen von Filterproben					117
		5.3.2	Untersuchung von Blutproben					123
		5.3.3	Untersuchung einer Knochenprobe					126
	5.4	Diskus	ssion: Vergleich mit anderen Methoden und Ergebnissen					128
		5.4.1	Spektroskopie mit zeitbasierten Systemen					128
		5.4.2	Spektroskopie mit frequenzbasierten Systemen					130
		5.4.3	Spektroskopische Analyse von Absorption und Streuung					132
		5.4.4	Einordnung und Ausblick	•			•	133
6	Zusa	ammen	fassung und Ausblick					137
			-					100
Lit	Literaturverzeichnis 139							

Abbildungsverzeichnis

2.1	Photonenlaufwege	7
2.2	Streuwinkelverteilung	8
2.3	Monte-Carlo-Simulation	8
2.4	Streukoeffizient von Haut	9
2.5	Normierte Streufläche	10
2.6	Absorptionskoeffizient von Haut	11
2.7	Brechungsindex verschiedener Gläser	13
2.8	Michelson-Interferometer	14
2.9	Emission der idealen Lichtquelle	16
2.10	Interferenzmuster idealer Kohärenz	19
2.11	nterferenzmuster zeitlich partieller Kohärenz	20
2.12	Probe und Tiefenprofil	21
2.13	Interferenzmuster im Frequenzraum	22
2.14	Prinzipaufbau zeitbasierte optische Kohärenztomographie	24
2.15	Kontrast im Tiefenprofil	26
2.16	Prinzipaufbau frequenzbasierte optische Kohärenztomographie	27
2.17	Auflösung und Messtiefe der verschiedener Bildgebungsverfahren	29
2.18	Varianten der optischen Kohärenztomographie	31
2.19	Zeitstrahl der Entwicklungen in der optischen Kohärenztomographie $\ . \ .$	34
3.1	Querschnittszeichnung eines Röhrenknochens	40
3.2	Vergrößerter Knochenquerschnitt	41
3.3	Stark vergrößernde Zeichnung der Trabekel	42
3.4	Mikroskopiebilder der Knochenproben	46
3.5	Typische OCT-Aufnahme	48
3.6	Dreidimensionale μ CT-Aufnahme	49
3.7	Typischer makroskopischer histologischer Schnitt	50
3.8	Typischer mikroskopischer histologischer Schnitt	51
3.9	Vergleich mit ungefärbter Histologie	52
3.10	Vergleich mit gefärbter Histologie	53
3.11	Bilderserie zum Vergleich der Bildgebungssysteme	54
3.12	Aufnahmen mit möglicher Osteoclastenmulde	57
3.13	Aufnahmen mit möglichen Osteoblastenpopulationen	58
4.1	Fotos des Mäusezehknochens	61

4.2	CCD-Kamera- und OCT-Aufnahme des Mäusezehknochens	62
4.3	Allgemeines Blockschema der OCT	62
4.4	Spektren SLD	64
4.5	Kohärenzfunktionen der SLD	64
4.6	Übersichtsschema des Spektralradars	65
4.7	Verhalten des Galvoscanners	67
4.8	Schema des Interferometers mit Galvoscanner	67
4.9	Prinzip der Telezentrik	68
4.10	Skizze des Spektrometers	71
4.11	Ideale Synchronisation des OCT-Systems	73
4.12	Flussdiagramm des Bildgebungsprogramms	75
4.13	Vergleichsaufnahmen zum Einfluss des Galvoscanners	78
4.14	Vergleichsaufnahmen zum Einfluss der kompakten Bauweise	79
4.15	Vergleichsaufnahmen zum Einfluss des Spektrometers	80
4.16	Bilderserie zum Einfluss der Wartezeit	81
4.17	Bilderserie zum Einfluss der Integrationszeit	83
4.18	Bilderserie zum Einfluss der Zahl der gemittelten Spektren	84
4.19	Bildvergleich zum Einfluss der Normierung	85
4.20	Systembild	86
4.21	Bildvergleich zum Einfluss der Differenzbilderzeugung	86
4.22	Bilderserie zum Einfluss der Kolorierung	88
4.23	Bildvergleich mit kommerziellem System	90
4.24	Bildvergleich an einer humanen Knochenprobe	91
4.25	Bild mit Mittelung und Differenzbildgebung	92
5.1	Blockschema der spektroskopischen Auswertung	102
5.2	Spektren der Systemsimulation	103
5.3	Schema des Aufbaus	107
5.4	Systemspektren des Breitbandaufbaus	108
5.5	Zeitliche Drift der Systemspektren	109
5.6	Spektroskopische Unterschiede durch unterschiedliche Justagen	110
5.7	Spektroskopische Unterschiede durch Fokusverschiebung	111
5.8	Spektrale Verzerrung durch farbabhängigen Fokuspunkt	112
5.9	Spektroskopische Unterschiede durch unterschiedliche Linsen	113
5.10	Übertragungsfunktion in Abhängigkeit von der Dispersionskompensation	114
5.11	Aufbau des Probenphantoms	118
5.12	Unkalibrierte und Kalibrationsspektren	119
5.13	Vergleich der rekonstruierten Spektren	120
5.14	Klassifikation der Übertragungsfunktionen	121
5.15	FDOCT-Bild mit spektroskopischer Bildanalyse	122
5.16	Absorptionscharakteristiken von Blut	124
5.17	Querschnitt des Probenhalters für Blut	125

5.18	Spektroskopische Analyse der Blutprobe	125
5.19	Vergleich der Übertragungsfunktionen	126
5.20	Fortlaufende spektroskopische Bildanalyse am Mäuseknochen aus Kap. 4	127
5.21	Kontrasterhöhung durch spektroskopische Auswertung	129

1 Einführung

Die moderne medizinische Bildgebung erfuhr mit der Entdeckung der Röntgenstrahlung 1895 ihre Initialzündung und setzte weitere Meilensteine mit ersten Anwendungsdemonstrationen von Ultraschall (1942) und Magnetresonanztomographie (1971). Nicht zuletzt dank den Fortschritten in der Bildgebung erzielte die Medizin wichtige Behandlungserfolge, so beispielsweise in der pränatalen Diagnostik oder in der rechtzeitigen Erkennung von Tumoren. Die optische Kohärenztomographie (engl.: optical coherence tomography, kurz OCT, seit 1991) ist die jüngste in der Medizin etablierte Variante der Bildgebung. Sie nimmt aufgrund ihrer schnellen, umfangreichen und mittlerweile auch kommerziellen Entwicklung eine Sonderstellung unter den optischen Bildgebungsmethoden ein. Die Gründe dieser Entwicklung sind die dem Messprinzip inhärente Dreidimensionalität, die hohe Auflösung im einstelligen μm -Bereich, die Kontaktfreiheit, die zu vernachlässigende Strahlenbelastung des verwendeten breitbandigen Nahinfrarotlichtes, die Geschwindigkeit sowie die verhältnismäßig geringen Systemkosten von etwa 25.000 Euro. Die geringe Eindringtiefe von etwa 1 - 2mm in stark streuendem Gewebe ist der kapitale Nachteil der optischen Kohärenztomographie, welcher sie in ihrer praktischen Einsetzbarkeit sehr einengt. Aufgrund aller genannten Eigenschaften eignet sich die OCT für eine Vielzahl an Anwendungsbereichen. Insbesondere zu nennen ist der Einsatz der OCT in der Medizin, wo sie beispielsweise in der Ophtalmologie, Kardiologie und in einigen weiteren Bereichen der inneren Medizin angewendet wird.

Ein neues Anwendungsfeld, die Bildgebung von Knochen, wird im Rahmen dieser Arbeit vorgestellt. Durch Bildgebung von Knochen mittels Röntgen(mikro)computertomographie (kurz: (μ) CT) können Ärzte und Biologen bereits verschiedenste Rückschlüsse ziehen. So können beispielsweise der Osteoporosegrad oder auch tumoröse Erscheinungen unter Inkaufnahme von ionisierender Strahlung erfasst werden. Die große, durch Röntgenstrah-

1 Einführung

lung eingebrachte Energiemenge geht auch einher mit einer Wärmeentwicklung, die im Falle der hochauflösenden μ CT schnell Temperaturen über 40°C erreicht. Damit führt sie u.U. den Zelltod, mindestens aber eine Beeinflussung des zellulären Stoffwechsels herbei. Die OCT erzielt vergleichbare Auflösungen, allerdings ohne die Probe einer hohen Strahlenbelastung auszusetzen. Damit ist die optische Kohärenztomographie insbesondere für Untersuchungen an Knochenkulturen potentiell geeignet. Ein Ziel dieser Arbeit ist es daher, den Nutzen der OCT für diese Anwendung abzuschätzen.

Die OCT hat sich seit Mitte der 90-er Jahre in zwei Teildisziplinen aufgespalten. Die zeitbasierte (engl.: time domain, kurz TD) OCT wertet räumliche Interferenzmuster über der Zeit aus, die frequenzbasierte (engl.: frequency domain, kurz FD) OCT wertet spektrale Interferenzmuster aus. Die letztgenannte Disziplin weist gegenüber der erstgenannten Geschwindigkeitsvorteile auf und ist zudem etwas sensitiver. Aus diesen Gründen wurde in dieser Arbeit der Fokus auf die FDOCT gelegt.

In beiden Domänen stellen die Strukturen in den Bildern die Änderung des Brechungsindexes über der Tiefe dar. Der Brechungsindexgradient ist aber nicht der einzige auswertbare optische Parameter von Gewebe. Weitere materialspezifische Parameter sind die wellenlängenabhängige Absorption und Streuung. Durch die charakteristischen spektralen Muster liefern sie eine Art spektroskopischen Fingerabdruck der entsprechenden Substanz. So könnten unbekannte Strukturen von Standard-OCT-Bildern spektroskopisch identifiziert, also bestimmten Substanzen zugeordnet werden. Die Auswertung wird somit vom eindimensionalen Parameterraum in den zwei- oder gar dreidimensionalen Parameterraum erweitert und könnte so den Nutzen der Bilder erheblich erweitern. Ein vorteilhafter Nebeneffekt der spektroskopischen Auswertung ist die Möglichkeit der Kontrasterhöhung durch spektroskopisch basierte Einfärbung der Bilder. Diese Auswertung der wellenlängenabhängigen Absorption, die spektroskopische Analyse, ist der wichtigste Aspekt der vorliegenden Arbeit und hat daher Eingang in den Untertitel gefunden.

Die Arbeit gliedert sich in sechs Kapitel, die drei aufeinander aufbauende Themenbereiche abdecken. Der erste Themenbereich in Kapitel 3 beinhaltet den Vergleich der OCT zur μ CT. Der Vergleich wird anhand kommerzieller Systeme durchgeführt und mittels der Histologie validiert, was die Vergleichsrückschlüsse nachvollziehbarer macht. Der zweite

1 Einführung

Themenbereich umfasst einen eigenen FDOCT-Aufbau, der in Kapitel 4 beschrieben wird. Dieser Aufbau wird anhand von Knochenproben bewertet und mit dem kommerziellen TDOCT-System aus Kapitel 3 verglichen. Der dritte Themenbereich bezieht sich schließlich auf die zusätzliche spektroskopische Analyse der FDOCT (SFDOCT) und wird in Kapitel 5 vorgestellt. Hier werden in Simulationen und Experimenten an Phantom-, Blutund Knochenproben die Möglichkeiten der spektroskopischen Zusatzauswertung bewertet. Die zu den Kapiteln 3, 4 und 5 erforderlichen spezifischen Grundlagen werden in den jeweiligen Kapiteln erläutert. Die allen Kapiteln gemeinsamen physikalischen Grundlagen wie die Licht-Materie-Wechselwirkung, die Interferometrie und die OCT-Signalgleichungen werden im Kapitel 2 dargelegt. Dort wird auch ein Abriss der Entwicklungsgeschichte der OCT vorgestellt, aus dem der Stand der Technik, die Anwendungsbereiche und die zukünftigen Entwicklungstendenzen ersichtlich werden. Das Kapitel 6 fasst die wichtigsten Ergebnisse zusammen und schließt mit einem Ausblick.

2 Grundlagen

Im folgenden Kapitel werden zunächst die physikalischen Grundlagen der optischen Kohärenztomographie erläutert. In Unterkapitel 2.1 werden die für die OCT relevanten Licht-Materie-Wechselwirkungen beschrieben. Dabei wird der Fokus auf das Lichtverhalten in den Proben gelegt. Das zweite Unterkapitel 2.2 diskutiert die optische Interferometrie und stellt damit die mathematischen Grundlagen für die OCT-Signalgleichungen bereit. Die Signalgleichungen im Orts- und Frequenzraum werden in allen drei Folgekapiteln für die Erläuterungen zu den verschiedenen OCT-Systemen (TDOCT, FDOCT und SFDOCT) benötigt. Im dritten Unterkapitel 2.3 wird schließlich ein Überblick über das Feld der OCT geboten, worin sowohl die Entwicklungsgeschichte wie auch aktuelle Entwicklungstendenzen beschrieben werden. Dies ermöglicht eine Einordnung der vorliegenden Arbeit in das mittlerweile sehr umfangreiche Feld der optischen Kohärenztomographie.

2.1 Licht-Materie-Wechselwirkungen

Ein Verständnis der Licht-Materie-Wechselwirkungen ist Voraussetzung für eine klare Vorstellung zur Funktionsweise der optischen Kohärenztomographie. Die Beschreibungen von Wechselwirkungen werden in diesem Unterkapitel weitgehend auf das Lichtverhalten in den Proben beschränkt. Dort treten v.a. die Effekte der Reflektion und Brechung, der Streuung, der Absorption und der Dispersion auf. Sie beeinflussen die Bildqualität teils erheblich und sind für eine Vielzahl an Bildeigenschaften verantwortlich.

2.1.1 Reflektion

Die Lichtreflektion tritt bei einem Übergang zweier Medien mit unterschiedlichen Brechungsindizes n auf. Der Index n bezeichnet die optische Dichte des jeweiligen Materials und bestimmt die Ausbreitungsgeschwindigkeit c_{Medium} des Lichtes im jeweiligen Medium antiproportional über $c_{Medium} = c_0/n$. Hierbei ist c_0 im Folgenden die Lichtgeschwindigkeit im Vakuum. In der Tabelle 2.1 sind für beispielhafte Medien die entsprechenden Brechungsindizes angegeben.

Medium	n	Medium	n	Medium	n
Luft	1	Terpentin	1,47	Bernstein	1,55
Wassereis	1,31	Plexiglas	1,51	Diamant	2,42
Wasser	1,33	Kronglas	1,52	Galliumphospid (GaP)	3,50

 Tabelle 2.1:
 Brechungsindizes bei 589,3nm [1]

Aufgrund der geringeren Ausbreitungsgeschwindigkeit im dichten Medium wird bei gleichbleibender Lichtfrequenz ν auch die Wellenlänge λ_{Medium} kleiner. Die Variable k(Wellenkreiszahl, Betrag des Wellenvektors \vec{k}) wird hingegen größer.

$$k_{Medium} = \frac{2\pi}{\lambda_{Medium}} = \frac{2\pi\nu}{c_{Medium}} \tag{2.1}$$

Die Einheit von k ist m^{-1} und die zueinander orthogonalen Koordinaten k_x , k_y und k_z bilden den *reziproken Ortsraum*. Hierbei ist k_z die Kreiswellenzahl in Lichtausbreitungsrichtung und wird der Einfachheit halber im Folgenden k genannt. Trifft monochromatisches Licht nun senkrecht auf einen Brechungsindexübergang zweier Medien mit den Brechungsindizes n_1 und n_2 , so berechnet sich der reflektierte Leistungsanteil R zu

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2.$$
 (2.2)

Der Übergang des Brechungsindexes bestimmt demnach die Höhe von R quadratisch. Ein Übergang von Glas ($n_G = 1, 5$) nach Luft ($n_L = 1, 0$) weist eine Reflektion von rund 4% auf, der Übergang von Luft nach Wasser entsprechend 2,0%. (Humanes) Gewebe besteht in vielen Fällen zum größten Teil aus Wasser, welches mit einem Brechungsindex von 1, 33 das theoretische Minumum vom Brechungsindex biologischer Materialien darstellt [2]. Eine Wasserkonzentration von 70% für eine Probe angenommen, betrüge ihr durchschnittlicher Brechungsindex \overline{n}_P etwa 1, 37 und würde bei senkrechtem Lichteinfall aus der Luft an einer ideal glatten Oberfläche etwa 2,4% reflektieren. Die Epidermis, also die Hornhaut, besteht an der Oberfläche aus abgestorbenen, zu einem guten Teil ausgetrockneten Hautzellen. Hier ist daher eine etwas höhere Reflektion etwa um 3% an einer als ideal glatt angenommenen Oberfläche zu erwarten. Die folgende Tabelle 2.2 stellt verschiedene humane Gewebearten samt Brechungsindizes und Reflexionsanteilen an idealen Luftgrenzflächen gegenüber.

Medium	n	R
Wasser	1,33	2,0%
Graue Hirnmasse	$1,\!36$	$2,\!3\%$
Weiße Hirnmasse	$1,\!38$	2,5%
Blutgefäße	$1,\!36\text{-}1,\!39$	2,3-2,7%
Blut	1,40	2,8%
Subkutanes Fett	$1,\!44$	$3,\!3\%$
Fingernagel	1,51	4,1%
Hornhaut (Stratum Corneum)	$1,\!55$	4,7%
Zahnschmelz	$1,\!62$	6,0%

Tabelle 2.2: Brechungsindizes von Geweben (456nm - 1064nm) [2] und deren Reflektivität

Die Reflektion ist anschaulich erklärbar mit der klassischen Strahlengeometrie. Die nachfolgenden Wechselwirkungen Streuung und Absorption werden jedoch mit der Teilcheneigenschaft des Lichtes erläutert. Natürlich können alle drei Erscheinungen aber auch mit Wellengleichungen beschrieben werden. Weiterführende Literatur zur klassischen Strahlengeometrie und zum Welle-Teilchen-Dualismus finden sich in [1, 3].

2.1.2 Streuung

Die Betrachtung von vielen Photonen, die in Wechselwirkung mit vielen willkürlich verteilten Atomen treten, ist eine Erweiterung des Modells der Reflektion mit glatten Oberflächen. Die meisten biologischen Proben weisen jedoch keine glatten Oberflächen auf, weshalb bei ihnen eine Betrachtung aus dem Blickwinkel der Streuung wesentlich sinnvoller ist [4–10]. Die Streuung kann beschrieben werden als elektromagnetische Anregung eines Teilchens mit anschließender Abstrahlung eines elektromagnetischen Feldes [11, 12]. Trifft ein Feld auf ein Teilchen eines Mediums, findet dort entweder eine elastische oder eine inelastische Streuung (ohne bzw. mit Energieverlust) statt. Hierbei ist die Absorption der Spezialfall des vollständigen Energieverlustes der inelastischen Streuung. Bei senkrechtem Lichteinfall ist die Reflektion der Spezialfall von gestreuten, in sich zurücklaufenden Photonen. Generell können Photonen von den Teilchen des Mediums in alle Raumrichtungen gestreut werden. In Abb. 2.1 sind die verschiedenen grundlegenden Möglichkeiten von Photonenlaufwegen skizziert.

Abbildung 2.1: Ballistische (a), schlangenartige (b), diffus transmittierende (c), diffus zurückgestreute (d) und reflektierte (e) Photonen [13]

Ballistische Photonen durchlaufen das Medium vollständig ohne gestreut zu werden und sind bei dickeren streuenden Proben äußerst selten. Photonen mit schlangenartigem Verlauf zeichnen sich durch eine Reihe von Streuungen aus, die die Richtung der Photonen nur leicht ändern. Diffus gestreute Photonen haben eine oder mehrere starke Winkeländerungen erfahren. Reflektierte Photonen sind ein Spezialfall der diffus gestreuten Photonen mit einer einmaligen Winkeländerung von 180°. Werden nun ganze Photonenensembles betrachtet, so kann ihre Streuwinkelverteilung an einem einzelnen Streuer, an einer Grenzschicht aus einer Reihe von Streuern oder an einer Substanzschicht mit definierten Streueigenschaften (Atomdichte, Atomgrößen, Atomverteilung) betrachtet werden. An einem einzelnen Streuer (Schaumstoff-Mikrokügelchen) ist die typische Streuwinkelverteilung in Abb. 2.2 skizziert.

Der größte Teil der Photonen durchläuft somit den Streuer ohne bzw. mit nur einer geringen Winkeländerung (schlangenartige bzw. ballistische Photonen). Die Zahl der in sich zurückgestreuten Photonen (180°) ist dabei relativ gering. Auffällig ist hierbei die starke Abhängigkeit des Winkelstreuverhaltens von der Größe des einzelnen Streuers. Die Erweiterung des Modells hin zu vielen Streuern liefert das simulierte Streuverhalten

Abbildung 2.2: Beispielhafte Streuwinkelverteilung (logarithmisch) an kugelförmigen Polysterolstreuern mit $1\mu m$ (a) und $5\mu m$ (b) Durchmesser in Wasser [14]

einer Probenschicht. Dieses kann durch eine *Monte-Carlo-Simulation* [15, 16] berechnet werden und ist zur Veranschaulichung beispielhaft in Abb. 2.3 gezeigt.

Abbildung 2.3: Monte-Carlo-Simulation im homogenen Medium ohne (A) und mit Absorber (B, schwarzer Kasten) [17]

Ist die Streuerdichte einer Substanz entsprechend hoch und damit die mittlere freie Weglänge (mean free pathlength) l_{mfp} des Photons zwischen zwei Streuprozessen gering, so sinkt die Wahrscheinlichkeit einer ballistischen Transmission sehr schnell. Typische Streukoeffizienten $\mu_s = l_{mfp}^{-1}$ von Geweben liegen bei 10 – 20mm⁻¹ und sind von der Wellenlänge abhängig (s. Abb. 2.4).

Abbildung 2.4: Streukoeffizient μ_s von humaner Haut über der Wellenlänge λ [18]

Ein Photon mit einer Wellenlänge von 800nm erfährt demnach einen Streukoeffizienten von $17mm^{-1}$ in humaner Haut. Im Folgenden sei I_0 die auf das Gewebe einfallende Gesamtintensität, I(1mm) die Intensität der nach 1mm nicht gestreuten Photonen und z die Tiefenvariable. Die Größe W(1mm) schließlich sei die Wahrscheinlichkeit, dass das Photon im ersten Millimeter des Gewebes nicht gestreut wird. Mit dem auf die Streuung angewendeten Lambert-Beer´schen Gesetz liegt die Wahrscheinlichkeit W(1mm) bei

$$W(1mm) = \frac{I(1mm)}{I_0} = e^{-\mu_s \cdot z} = e^{-17mm^{-1} \cdot 1mm} = 4, 1 \cdot 10^{-8}$$
(2.3)

Für reflektierte ballistische Photonen aus einer Tiefe von 1mm ist eine entsprechende Wahrscheinlichkeit von $1, 7 \cdot 10^{-15}$ anzunehmen. Diese Zahlen verdeutlichen sehr gut den starken exponentiellen Einfluss der Streuung auf die Wahrscheinlichkeit ballistischer Photonen. Im Umkehrschluss wird die Zahl der gestreuten Photonen in der Tiefe exponentiell größer und damit auch die Zahl der diffus gestreuten Photonen. Die wenigen Photonen, die aus 1mm Tiefe ballistisch zurückgestreut wurden, haben eine optische Weglänge von $l_{ball.} = n \cdot 2mm$ hinter sich gelegt. Schlangenartige Photonen haben in etwa die gleiche Strecke zurückgelegt, allerdings mit einer durch die leichten Ablenkungen zusätzlichen Toleranzstrecke Δl . Dabei ist Δl abhängig von der Winkeldefinition der schlangenartigen Photonen, die die Grenze zu den diffus gestreuten Photonen ausmacht. Diffus gestreute Photonen haben entsprechend ihrer diffusen Verläufe i.d.R. deutlich größere Weglängen hinter sich gebracht mit $l_{diff} >> l_{ball} + \Delta l$.

Mit Hilfe der OCT (s. 2.3.1) können nun die signaltragenden ballistisch zurückgestreuten Photonen aus einer bestimmten Tiefe aufgefangen und dieser zugeordnet werden. Die