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And God said: “Let there be light”;
And there was light.
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Abstract

Abstract

The theoretical background for this thesis is given in Chapter 1. It covers the field of supramolecu-
lar chemistry including the phenomena of self-assembly, the history and synthesis of dendrimers,
the concept of coordination chemistry and the chemistry of iridium, the history and principles of
the scanning tunnelling microscope (STM), and the theory and applications of solid state lighting,
especially of the light-emitting electrochemical cells (LEECs).

The background chapter is followed by a short introduction to the materials, methods, and instru-
ments used in this thesis (Chapter 2).

In the following two chapters, the syntheses of achiral and chiral Fréchet dendrimers (Chapter 3)
and the subsequent reactions to the achiral and chiral Fréchet dendronised 2,2'-bipyridine ligands
(Chapter 4) are described. Additionally, for most of the compounds presented in these chapters,
the monolayer behaviour on graphite was studied with STM. For example, for 3,5-bis(dodecyloxy)-
phenylmethanol, a very highly resolved image could be detected and detailed considerations of
the adopted monolayer could be performed. Chirality was introduced into the molecules for the
purpose of altering the preference for a particular conformation, as it has been shown before by
L. Scherer' that these type of ligands tend to adopt different conformations when adsorbed on
graphite. Unfortunately, the measurements of the chiral ligands did not reveal any significant infor-
mation. Therefore, no detailed discussion of the conformations in the monolayer could be given.
Nevertheless, in a monolayer of the diastereomeric mixture of 4,4"-bis(1-(3,5-bis(dodecyloxy)-
phenyl)propoxy)-2,2'-bipyridine, two clearly differing patterns could be observed which were at-
tributed to different stereoisomers.

Chapter 5 deals with the synthesis of dendrons decorated with perfluorinated alkyl chains and
their use in the functionalisation of 2,2'-bipyridine ligands. Adsorbed monolayers on graphite of
such a ligand were studied with STM. Due to a, apparently, lower propensity to establish monolay-
ers, only few examples of visualised patterns could be observed.

The following three chapters cover the synthesis and STM-visualisation of 2,2'-bipyridine-based
ligands (Chapter 6), their iridium(III) complexes (Chapter 7), and the use thereof in LEEC devices
(Chapter 8). In Chapter 6, simple and more advanced ligands were synthesised and characterised.
In the case of the ligands which were functionalised with dendrons presented in Chapter 2, STM
studies of monolayers on graphite are discussed. Chapter 7 presents the synthesis and characterisa-
tion of iridium(III) complexes obtained from ligands described in the previous chapter. The char-
acterisation comprises measurements of NMR, MS, UV-Vis, photoluminescence, electrochemistry,
and, where single crystals could be obtained, their solid state structures. For the complexes bearing
dendronised ligands, STM measurements were performed which revealed highly resolved patterns.
In the last chapter (Chapter 8), results from LEEC devices fabricated with complexes described in
Chapter 7 are shown. The device preparation and the measurement of their characteristics were
performed by the group of H. Bolink who kindly allowed the publication of their results in this the-
sis. It could be shown that for all complexes exhibiting an intramolecular n-m stacking, the stability
of their devices was increased dramatically.

xiii
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This thesis has brought together the realms of chemical design with, firstly, studies of the physical
behaviour of the envisioned molecules on the surface and, secondly, systematic structural optimisa-
tion of iridium(III) complexes for the application in solid state lighting. With the work presented
in this thesis, a major breakthrough for long-lived LEECs has been achieved allowing lifetimes of
several thousands of hours, an increase of several orders of magnitude compared to the best-per-
forming devices reported to date (see Chapter 1 and Chapter 8).
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Background
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1

Background

1.1
Supramolecular chemistry

1.1.1
History and terminology

For more than 180 years, since urea was synthesised by F Wohler,”” molecular chemistry has
developed a vast array of highly sophisticated and powerful methods for the construction of ever
more complex molecular structures by the making or breaking of covalent bonds between atoms in
a controlled and precise fashion."”! Organic synthesis grew rapidly, leading to a whole series of bril-
liant achievements. Molecular chemistry has established its power over the covalent bond. Beyond
molecular chemistry there lies the field of supramolecular chemistry, the goal of which is to gain
control over the intermolecular bond."

In contrast to molecular chemistry, the area of supramolecular chemistry is still a young one.!
The term “supramolecular” can be traced back at least to 1925.°! The roots of supramolecular chem-
istry are found in early discoveries, mostly in the field of biological chemistry, amongst there are
molecular recognition (1894, E. Fischer)!®, the concept of receptors (P. Ehrlich)"”), and coordination
chemistry (by A. Werner, see Section 1.3)!® which would be, at least partially, regarded as supramo-
lecular chemistry nowadays. With these three concepts, fixation, recognition, and coordination, the
foundations of supramolecular chemistry are laid.”) The term “Ubermolekiile” was used in the mid-
1930’s to describe entities of higher organisation, such as the dimer of acetic acid, resulting from the
association of coordinately saturated species.!*!!

Nevertheless, the field of supramolecular chemistry, as we know it, started with the selective bind-
ing of alkali metal cations by crown ethers!"> ¥l and cryptands!'*¢l. The concept and term of su-
pramolecular chemistry were introduced by J.-M. Lehn in 1978."") Earlier, supramolecular chemistry
was defined as organised entities of higher complexity resulting from the association of two or more
chemical species held together by intermolecular forces, not by covalent bonds."® But the use of
covalent bonds to describe interactions is unhelpful, as it mixes interactions that are energetically
different.™ Furthermore, metal ligand bonds or hydrogen bonds can be substantial and strong.

A grander view of supramolecular chemistry focuses on the controlled assembly of multiple chem-
ical components. The assembly can involve standard intermolecular interactions, and/or metal co-
ordination. One broad goal is to have the ability to mimic the structure and the function of the
assemblies of molecular biology.!"”!

Currently, the term “supramolecular” has three different meanings:!**!

(a) intermolecular interactions;

(b) applied coordination chemistry;

(c) a strategy of controlled organisation of multiple separate components.

In order to disentangle this confusion, I. Dance recommended to use “intermolecular” as the ad-
jective for the well-known weak and long interactions between molecules, and to describe elabo-
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rate coordination complexes and polymers unambiguously with the terminology of coordination
chemistry (see Section 1.3). He suggested restricting the use of the adjective “supramolecular” to the
philosophies and strategies of grand assembly.!"”!

To sum up, supramolecular chemistry is commonly defined as chemistry “beyond the molecule’,
as chemistry of tailor-shaped intermolecular interaction. In supramolecules, information is stored in
the form of structural peculiarities. Moreover, not only the combined action of molecules is called
supramolecular, but also the combined action of characteristic parts of one and the same molecule.

1.1.2
Weak chemical bonds

Supramolecular chemists often use the terminology of chemical bonds (see Section 1.1.1). This
raises the question of a definition of a chemical bond.

L. Pauling defined in 1939 a chemical bond as follows: “We shall say that there is a chemical bond
between two atoms or two groups of atoms in case that forces acting between them are such as to
lead to the formation of an aggregate with sufficient stability to make it convenient for the chem-
ist to consider it as an independent chemical species”*” Pauling explained that this definition was
meant to include not only the directed valence bond of the organic chemist but also electrostatic
bonds (e.g. present in the solid state of sodium chloride) or even the weak bond which holds to-
gether the two O, molecules of O .”" But he did not consider the weak van der Waals forces between
molecules as leading to chemical bonding.!*?!

Therefore, we will classify bonds into weak bonds (such as hydrogen bonds or nt-m interactions,
see below) or strong bonds (covalent bonds, coordination bonds). One has to bear in mind though,
that in supramolecular chemistry, multiple ligands on one entity bind simultaneously to multiple
receptors on another, therefore the understanding of the concept of multivalency®?"! is important.
Multivalent interactions tend to be much stronger than the corresponding monovalent ones.?!! The
binding of two molecules, both having multiple recognition sites, may occur with an affinity greater
than the sum of the corresponding monovalent interactions, a phenomenon that has been defined
as the cluster effect.’*"!

In the following two sections, two interactions playing a major role in supramolecular chemistry
are briefly explained.

1.1.2.1
Hydrogen bonding

The hydrogen bond is the most important of all directional intermolecular interactions.””! A hy-
drogen bond is the attractive force between, classically, one electronegative atom and a hydrogen

3
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covalently bonded to another electronegative atom.® It results from a dipole-dipole force with a
hydrogen atom bonded to nitrogen, oxygen or fluorine. The energy of a hydrogen bond (typically
5 — 30 k] mol™) is comparable to that of weak covalent bonds (155 k] mol™"),*!) and “strong” charge-
assisted or resonance-assisted X-H--Y (X, Y = O, N) show bond energies of up to 150 k] mol .
Unsurprisingly, these bonds can occur intermolecularly or intramolecularly.

As an extrapolation of this type of interaction, the involvement of weak, “unconventional”, or
“non-classical” hydrogen bonds has been invoked.* It has become almost routine to discuss and
analyse intermolecular interactions in terms of C-H---O, C-H---N, C-H--F, C-H---Cl, C-H---7t (see
Section 1.1.2.2), and Cl---Cl intermolecular “bonds”?>33-%) It is clear that the atoms that come into
contact in these intermolecular interactions are not those in the molecular interiors but those on
the peripheries.’?! One cannot deny that these weak intermolecular atom-atom bonds can be neatly
categorised on the basis of geometrical, spectroscopic, and even energetic criteria and are thus ac-
cording to these criteria existent rather than non-existent, provided one is prepared to accept a
continuum of energies until nearly zero. The question is not whether weak hydrogen bonds “exist”
but rather to what extent are they relevant in distinguishing one possible crystal structure from
another.??

1.1.2.2
mi-m Interactions

Strong attractive interactions between m-systems have been known for over half a century.®
Two different geometries of m-m stacking are observed in crystal structures, and are depicted in
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Figure 1.1 Two different possibilities of m-n stacking. Left: face-to-face geometry showing the typical

Figure 1.1.

0

range in distance.”” Right: edge-to-face geometry.

These interactions control such diverse phenomena as the vertical base-base interactions which
stabilise the double helical structure of DNA,® the intercalation of drugs into DNA,*%*! the pack-
ing of aromatic molecules in crystals,*’ the tertiary structures of proteins,*! the conformational
preferences and binding properties of polyaromatic macrocycles,*” complexation in many host-
guest systems,® and porphyrin aggregation.*! To date, no readily accessible or intuitive model
has been suggested to explain the experimental observations. Full ab initio calculations have been
carried out for a limited number of small systems*! and these do reproduce the experimental re-
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sults well, but they do not explain the basic mechanisms of n-7 interactions in a way that is help-
ful or predictive for the practical chemist. C. A. Hunter and J. K. M. Sanders presented a pictorial
model and the rules they derived from it have a general applicability. In essence, the model indi-
cates that the geometries of m-m interactions are controlled by electrostatic interactions but that
the major energetic contribution occurs when the attractive interactions between m-electrons and
the o-framework outweigh unfavourable contributions such as nt-electron repulsion (Figure 1.2).5¢!
Therefore, it is rather a n-o attraction than a m-m electronic interaction which leads to favourable
interactions. In face-to-face arrangements (Figure 1.1), offset geometries are often observed which
can be explained with this model (Figure 1.2).

<. & m-electrons

© 8+ o-framework

< 5 m-electrons

> s S S

c1>> 2 Y ¢

WD 5 WD 5

6- 6+ 6-

repulsive attractive attractive

Figure 1.2 Attractive and repulsive arrangements of nt-systems.”** In this model, the n-o attractions
determine the geometry.

Nevertheless, the real origins of m-m stacking are still unclear.®! In a recent article, S. Grimme
pointed out that 7t-t stacking is a widely held misconception."” In his article, Grimme investigated
the true origin of n-n stacking and questioned if it really exists. After all, many intermolecular inter-
actions can equally well be explained with conventional dispersion forces which arise from statisti-
cal fluctuations in electron density.

In a series of computations, Grimme compares a group of aromatic compounds with their satu-
rated all-trans counterparts with respect to intermolecular separation and stabilisation energy.

In summary, he recommended to use the term “n-m interactions” with care. For systems with
about ten carbon atoms or less, there is little theoretical evidence for a special role of the n-orbitals.
Thus, the term “n-n stacking” should be used as a geometrical descriptor of the interaction mode
in unsaturated molecules and to understand -t interactions as a special type of electron correla-
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tion (dispersion) effect that can only act in large unsaturated systems when they are spatially close,
which is only possible in the stacked orientation.

1.1.3
Self-assembly

Molecular self-assembly is a strategy for nanofabrication that involves designing molecules and
supramolecular entities so that shape-complementarity causes them to aggregate into desired struc-
tures.!*s! Self-assembly has a number of advantages as a strategy. Firstly, it carries out many of the
most difficult steps in nanofabrication, those involving atomic-level modification of structure using
the very highly developed techniques of synthetic chemistry. Secondly, it draws from the enormous
wealth of examples in biology for inspiration. Self-assembly is one of the most important strategies
used in biology for the development of complex, functional structures. Thirdly, it can incorporate
biological structures directly as components in the final systems. Fourthly, because it requires the
target structures to be the thermodynamically most stable ones open to the system, it tends to pro-
duce structures that are relatively defect-free and self-healing.[*-**!

One area in which self-assembly can emerge are the self-assembled monolayers (SAM).** There,
the self-assembling process takes place in only two dimensions, i.e. on a surface of, for example,
being gold, copper or graphite. These monolayers are well suited to measurements with scanning
probe techniques (see Section 1.4), such as atomic force microscopy (AFM) or, as used in this the-
sis, scanning tunnelling microscopy (STM).

There is considerable potential for the study of structural questions of chemical interest using
these new methods. Conventional three dimensional methods of determining molecular confor-
mation such as single-crystal X-ray crystallography or NMR spectroscopic methods give struc-
tures averaged over some 10* molecules. Without any averaging procedure, single molecules can
be detected by analysis of surface molecular conformation of two dimensional arrays. For a better
resolution, the images can be processed by averaging over 10 — 200 molecules (see also Chapter 2).

Dendrimer-functionalised heterocycles, such as 4,4"-bis(3,5-bis(octyloxy)benzyloxy)-2,2'-bipyri-
dine (14, see Chapter 4) are ideally suited for the formation of SAMs!"***’l. One reason is that the
four octyl chains undergo intermolecular interactions between molecules, and molecules and the
graphite surface. Although this interaction is quite weak (the adsorption energy per CH, group is
about 12 k] mol ™), it is however accumulated over every CH, group of the four octyl chains in
the molecule. Another reason is the occurrence of m- stacking of the aryl groups with the graphite
surface. This interaction is also weak, but taken over the surface as whole, it is adequate to enable
self-assembly to occur.
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1.2
Dendrimers

1.2.1
History and terminology

The term “dendrimer” comes from the Greek and is a combination of the words dendron, mean-
ing “tree”, and meros, meaning “part’, and was introduced by D. A. Tomalia in 1985.°%) The 1978
publication of E Vagtle et al. laid the foundation of the preparation of dendritic molecules,® which
have attracted considerable attention in the last decades in the field of supramolecular chemistry,
and also in theoretical, physical, polymer, and inorganic chemistry due to their material properties
as well as in biotechnology.®!! Such branched or even hyperbranched molecules called arboroles!®?,
cascade molecules,® dendritic molecules, or starburst-dendrimers'® are constructed from identi-
cal monomeric building blocks carrying branching sites which are located in a spherical way around
a core. The shells of monomers are called generations (Figure 1.3). On the periphery, dendrimers
can carry numerous functional groups that can finally lead to a surface congestion due to their steric
interactions (dense-packed stage or “starburst”).!6* ¢4

/
- mw’"{%ﬂ Z‘Fi‘;i“? Vﬁ:
A2
wter 1 JN\ AN Q o
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Figure 1.3 Terminology used for dendrimers. Figure based on an image which was published under
public domain licensing.!*”!

1.2.2
Construction of dendrimers

The synthesis of uniform dendritic molecules can proceed in two iterative ways. Firstly, the diver-
gent-iterative pathway (Figure 1.4), which was used in the early work in 1978, starts from an initial
core with two or more functional groups. These are converted using monomers with protected reac-
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tive sites. The removal of the protecting groups and the repeated reaction with monomer units leads
to an exponential increase of functional groups on the surface of the spherical molecule.!
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Figure 1.4 Divergent-iterative synthetic pathway for the preparation of dendrimers. Figure taken from

literature. (6%

With this method, new dendrimers were prepared in the following years by R. G. Denkewalter et
al ' D. A. Tomalia et al.,'"! G. R. Newkome et al.,'™ and by E Vogtle et al.””! Following a reaction
pathway similar to the one used in 1978, E. W. Meijer et al. successfully synthesised a polynitrile
dendrimer up to the fifth generation on a large scale (Scheme 1.1).77"!
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Scheme 1.1 Polyamine dendrimer of the fifth generation obtained on a kilogram scale.
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A potential source of structural imperfection is the rapid increase of reactive groups as growth is
pursued. Their incomplete conversion leads to defects inside the molecule.”" In the second major
iterative pathway, called convergent-iterative synthesis, these problems are avoided by directing the
dendritic growth from the surface inwards to a focal point. In a final step, several dendrons are con-
nected with a multifunctional core to yield the desired dendrimer (Figure 1.5).1°*
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Figure 1.5 Convergent-iterative synthesis of dendritic molecules. Figure taken from literature.!*"

A large family of new dendrimers has been synthesised following this divergent method.
C.J. Hawker and J. M. J. Fréchet developed polyaryl(-benzyl)ether dendrimers (see Section 1.2.3),!
T. M. Miller and T. X. Neenan,"” and also J. S. Moore and Z. F. Xu'” prepared hydrocarbon den-
drimers. The latter have reported the largest monodispersed organic hydrocarbon dendrimer with
a molecular mass of 18 kDa and a diameter of 12.5 nm."*

Comparison of these two methods shows that generally dendrimers prepared by the divergent
approach are more polydispersed than those prepared by the convergent route.” In the divergent
methodology, a significant feature is the rapid increase in the number of reactive groups at the pe-
riphery of the growing macromolecule.”?" Potential problems which may arise as growth is pursued
include incomplete reaction of these terminal groups, especially at higher generations when large
numbers of reactions have to occur on a sterically hindered dendrimer surface. This would lead to
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