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MAX-PLANCK-INSTITUT FÜR CHEMISCHE PHYSIK FESTER STOFFE
DRESDEN, 2005



Bibliografische Information er Deutschen ibliothek 

Die Deutsche ibliothek verzeichnet diese Publikation in der Deutschen 

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über 

http://dnb.ddb.de abrufbar. 

 

 

  

 

 

 

 

     Nonnenstieg 8, 37075 Göttingen 

      Telefon: 0551-54724-0 

      Telefax: 0551-54724-21 

      www.cuvillier.de 

 

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung  

des Verlages ist es nicht gestattet, das Buch oder Teile 

daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) 

zu vervielfältigen. 

Gedruckt auf säurefreiem Papier 

 

1. Auflage, 2008 

  CUVILLIER VERLAG, Göttingen 2008 

1. Aufl. - Göttingen : Cuvillier, 2008 
Zugl.: , Univ., Diss., 2005 
978-3-86727-708-2

978-3-86727-708-2

d Nationalb
Nationalb

 (TU) Dresden



Contents

Introduction 1

1 Theoretical concepts 5

1.1 Fulde-Ferrell-Larkin-Ovchinnikov state . . . . . . . . . . . . . . . . . 5

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Pauli paramagnetism and superconductivity . . . . . . . . . . 6

1.1.3 FFLO state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 Order of the FFLO phase transition and dimensionality . . . . 12

1.1.5 Orbital effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.6 FFLO state in d-wave superconductors . . . . . . . . . . . . . 17

1.1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Charge-density wave phenomena . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Instability in a one-dimensional electron gas . . . . . . . . . . 20

1.2.3 Mean-field approach to charge-density wave phenomena . . . . 21

1.2.4 Fluctuations and strong electron-phonon coupling effects . . . 24

1.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



2 Experimental methods: Pressure cells 27

2.1 Miniaturized specific heat pressure cell . . . . . . . . . . . . . . . . . 27

2.2 Pressure cell for resistivity studies . . . . . . . . . . . . . . . . . . . . 29

2.2.1 MP35N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Uniaxial stress pressure cell . . . . . . . . . . . . . . . . . . . . . . . 34

3 Possible Fulde-Ferrell-Larkin-Ovchinnikov state in the heavy-fermion
compound CeCoIn5 37

3.1 CeCoIn5 a good candidate for the FFLO state formation . . . . . . . 37

3.1.1 Crystal structure and basic properties . . . . . . . . . . . . . . 38

3.1.2 Quasi-2D electronic structure . . . . . . . . . . . . . . . . . . 40

3.1.3 Unconventional superconductivity . . . . . . . . . . . . . . . . 41

3.1.4 Clean-limit superconductor . . . . . . . . . . . . . . . . . . . 47

3.1.5 Pauli-limited SC and signatures of the FFLO state . . . . . . 48

3.2 Non-Fermi liquid behavior in the normal state in CeCoIn5 . . . . . . 53

3.3 Specific heat experiments under pressure and in magnetic field . . . . 55

3.3.1 Heat capacity setup . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Magnetic field effect on the SC transition for B ‖ (a, b) . . . . 63

3.3.4 Magnetic field effect on the SC transition for B ‖ c . . . . . . 71

3.3.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . 73

4 Superconducting order parameter symmetry in UBe13 probed by
uniaxial stress 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Normal state and non-Fermi liquid behavior in UBe13 . . . . . . . . . 86

4.3 Unconventional superconductivity in UBe13 . . . . . . . . . . . . . . . 89

ii



4.4 Possible uniaxial strain effect on the SC order parameter . . . . . . . 91

4.5 Effect of tetragonal distortion on the superconducting transition in UBe13 96

4.5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Interplay of superconductivity and charge-density wave instability
in TlxV6S8 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.2 Possible charge-density wave formation in TlxV6S8 . . . . . . 104

5.1.3 Superconductivity in TlxV6S8 . . . . . . . . . . . . . . . . . . 106

5.2 Interplay of SC and CDW in TlxV6S8 . . . . . . . . . . . . . . . . . . 108

5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Influence of Tl content . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Influence of pressure on the charge-density wave instability and
on the superconductivity . . . . . . . . . . . . . . . . . . . . . 121

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusions 129

Appendix: AC specific heat under uniaxial stress in CeCoIn5 133

Bibliography 135

Acknowledgments 151

iii





Introduction

The understanding of new emerging unconventional ground states is a great chal-

lenge for experimental and theoretical solid-state physicists. New ground states are

developing, where different energy scales compete, leading to a high sensitivity of the

system to external tuning parameters like doping, pressure or magnetic field.

The exploration of superconductivity proved to be a fascinating and challeng-

ing scientific undertaking. Discovered by H. Kammerlingh Onnes in 1911, prior to

the development of the quantum theory of matter, superconductivity was defying a

microscopic theory for more than four decades until the BCS theory was formulated

in 1957 by J. Bardeen, L. N. Cooper and J. R. Schrieffer. Superconductivity of most

of the simple metals or metallic alloys is well described within the frame of the BCS

scenario, however, in the last thirty years numerous new superconducting materials

were found to exhibit exotic properties not accounted for by the BCS theory. Among

them are included the high-Tc compounds, the heavy-fermion superconductors and

as well the organic superconductors. It was the purpose of this work to probe dif-

ferent facets of superconductivity in heavy-fermion and in low-dimensional metallic

compounds.

In the class of the heavy-fermion systems the Kondo-effect, leading to a non-

magnetic ground state, competes with the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interactions which favors magnetic order. It is this competition which leads to un-

usual physical properties in proximity to a quantum critical point, where the magnetic

ordering temperature is suppressed to zero. The heavy-fermion compound CeCoIn5 is

superconducting at atmospheric pressure having the highest superconducting transi-
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2 Introduction

tion temperature, among all Ce-based heavy-fermion systems [1]. CeCoIn5 is assumed

to be situated close to an antiferromagnetic quantum critical point giving rise to non-

Fermi liquid behavior in the normal state [2]. Recently, the possible appearance

of an inhomogeneous superconducting state in CeCoIn5, called Fulde-Ferrell-Larkin-

Ovchinnikov (FFLO) state, attracted much attention not only among solid state

physicists [3, 4]. The FFLO state, predicted independently by Fulde and Ferrell [5]

and by Larkin and Ovchinnikov [6] 40 years ago, is a spatially inhomogeneous su-

perconducting phase, where the order parameter is periodically modulated in real

space. It is predicted to appear in type-II superconductors close to the upper critical

field if the orbital pair-breaking is negligible relative to the Pauli-limiting effect, in

sufficiently clean systems. The theoretical concept of the FFLO state is not only of

importance in solid state physics, but also in elementary-particle physics [7]. The

FFLO state eluded the experimental confirmation until very recently. CeCoIn5 is the

first material where different physical experiments show strong evidence pointing to

the realization of the FFLO state at low temperatures close to the upper critical field

for superconductivity. However, the presence of strong antiferromagnetic fluctuations

in this compound might be responsible for the anomaly taken as signature of the

FFLO state.

The central part of the present work is the exploration of the nature of this

low temperature phase observed inside the superconducting state in CeCoIn5 at high

magnetic fields. Using external pressure to suppress the magnetic fluctuations we

were able for the first time to provide evidence that the FFLO state in CeCoIn5

exists away from the influence of the strong magnetic fluctuations present at atmo-

spheric pressure. For this purpose we developed a new type of miniature pressure

cell allowing us to conduct heat capacity studies under quasi-hydrostatic pressure

conditions at high magnetic fields up to B = 14 T and at low temperatures down to

T = 100 mK, on precisely oriented CeCoIn5 single crystals. We studied the evolu-

tion of the magnetic field – temperature phase diagram with pressure. Not only the

first-order character of the transition from the normal to the superconducting state

at high magnetic fields persists with increasing pressure, but we could also follow the
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transition from the vortex to the FFLO state for all pressures. Moreover, the FFLO

region in the phase diagram is extended at high pressures. This strongly supports

the genuine FFLO origin of the anomaly in the superconducting state and makes a

magnetic origin very unlikely.

Despite of more than two decades of intensive experimental studies to char-

acterize the heavy-fermion superconductor UBe13, many details behind its physi-

cal properties remain undisclosed. Several experiments probing the superconducting

state of this material, revealed anomalous features which are regarded as evidence

for unconventional superconductivity. The most compelling evidence obtained so far

for unconventional superconductivity regards the giant ultrasonic absorption anomaly

observed directly below Tc [8, 9] which was ascribed to collective modes or domain-wall

damping due to a multi-component order parameter [10]. Theoretical calculations by

Sigrist et al. [11, 12] predict the behavior of a multi-component order parameter for

an anisotropic superconductor under uniaxial stress. Uniaxial stress is lowering the

crystal symmetry and the degeneracy in the order parameter representation might

be lifted leading to a split of the superconducting transition. We performed high

resolution AC specific heat experiments under uniaxial pressure up to p = 0.55 GPa.

A small feature resembling a superconducting temperature splitting is induced by

pressure. However, this feature has to be regarded carefully as, though improbable,

pressure anisotropy cannot be completely ruled out as origin.

The interplay between superconductivity and a charge-density wave (CDW) in-

stability remains an interesting experimental and theoretical challenge. The opening

of a dielectric gap in the electronic spectrum due to electron-hole pairing, reduces

the density of states at the Fermi-level. However, not uncommon are the examples of

compounds displaying a CDW instability which at lower temperatures enter a super-

conducting ground state. In such cases the superconductivity sets in from a normal

but gapped state. We thoroughly investigated the quasi-one-dimensional, metallic

compound TlxV6S8 employing resistivity, specific heat and susceptibility measure-
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ments at ambient pressure for different Tl fillings. Moreover, in resistivity studies,

we followed the evolution with pressure of both superconducting and CDW phases in

the above mentioned compounds.

This dissertation is divided into six chapters. After this introduction, in Chap-

ter 1 we will outline the basic theoretical concepts later needed for the analysis of the

experimental results. In Chapter 2 we briefly introduce the experimental techniques

with a special focus on the new pressure cells developed during this thesis and used

for the measurements presented in Chapters 3 to 5. In Chapter 3 the possible real-

ization of the inhomogeneous superconducting FFLO state in CeCoIn5 is studied by

specific heat measurements under hydrostatic pressure, while in Chapter 4 the results

of AC specific heat experiments on UBe13 under uniaxial pressure are presented. The

ambient pressure properties as well as results obtained by resistivity measurements

under hydrostatic pressure on the one-dimensional metallic compounds TlxV6S8 are

discussed in Chapter 5. At the end, Chapter 6 summarizes and concludes this thesis.



Chapter 1

Theoretical concepts

This chapter serves to outline some of the basic theoretical concepts which are related

to the experimental results to be presented in the following chapters.

1.1 Fulde-Ferrell-Larkin-Ovchinnikov state

1.1.1 Introduction

For a type-II singlet superconductor (SC), in the clean-limit and for which the main

pair-breaking mechanism is due to the spin susceptibility (Pauli paramagnetism), an

inhomogeneous superconducting phase is predicted to appear at low temperatures and

close to the upper critical field (Bc2), between the normal and the vortex state [5, 6].

At the core of this phase, called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO), lie com-

peting interactions of basic nature. One is the energy necessary to bind the electrons

into Cooper pairs (the condensation energy) and the other is the interaction between

the spin of the electrons and the magnetic field. In the normal state, the electrons are

free to lower their total energy by preferentially aligning their spins along to the ex-

ternal magnetic field, leading to a temperature-independent Pauli susceptibility. On

the other hand, in the superconducting state, the numbers of spin-down and spin-up

electrons are equal and since they cannot all be aligned along the magnetic field, the

ground state energy is higher than in normal state. In this way, Pauli paramagnetism

will always favor the normal state against the spin-singlet superconducting phase.

This effect, called Pauli-limiting, is reducing the upper critical field Bc2 to the char-
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6 Chapter 2

acteristic Pauli field BP , defined in the absence of all other pair-breaking mechanisms.

The magnetic field can also suppress superconductivity when the kinetic energy of

the supercurrent around the superconducting vortices becomes greater than the su-

perconducting condensation energy; this is the orbital limiting effect and reduces the

Bc2 to the orbital-limiting field Borb
c2 defined in the absence of Pauli-limiting.

1.1.2 Pauli paramagnetism and superconductivity

The Pauli field for a classical BCS-superconductor was determined by A. M. Clogston

[13] and B. S. Chandrasekhar [14]. The stability of the superconducting state com-

pared to the normal state is given by the free-energy balance

Fs − Fn = −B2
c

8π
, (1.1)

where Fn and Fs are the free energies per volume unit in the normal and supercon-

ducting state, respectively, and Bc is the thermodynamic critical field. A metal, in

the normal state, has a finite paramagnetic susceptibility χn caused by the electronic

density of states at the Fermi-level. Upon applying magnetic field B the free energy

will be lowered, due to the spin polarization, by an amount of 1
2
χnB2. The same

metal, in the superconducting state, will have a susceptibility χs which is smaller

than in the normal state due to the formation of Cooper pairs. According to the BCS

theory, χs vanishes as the temperature is lowered to T = 0 K. Therefore, the free

energy balance between the normal and the superconducting state, at absolute zero

temperature, can be written as:

Fn − 1

2
χnB2

c = Fs. (1.2)

Considering the electronic gyromagnetic factor g and the electronic density of states

at T = 0 K, N(0), the spin susceptibility becomes:

χn =
1

2
(gμB)2N(0), (1.3)

where μB is the Bohr-Procopiu magneton. The jump in the free energy at the su-

perconducting phase transition can be related to the superconducting energy gap at
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Figure 1.1: Above the critical point t0 = T0/Tc = 0.556 the solid line is the critical field for
the second-order phase transition. Below t0 the dotted line corresponds to the first-order
phase transition and the solid line to the supercooling critical field.

T = 0 K, Δ(0) by:

Fn − Fs =
1

2
N(0)Δ(0)2. (1.4)

Therefore, the upper limit for the critical field in the absence of any orbital effect

(i.e., the Pauli field BP ), for a BCS superconductor, can be written as [13]:

BP = Bc2(0) =

√
2Δ(0)

gμB

. (1.5)

The effect of Pauli paramagnetism on the order of the superconducting phase

transition was discussed by G. Sarma [15] and K. Maki and T. Tsuneto [16]. They

found that for a clean superconductor in which the Pauli paramagnetism is the dom-

inant limiting factor for the upper critical field, the phase transition changes from

second- to first-order as the temperature is lowered (Fig. 1.1). Below the critical

point t0 = T0/Tc = 0.556 the phase transition between the normal and the supercon-

ducting phase, changes from second- to first-order; in this region, the gap equation

has two solutions, one corresponding to the actual gap (dotted line) and the other

corresponding to a supercooling critical field. It is important to remark that the lower

line, below t0 is not associated with a phase transition between a classical BCS phase
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and an inhomogeneous superconducting state.

In the dirty-limit (one would intuitively expect a short mean-free path for super-

conductors for which the orbital effect can be neglected) the phase transition should

remain second-order for the whole temperature range [16].

1.1.3 FFLO state

Fulde and Ferrell [5] and at the same time Larkin and Ovchinnikov [6] have studied

the effect of a large exchange field B acting only on the electronic spins, assuming

that some of the Cooper pairs are broken in certain regions around the Fermi-surface.

Those regions of unpaired electrons are stabilized by field and the corresponding

opposite areas of the Fermi-surface are completely depleted of electrons with opposite

spin orientation (Fig. 1.2). These regions are blocked for the pair formation process

Figure 1.2: Depairing in momentum space produced by field. The Fermi-surface is
shifted to the right. The left hashed area is fully occupied by down spin electrons
polarized along the field. The right hatched area is completely depleted of spin-up
electrons

since the BCS-theory requires that the states with opposite momenta are either both

occupied or both empty.

If the BCS energy gap in the absence of any magnetic field is Δ0 and 2HΔ0 is

the splitting of the electron energy due to the exchange field, the Hamiltonian of the

system can be written as:

H = H0 + HΔ0

∑
i

σi , (1.6)

where H0 is the usual BCS Hamiltonian for a superconductor in the absence of an ex-
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change field and σi is the operator ±1 reflecting the spin alignment (”up” or ”down”)

of the i-th electron with respect to the magnetic field. The second term of the Hamil-

tonian is proportional to the total electronic spin component parallel to the field,

which operator commutes with H0 and therefore has the same set of eigenfunctions

and associated eigenvalues with H0. Thus an approximate eigenfunction of H is the

BCS ground state wave function.

For a field which produces a split of the conduction electrons energy of
√

2Δ0,

the normal state undergoes already enough spin orientation to acquire a lower free

energy than the BCS ground state [17]. Electronic configurations which lower further

the energy of the system have even lower symmetry than in Fig 1.2 [5]. Therefore,

the unpaired electrons are distributed asymmetrically around the Fermi-surface and

this leads to a net current flow. But in the absence of magnetic field acting on the

electron orbits, the ground state should not carry any current (Bloch’s theorem).

Consequently, it is necessary for the remaining paired electrons to establish

a counterflow current exactly canceling out that of the unpaired electrons. This

leads to a remarkable result: the Cooper pairs are formed from states (k,−σ) and

(k′ = −k + q, σ) and have a finite momentum q, where k and σ are the momentum

and the spin of the one electron wave function (Fig. 1.3). The choice of q determines

the size of regions with unpaired electrons and the value of the superconducting gap.

The pairing wave vector q is determined as a function of the magnetic field imposing

that the depaired current and the supercurrent (which both depend on q) sum up to

zero.

This new inhomogeneous superconducting phase yields a highly degenerate

ground state characterized by the direction of the pairing momentum. For this phase

to qualify as a ground state, the single-particle excitations must all have positive en-

ergies. Goldstone’s theorem [18, 19], implies that there must exist low-lying collective

modes. The mixed state was found to be stable over a finite range of the magnetic

field. This range, for weakly coupled electrons is:

0.71
Δ0

μB

< B < 0.76
Δ0

μB

[5]. (1.7)
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kFk´ k

q=k´+k

B

T=0 K 

Figure 1.3: The Cooper pairs are formed from (k,−σ) and (k′, σ) states, with a finite
momentum q. The energy is lowered for the electrons with the spins parallel to the
magnetic field B.

An increased coupling strength will decrease the stability of the depaired phase rel-

ative to the BCS state, but will decrease the energy of the normal state even more,

due to enhanced magnetization. Therefore, the stability range for the strong coupling

case is significantly extended to:

0.83
Δ0

μB

< B < 1.13
Δ0

μB

[5]. (1.8)

The BCS superconducting gap has to be integrated taking into account the

regions of the Fermi-surface allowed to pairing:

Δ = N(0)V

(∫
�ω0

0

Δ

Ek

dεk −
∫

blocked

Δ

Ek

dεk

)
, (1.9)

where the second integral is over all depaired regions, Ek =
√

ε2
k + Δ2, εk is the

electron energy relative to the Fermi-level εF and εF − �ω0 < εk < εF + �ω0, N(0)

is the density of states at the Fermi-level and V is the volume. For this phase to

be a ground state, all single-particle excitations must have positive energies. The

quasiparticle energy associated with the addition of a particle with the wave vector

k and energy εk is given by:

Eq,B = Ek +
1

2
gμBBσ +

�

m
qk ≥ 0 , (1.10)


