Nanoscale Electrodeposition of Ultrathin Magnetic

Ni Films and of the Compound Semiconductors

AlSb and ZnSb from Ionic Liquids

🛇 Cuvillier Verlag Göttingen

Nanoscale Electrodeposition of Ultrathin Magnetic Ni Films and of the Compound Semiconductors AlSb and ZnSb from Ionic Liquids

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

(Dr. rer. nat)

der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) angenommene

DISSERTATION

von

M. Sc. Olivier Patrice MANN

aus Bitche, Frankreich

Dekan: Prof. Dr. H. Puchta Referent: Prof. Dr. W. Freyland Korreferent: Prof. Dr. R. Schuster Tag der mündlichen Prüfung: 11.07.2007

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2008 Zugl.: (TH) Karlsruhe, Univ., Diss., 2007

978-3-86727-504-0

© CUVILLIER VERLAG, Göttingen 2008 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2008 Gedruckt auf säurefreiem Papier

978-3-86727-504-0

A ma famille et mes amis,

"Deux choses sont infinies: l'univers et la bêtise humaine, en ce qui concerne l'univers, je n'en ai pas acquis la certitude absolue."

Albert Einstein (1879-1955)

Contents

Zι	isam	nenfassung	5			
Ał	ostra	t	7			
1	Intr	oduction	9			
2	The	pretical Background	13			
	2.1	Scanning tunneling microscopy (STM)	13			
		2.1.1 Tunnel effect	13			
		2.1.2 Tip-surface interaction model	17			
		2.1.3 Scanning tunneling spectroscopy	20			
	2.2	Electron Spectroscopy	23			
	2.3	Electrochemical methods	24			
		2.3.1 Cyclic voltammetry	24			
		2.3.2 Chronoamperometry	28			
3	Experimental details and data analysis 35					
	3.1	Electrolytes preparation	36			
	3.2	Gold substrate preparation	39			
	3.3	STM tip preparation	40			
	3.4	The electrochemical scanning tunneling microscope	41			
		3.4.1 Room temperature EC-STM	41			
		3.4.2 Elevated temperature EC-STM	45			
	3.5	Experimental procedure and data analysis	46			

		3.5.1 Experiment preparation	46					
		3.5.2 Electrochemical measurement	46					
		3.5.3 STM measurement	47					
		3.5.4 STS measurement \ldots	48					
	3.6	Possible sources of error	49					
4	Elec	ectrocrystallization of distinct Ni nanostructures						
	4.1	Introduction	53					
	4.2	Voltammetric study	54					
	4.3	Adsorption of $AlCl_4^-$	56					
	4.4	Underpotential deposition of Ni	58					
	4.5	Overpotential deposition of Ni	60					
	4.6	Chronoamperometry investigations	65					
5 Microscopic and electronic structure of Sb and AISb								
	5.1	Introduction	71					
	5.2	Cyclic voltammetry investigation	73					
	5.3	Underpotential deposition of Sb	75					
	5.4	Surface alloying	78					
	5.5	Overpotential deposition of Sb	80					
	5.6	Electrocrystallization of the stoichiometric compound semiconductor						
		AlSb	83					
	5.7	Electrodeposition off of stoichiometric AlSb	85					
6	Mic	roscopic and electronic structure of Sb and ZnSb	89					
	6.1	Introduction	89					
	6.2	Cyclic voltammetry investigation	90					
	6.3	Adsorption of ZnCl_3^-	92					
	6.4	Underpotential deposition of Sb	95					
	6.5	Overpotential deposition of Sb	98					
	6.6	Electrocrystallization of the compound semiconductor ZnSb \ldots .	99					
	6.7	Electrodeposition off of stoichiometric ZnSb $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $.00					

7		103							
	7.1	UPD i	n different electrolytes: A comparison	103					
	7.2 Three-dimensional electrocrystallization of Ni								
		7.2.1	Nucleation and growth on a foreign and native substrate $\ . \ .$.	104					
		7.2.2	Magnetic behaviour of the elongated Ni clusters	107					
	7.3	Compo	bund semiconductors and their respective doping \ldots .	109					
		7.3.1	Doping of semiconductors: A simple model approach \ldots .	109					
		7.3.2	Comparison with experimental results	114					
		7.3.3	Theoretical and experimental uncertainties	116					
8	Арр	endix:	Phase Diagrams	119					
Manufacturer list									
Acknowledgments									
Publications									
Cu	Curriculum vitae								

Zusammenfassung

In der vorliegenden Arbeit wird über die elektrochemische 2D und 3D Phasenbildung der Metalle Ni und Sb sowie über die Elektrokristallisation der Verbindungshalbleiter AlSb und ZnSb an der Grenzfläche Au(111)/Ionenflüssigkeit berichtet. Diese Untersuchungen wurden mit Nanometer bzw. teilweise mit atomarer Auflösung durchgeführt. Hierzu wurde die Methode der elektrochemischen Rastersondenmikroskopie (SPM) in Kombination mit konventionellen elektrochemischen Methoden wie Zyklovoltammetrie und Chronoamperometrie eingestezt. Zur Charakterisierung der Reinheit abgeschiedener Filme wurde zum Teil auch die Photoelektronenspektroskopie (XPS) eingesetzt. Für die elektrochemische Abscheidung der Halbleiter mußten Ionenflüssigkeiten, AlCl₃- $[C_4mim]^+Cl^-$ bzw ZnCl₂- $[C_4mim]^+Cl^-$, verwendet werden, da nur sie über ausreichend großes elektrochemisches Fenster verfügen. Die wichtigsten Ergebnisse können wie folgt zusammengefasst werden.

Bei anodischen Potentialen oberhalb der Unterpotentialabscheidung (UPD) der Metalle wird für beide Ionenflüssigkeiten eine ausgeprägte Anionenadsorption auf Au(111) festgestellt; die Struktur der zugehörigen Adsorptionfilme konnte erstmals aufgeklärt werden. So wird für die AlCl₄⁻-Adsorption eine inkommensurable $c(p \times 2\sqrt{3})$ Struktur gefunden, während die ZnCl₃⁻ Anionen ein Moirée-Muster bilden.

Im Oberpotentialbereich (OPD) der 3D Ni Abscheidung (-0.25 V vs Ni/Ni²⁺) in AlCl₃-[C₄mim]⁺Cl⁻ Schmelzen konnte eine neue Modifikation von Ni Clustern hergestellt werden, die nach einem instantanen Nucleations- und Wachstums Mechanismus gebildet werden. Hierzu wurde zuerst eine Ni UPD Monoschicht abgeschieden und anschließend ein Potentialsprung auf -0.25 V durchgeführt. Dabei entstehen zylinderförmige Ni Cluster mit einem Durchmesser von ~ 10 nm und einem Aspektverhältnis von ~ 2 in einer 5 mM Lösung. Sie sind durch eine dichte Packung und eine hohe Ordnung in einer Richtung ausgezeichnet, was auf eine starke magnetische Wechselwirkung im Einklang mit dem Aspektverhältnis 2 hinweist. Diese Ergebnisse sind auch von anwendungnahem Interesse.

In beiden Ionenflüssigkeiten wird für die Sb UPD Abscheidung die Bildung einer Monoschicht mit einer $(\sqrt{3} \times \sqrt{3})R30^{\circ}$ Struktur gefunden. Eine zweite UPD Sb-Schicht kann gebildet werden. Im OPD Bereich können je nach Potentialänderung unterschiedliche Morphologien erzeugt werden. Bei kontinuierlicher Reduktion des Potentials auf -0.1 V vs Al/Al³⁺ werden Sb Nanostreifen gebildet, während beim Potentialsprung von 0.0 auf -0.3 V gleichmäßig verteilte runde Sb Cluster entstehen. Diese Beobachtungen sind im wesentlichen im Einklang mit entsprechenden Untersuchungen in der Literatur, bei denen wässrige Elektrolyte eingesetzt wurden.

Durch den Einsatz von Ionenflüssigkeiten als Elektrolyte gelang es erstmals, Verbindungshalbleiter auf der Nanometerskala elektrochemisch abzuscheiden. Für ZnSb (-0.9 V vs Pt/Pt(II) Quasi-Referenz) wurde eine ZnCl₂-haltige Ionenflüssigkeit verwandt, für AlSb (-1.1 V vs Al/Al³⁺) eine AlCl₃-haltig Schmelze. Es wurden sphärische Cluster von ~ 10-20 nm Durchmesser erhalten, deren elektronische Struktur in-situ durch Tunnelspektroskopie aufgeklärt werden konnte. Bei dieser Größe der Cluster konnten die Bandlücken von 2.0 ± 0.2 eV (AlSb) und 0.6 ± 0.1 eV (ZnSb) der zugehörigen Volumenphasen reproduziert werden. Erste orientierende Messungen zur nbzw p-Dotierung dieser Cluster durch Variation des Abscheidungspotentials in der Nähe der Potentiale der stöchiometrischen Verbindungen werden berichtet.

Abstract

This thesis focuses on the 2D and 3D electrochemical phase formation of the metals Ni and Sb as well as the electrodeposition of the compound semiconductors AlSb and ZnSb at the electrified ionic liquid/Au(111) interface. These investigations were performed at the nanometer and partly the atomic scale. For this aim, the *in-situ* electrochemical scanning probe microscopy (SPM) technique combined with conventional electrochemical methods such as cyclic voltammetry and chronoamperomerty were employed. In order to investigate the purity of the deposited films X-ray photoelectron spectroscopy method (XPS) has also been used. The electrodeposition of the compound semiconductors AlSb and ZnSb required the use of ionic liquids, $AlCl_3-[C_4mim]^+Cl^-$ and $ZnCl_2-[C_4mim]^+Cl^-$, respectively, since these latter possess sufficiently large electrochemical windows. The main results of this thesis can be summarized as follows:

A pronounced adsorption of anions on Au(111) for both ionic liquid is observed at anodic potentials above the underdeposition potential (UPD) of the metals; the structure of the respective adsorption films could be clarified for the first time. Thus, an incommensurate $c(p \times 2\sqrt{3})$ structure was found for adsorbed AlCl₄⁻ whereas the ZnCl₃⁻ layer exhibits the characteristics of a Moirée-like pattern.

In the overpotential region (OPD) of the 3D deposition of Ni (-0.25 V vs Ni/Ni²⁺) in an AlCl₃-[C₄mim]⁺Cl⁻ melt, a new morphology of Ni clusters could be obtained which formation follows an instantaneous nucleation and growth process. For this a complete monolayer of Ni was first deposited on Au(111) followed by a direct jump of the potential to -0.25 V. Thereby result Ni Clusters of cylindrical shape presenting a diameter of ~ 10 nm and an aspect ratio of ~ 2 in a 5 mM Ni²⁺ solution. They are characterised by a dense packing and an orientation in one direction which is indicative of a magnetic interaction between the Ni clusters in concordance with the aspect ratio value. These results are therefore of application interest.

A typical $(\sqrt{3} \times \sqrt{3})R30^{\circ}$ structure of the first monolayer is observed for the Sb UPD deposition in both ionic liquids. A second antimony layer can be formed under UPD conditions. In the OPD region different morphologies of the Sb deposits can be obtained depending on the deposition procedure. When the potential is continuously stepped to -0.1 V vs Al/Al³⁺ Sb nanostripes are formed whereas randomly dispersed small clusters of spherical shape are found if the potential is jumped from 0.0 V to -0.3 V vs Al/Al(III). These observations are consistent with appropriate investigations in the literature in which aqueous electrolytes were used.

For the first time the deposition of compound semiconductors on the nanometer scale was successfully performed by using ionic liquids as electrolytes. A Zn-based and an Al-based ionic liquid were used for the formation of ZnSb (-0.9 V vs Pt/Pt(II) quasireference) and AlSb (-1.1 V vs Al/Al³⁺), respectively. In both cases spherical clusters presenting a diameter of ~ 10-20 nm were obtained whose electronic structures were clarified in-situ by means of scanning tunneling spectroscopy (STS). With this size of clusters the band gaps of 2.0 \pm 0.2 eV (AlSb) and 0.6 \pm 0.1 eV (ZnSb) of the respective bulk phases could be reproduced. First experiments of the respective nand p-doping of the clusters through the variation of the deposition potential in the vicinity of the stoichiometric semiconductor compound potential are reported.

Chapter 1

Introduction

The interest in nanomaterials, their fabrication and characterization, has increased tremendously in recent years. This has several reasons. One is nanotechnology which generally is considered as the key technology of this century. Taking, as an example, computer industry and the development of microelectronic devices, it is now widely recognized that miniaturization of conventional transistor cannot continue much longer following Moore's law [1]. Consequently, new materials and processes on the nanometer scale are searched for. The same applies for new magnetic storage devices with an increased storage capacity. There are many more applications of nanoscience where interdisciplinary research in physics, chemistry, materials science or bioscience will be necessary.

From a more fundamental point of view, new phenomena on the nanometer scale are especially exciting, see also [2]. These include: size-dependence of the electronic properties of nanometer sized clusters, magnetism in low dimensional ultrathin films, self-assembling of nanostructure, molecular electronics and designed complex materials, and finally, development of new tools to characterize nanostructures like the scanning probe microscope (SPM). In general, objects on the nanometer scale are dominated by their surface states and by interfacial interactions. Therefore, surface and interfacial investigations are basic for the understanding of nanoparticles and structures.

Numerous techniques are used to fabricate these nanostructures among which the vapor and electrochemical deposition methods play an important role. However, molecular beam epitaxy and similar vacuum deposition techniques [3, 4, 5, 6] require