Aus dem Institut für Zuckerrübenforschung Göttingen

Friederike Pferdmenges

Occurrence, spread and pathogenicity of different Beet necrotic yellow vein virus (BNYVV) isolates

23 / 2007

Occurrence, spread and pathogenicity of different

Beet necrotic yellow vein virus (BNYVV) isolates

Vorkommen, Verbreitung und Pathogenität verschiedener Isolate des *Beet necrotic yellow vein virus* (BNYVV)

> Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von **Friederike Pferdmenges** geboren in Einbeck Göttingen, im September 2007

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2007 Zugl.: Göttingen, Univ., Diss., 2007

978-3-86727-501-9

D7

- 1. Referent: Prof. Dr. Mark Varrelmann
- 2. Koreferent: Prof. Dr. Heiko Becker
- 3. Prüferin (Disputation): Prof. Dr. Elke Pawelzik

Tag der mündlichen Prüfung: 15.11.2007

© CUVILLIER VERLAG, Göttingen 2007 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2007 Gedruckt auf säurefreiem Papier

978-3-86727-501-9

ABSTRACT

Rhizomania (beet necrotic yellow vein virus, BNYVV) represents an important sugar beet disease, which is transmitted by the biotrophic plasmodiophoromycete *Polymyxa betae*. As long as the disease is not controlled it can lead to yield losses up to 90%. To date yield losses due to BNYVV infestation are inhibited by cultivating resistant sugar beet genotypes, which restrict the virus replication and translocation from infected hair-roots to the taproot. The BNYVV resistance is provided in marketable sugar beet varieties by two major resistance sources (Rz1 and Rz2 which either occur singular or in combination). But meanwhile on sugar beet genotypes carrying one (Rz1) as well as two resistance genes (Rz1+Rz2) resistance breaks could be observed at several BNYVV A-type infected sites in the USA and in Spain. To confirm these observations a 12 weeks greenhouse resistance test with three different cultivars (two partial resistant genotypes containing either Rz1 or Rz1+Rz2 resistance sources as well as a susceptible genotype) under standardized conditions with naturally infested soils from 6 locations was performed. The single resistance (Rz1)was compromised in soils from Spain (D), France (P-type, RNA-5 containing), and the USA (IV and MN); in reference soils from Italy (R, A-type) and Germany (GG, B-type) Rz1 resistant sugar beets were not affected. Overcoming of Rz1+Rz2 resistance after 12 weeks could only be observed in D soil. Over and above the genomic region that encodes for the pathogenicity factor (P25) of the BNYVV RNA3 from beets grown in all soils was analysed.

Previously suggested correlation between "valine" on position 67 of P25 and a higher virulence could not be confirmed. Isolates in one of the soils as well as experiments previously published, where overcoming of resistance could be observed, contain several other aa₆₇ than valine. Analyses of additional soil borne pathogens using ITS sequencing and database comparison showed the presence of three pathogens (*Rhizoctonia solani* Keskin, *Fusarium sp., Pythium sp.*). Synergism between BNYVV, *Rhizoctonia solani* Keskin and *Pythium sp.* could lead to severe virus symptoms and weight reductions particularly in the Spanish soil.

To determine if resistance breaks are correlated with the BNYVV inoculum concentration a "Most Probable Number"(MPN) - tests was conducted where same soils as in the resistance tests were examined. Thereby, D soil revealed the highest BNYVV density, the GG soil on the other hand displayed 520 times lower MPN. In order to obtain information on the aggressiveness of particular virus isolates an additional MPN with Rz1+Rz2 genotypes was performed. Within this test D, IV, MN and P resulted again in high BNYVV densities even able to infect Rz1+Rz2 plants after 4 weeks cultivation. These results give strong evidence that high inoculum doses are not responsible for the observed resistance breaks. To prove this conclusion another experiment with normalised

inoculum added to sterile soil was carried out. Within this test three time harvests were conducted after 4, 8 and 12 weeks. Obviously, a significant differentiation of virus isolate vs. genotype correlating to tap root weight was only observed after 12 weeks. Consistently, applying adjusted inoculum density, D, IV, MN and P produced the highest virus contents at 12 weeks. Thus, resistance breaks must be connected to high BNYVV pathogenicity and not to inoculum density.

Additional, experiments were conducted to test the influence of viruliferous *P. betae* zoospore concentrations from various origins, carrying different BNYVV-types. But due to uncertainty how many of the zoospores are actually viruliferous, the data resulted in highly different outcomes, not correlating to the results from tests in naturally infected soil.

Moreover, efforts were undertaken to shorten resistance tests and replace them with time saving artificial sugar beet leaf inoculation via co-infiltration of a BNYVV RNA3 encoding P25 infectious cDNA clone and a red fluorescing marker gene (mRFP). Although, the method itself worked very well in young sugar beet leaves, no differences concerning the sugar beet genotype could be detected. The expected variability of fluorescence intensity comparing susceptible and resistant sugar beet cultivars was not given.

CONTENT

1. GENERAL INTRODUCTION	
1.1. Summary	12
1.2. Disease history	13
1.3. The vector of BNYVV: <i>Polymyxa betae</i> Keskin	13
1.3.1. Vector taxonomy	14
1.3.2. Life cycle of Polymyxa betae and host range	14
1.3.3. Molecular characterization of Polymyxa species	15
1.3.4. Vector detection and quantification	16
1.3.5. P. betae detection methods	16
1.3.6. Virus-vector relationships	17
1.4. BNYVV	18
1.4.1. Virus taxonomy	18
1.4.2. Genome organisation of BNYVV	19
1.4.3. BNYVV variability	22
1.5. Virus-host interaction	24
1.5.1. Factors influencing disease spread and severity	24
1.5.2. Genetic resistance against Rhizomania	26
1.5.3. Other soil-borne pathogens	28
1.6. Rhizomania-resistance tests in practice	29
2. AIMS OF THE STUDY	32
3. RESULTS AND DISCUSSION	33
3.1. Cultivation-time-dependent resistance tests	33
3.2. Overcoming of resistance depending on different BNYVV isolates	35
3.3. Influence of variable P25 composition on virus pathogenicity	36
3.4. Phylogenetic analyses of <i>Polymyxa betae</i>	36
3.5. Other soil-borne fungal pathogens	37
3.6. BNYVV and <i>Polymyxa betae</i> inoculum potential	37
3.6.1. Attempts for artificial infection with viruliferous P. betae	37
<i>3.6.2.</i> BNYVV and P. betae inoculum density in naturally infested soils	40
3.7. Genetic variability of BNYVV and its relation to virus spread	41
3.8. Infiltration of BNYVV-P25 + mRFP into sugar beet leaves	41
4. CONCLUSIONS AND FUTURE PROSPECTS	45

5. REFERENCES	46
6. ACKNOWLEDGEMENTS	59
APPENDIX	61

APPENDIX

This thesis is based on following manuscripts, which will be referred to by their Roman numerals:

Summary of Manuscripts I and II	61
MANUSCRIPT I	62
Identification of Rhizomania infected soil in Europe able to overcome Rz1 resistance sugar beet and comparison to other resistance breaking soils from different geograph	
origins	62
MANUSCRIPT II	85
Breaking of beet necrotic yellow vein virus resistance in soils is independent of virus and ve inoculum densities	
LIST OF PUBLICATIONS	
Papers	108
Presentations	_108
Poster	_110
CURRICULUM VITAE	_111

ABBREVIATION

А	alanine
Aa	amino acid
approx.	approximately
A-type	BNYVV isolate displaying a typical RNA composition - A-types are mainly
	occurring in southern, western and eastern Europe, as well as in the Northern
	America
BBSV	beet black scorch virus
BMYV	beet mild yellowing virus
BNYVV	beet necrotic yellow vein virus
BSBMV	beet soil-borne mosaic virus
BSBV	beet soil-borne virus
B-type	BNYVV isolate displaying a typical RNA composition - B-types are mainly
	occurring in central Europe (Germany, Austria, Switzerland)
BVQ	beet virus Q
BYV	beet yellows virus
C48	progenies from a cross between WB41+WB42 and C37
cDNA	copy DNA
сM	centi Morgan
СР	coat protein
DNA	deoxyribonucleic acid
dpi	days post-inoculation
dsRNA	double stranded RNA
Е	glutamic acid
ELISA	enzyme linked immunosorbent assay
G	glycine
GST	glutathione-S-transferase
Н	histidine
Ι	isoleucine
ICTV	International Committee on Taxonomy of Viruses
ITS	internal transcribed spacer
J-type	BNYVV isolate containing similar to the French P-type an additional RNA5 and
	differing from the P-type by the truncation of four amino acids – J-types commonly
	occur in Asia
kb	kilo base

kDa	kilo Dalton
L	leucine
LOD	likelihood of odds
LSD	least square difference
MP	movement protein
MPN	most probable number
mRNA	messenger RNA
N / n	number of plants / number of repetitions
NC	negative control
NES	nuclear export signal
NLS	nuclear localization signal
nt	nucleotide
ORF	open reading frame
Р	protein
PC	positive control
PCR	polymerase chain reaction
pi	plant introductions
PTGS	post-transcriptional gene silencing
P-type	BNYVV isolate displaying a typical RNA composition and an additional fifth RNA -
	P-types are mainly occurring in a small region in F (Pithiviers), the UK and in KZ
QTL	quantitative trait loci
R	arginine
RdRp	RNA dependent RNA polymerase
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
Rz1	resistance gene against BNYVV from the "Holly" source
Rz2	resistance gene against BNYVV from the WB42 source
Rz3	resistance gene against BNYVV from the WB41 source
siRNA	short interfering RNA
SSCP	single strand confirmation polymorphism
TGB	triple gene block
TPIA	tissue print immunoassay
V	valine
var	variety
WB41	wild beet 41
WB42	wild beet 42
Y	tyrosine

FIGURES

Fig. 1:	Life cycle of viruliferous <i>Polymyxa betae</i> (mod. after Ruppel, unpublished)	_15
Fig. 2:	Beet necrotic yellow-vein virus (BNYVV) genome expression und translation strategy, subdivided in five RNA segments, whereas only P- and J- types obtain the fifth RNA. All segments possess a cap structure at the 5' end and a poly A-tail (A) at the 3' end. Each box displays an open reading frame (ORF) in the genome, colours indicate the gene functions (blue = replication, yellow = coat protein, green = vector interaction, orange = cell-to-cell movement, red = pathogenicity, light green = connected to pathogenicity, but further functions are still unknown, lilac = cell-to-cell movement (vector transmission). RdRp = RNA dependent RNA polymerase, CP = coat protein, RT = readthrough protein, TGB = Triple gene block, N = ORF inducing tissue necrosis only when sequences upstream are deleted.	_19
Fig. 3:	Distribution of different BNYVV-types depending on the geographic origin	_23
Fig. 4:	BNYVV content in lateral sugar beet roots (A) and tap root weight (B) after vortex inoculation with 4 different BNYVV isolates as well as a non-infested Mock-control and cultivation for 12 weeks in greenhouse ($R = Rovigo - Italy$; $GG = Groß Gerau - Germany$; $P = Pithiviers - France$; only RNA1+2 from an B-type isolate without the pathogenicity factor on RNA3).	_33
Fig 5:	Means of BNYVV ELISA absorption at 405 nm after 4 weeks seedling cultivation in hydroponics containing either 100 P. betae zoospores per ml (zp ml ⁻¹) or 1000 <i>P. betae</i> zoospores per ml originating from Rhizomania infested soils from R (Rovigo – Italy), GG (Groß Gerau – Germany), D (Daimiel – Spain), IV (Imperial Valley – USA), P (Pithiviers – France) as well as an virus-free (vf) <i>P. betae</i> control originating from Reutershof (Germany). Means within the same inoculum with a letter in common are not significantly different at the 5% level.	_39
Fig. 6:	Pictures made by epifluorescence microscopy with an mRFP-filter (red) of BNYVV susceptible, $Rz1$ and $Rz1+Rz2$ partial resistant sugar beet leaves after 5 dpi agroinfiltration (A) and 8 dpi agroinfiltration (B) with, 35S-mRFP as positive control (PC), BNYVV-P25 (35S-P25+35S-mRFP) both including the vital-marker (fluorescent marker gene mRFP) as well as a negative control (NC)- 35S-P25 without	

the vital marker to display background fluorescence. To prove the vitality of leaf pictures via light microscopy (green) with equal resolution has been taken. _____43