Sebastian Maaß

Langzeitstabilität der Kathoden-Katalysatorschicht in Polymerelektrolyt-Brennstoffzellen

Cuvillier Verlag Göttingen

Langzeitstabilität der Kathoden-Katalysatorschicht in Polymerelektrolyt-Brennstoffzellen

Von der Fakultät Maschinenbau der Universität Stuttgart zur Erlangung der Würde eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung

> Vorgelegt von Sebastian Maaß aus Würzburg

Hauptberichter:Prof. Dr.-Ing. C. MertenMitberichter:Prof. Dr. phil. E. Roduner

Tag der mündlichen Prüfung: 30.10.2007

Institut für Chemische Verfahrenstechnik der Universität Stuttgart

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2007 Zugl.: Stuttgart, Univ., Diss., 2007

978-3-86727-466-1

D 93

© CUVILLIER VERLAG, Göttingen 2007 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2007 Gedruckt auf säurefreiem Papier

978-3-86727-466-1

Danksagung

Die vorliegende Arbeit entstand zwischen August 2003 und Juli 2006 während meiner Zeit als Doktorand am Forschungszentrum Ulm der Daimler AG. Die Arbeit wurde vom Institut für Chemische Verfahrenstechnik (ICVT) der Universität Stuttgart wissenschaftlich begleitet.

Herrn Prof. Dr.-Ing. Clemens Merten danke ich sehr herzlich für die Übernahme der Betreuung der Arbeit. Ohne seine Bereitschaft dazu hätte ich die großartige Gelegenheit, diese Aufgabe zu bearbeiten, nicht nutzen können.

Herrn Prof. Dr. phil. Emil Roduner vom Institut für Physikalische Chemie (IPC) der Universität Stuttgart danke ich für das der Arbeit entgegengebrachte Interesse und für die Übernahme des Mitberichts.

Bei meinem Teamleiter und Betreuer bei der Daimler AG, Dr. Florian Finsterwalder, bedanke ich mich herzlichst für das Vertrauen, das er mir die drei Jahre entgegengebracht hat und für die gewährten Freiräume in der Wahl der Schwerpunkte dieser Arbeit. Ohne seine Anregungen, die sinnvolle Auswahl der Projektaufgaben und die Möglichkeit, Grundlagenergebnisse auch auf Stack- und Systemebene anwenden zu können, wäre diese Arbeit nicht möglich gewesen.

Meinem Abteilungsleiter Dr. Georg Frank danke ich für seine Unterstützung der Doktorarbeit.

Meinen Kollegen des MEA-Teams, Susanne Will, Regina Wezel, Markus Schudy, Gabor Toth, Martin Quintus und Matthias Thess und den Kollegen des Stack- und des Systemteams sage ich Danke für die motivierende und freundliche Atmosphäre am Forschungszentrum und für viele wertvolle Diskussionen, die mir halfen, meiner Arbeit die richtige Ausrichtung zu geben. Hr. Detlev Megow und Sebastian Kleinau gebührt großer Dank für die Unterstützung bei der teststandseitigen Umsetzung kniffliger Messaufgaben und ihre Geduld mit meinen vielen Extrawünschen und Eigenkreationen an den Testständen. Meinen Doktorandenkollegen Tobias Handschuh, Elmar Haug und Jörg Kleemann sei für anregende Diskussionen besonders gedankt.

Die experimentelle Ausrichtung und die Lebensdauerthematik dieser Arbeit erforderten zeitintensive und zum Großteil messtechnisch aufwändige Experimente, die ohne die Unterstützung von Diplomanden und Praktikanten kaum möglich gewesen wären. Aus diesem Grund möchte ich mich bei Markus Erl, Tobias Frieß, Robert Hartmann, Bianca Häuslein, Dominik Kurz, Alois Santl, Klaus Stellmacher und Lars Vandamme für die geleistete tolle Arbeit bedanken. Ohne sie wären einige Projektarbeiten und so manche Messung für diese Dissertation nicht durchgeführt worden.

Nicht zuletzt gilt mein Dank meinen Eltern, die mir meine Ausbildung ermöglicht haben, und meiner Freundin Nina, die mich immer wieder motiviert und nie die Geduld mit mir verloren hat.

Stuttgart, im Mai 2007

Inhaltsverzeichnis

A	bbildur	ngsverzeichnis	7
Т	`abellen [•]	verzeichnis	11
S	ymbolv	erzeichnis	
A	bkürzu	ngsverzeichnis	15
A	bstract.		
Z	Lusamm	enfassung	25
1	Einl	eitung	
2	Gru	ndlagen	
	2.1	Historie	
	2.2	Aufbau und Funktion der PEM-Brennstoffzelle	
2.3 T		Thermodynamik und Kinetik der Brennstoffzellenreaktionen	
	2.4	Platin als Katalysatormaterial	
	2.4.	1 Wasserstoffoxidation	47
	2.4.	2 Sauerstoffreduktion und Bildung von Wasserstoffperoxid	
	2.4.	3 Ionomerdegradation	
	2.5	Kohlenstoff als Katalysatorträger	54
3	Exp	erimente	
	3.1	Geräte und Materialien	59
	3.2	Messmethoden	61
	3.2.	1 Zyklovoltammetrie	61

	3.2.2	Polarisationskurven	70
	3.2.3	Impedanzspektroskopie	71
	3.2.4	Methoden zur Messung der Membrandegradation	74
	3.2.5	Infrarotspektroskopische Messung der Kohlenstoffkorrosion	76
4	Ergebnis	se und Diskussion	80
	4.1 Deg	gradationsvorgänge im Zellbetrieb	80
	4.1.1	Degradation im Langzeitbetrieb	80
	4.1.2	Degradation bei ungleichmäßiger Reaktandenversorgung	94
	4.1.3	Zusammenfassung der Ergebnisse zur Degradation im Zellbetrieb	98
	4.2 Deg	gradation des Kohlenstoffträgers	101
	4.2.1	Reaktionsmechanismen der Kohlenstoffkorrosion	102
	4.2.2	Einflussparameter auf die Kohlenstoffkorrosion	110
	4.2.3	Kinetischer Ansatz für die Oxidationsrate	119
	4.2.4	Zusammenfassung der Ergebnisse zur Kohlenstoffkorrosion	127
	4.3 Deg	gradation der katalytisch aktiven Oberfläche	129
	4.3.1	Partikelmorphologie	130
	4.3.2	Mechanismen der Platinagglomeration	131
	4.3.3	Messungen bei konstantem Potential	134
	4.3.4	Potentialzyklierung	137
	4.3.5	Auswirkung der Partikelagglomeration auf die Zellspannung	144
	4.3.6	Zusammenfassung der Ergebnisse zur Platinagglomeration	147
	4.4 Lan	gzeitstabilität von Legierungskatalysatoren	150
	4.4.1	Vergleich verschiedener Legierungssysteme	153
	4.4.2	Analyse des Platin-Cobalt-Katalysators	158
	4.4.3	Zusammenfassung der Ergebnisse mit Legierungskatalysatoren	172
5	Schlussfo	olgerungen und Ausblick	174
Li	teraturverze	eichnis	178

Abbildungsverzeichnis

Abb. 2-1:	Spannungs- und Leistungskennlinie einer H2-Luft-Brennstoffzelle	43
Abb. 2-2:	Niederindizierte Flächen des Platins.	46
Abb. 2-3:	CO-Oxidationspeak an Pt/C-Elektroden.	49
Abb. 2-4:	Morphologie kohlenstoffgeträgerter Platinkatalysatoren	54
Abb. 2-5:	Pourbaix-Diagramm von Kohlenstoff.	56
Abb. 3-1:	Zyklovoltammogramme einer Platinmohr-Elektrode und einer	
	Ketjenblack-geträgerten Platinelektrode (Pt/C)	62
Abb. 3-2:	Zyklovoltammogramme einer Ketjenblackelektrode (C) und einer	
	Ketjenblack-geträgerten Platinelektrode (Pt/C)	63
Abb. 3-3:	Korrelation zwischen Doppelschichtkapazität und BET-Kohlenstoff-	
	oberfläche bzw. elektrochemisch im CV bestimmter Platinoberfläche	66
Abb. 3-4:	Oxidbereich der Platinmohr-Elektrode	69
Abb. 3-5:	Tafeldiagramm einer Pt/C-MEA im Oxidbereich	71
Abb. 3-6:	Impedanzspektren und Ersatzschaltbild einer luftbetriebenen	
	Brennstoffzelle.	72
Abb. 3-7:	NaF-Eichgerade zur Bestimmung der Fluoridkonzentration	75
Abb. 3-8:	Wasserstoffdurchbruch als Funktion der reziproken Membrandicke	76
Abb. 3-9:	Messprinzip der NDIR-Infrarotspektroskopie	77
Abb. 3-10:	Totzeit und Peakverschleifung der CO ₂ -Messung	78
Abb. 4-1:	Zeitlicher Verlauf der Zellspannungen im beschleunigten Testzyklus	
	bei verschiedenen Stromdichten.	82

Abb. 4-2:	Zeitliche Zunahme der Membranundichtigkeiten in den Dauerläufen	. 83
Abb. 4-3:	Veränderung von aktiver Fläche und Wasserstoffdurchbruch des	
	Dauerlaufes 2 aus Abb. 4-2.	. 84
Abb. 4-4:	Luft-Polarisationskurven während des Dauerlaufs aus Abb. 4-3	. 85
Abb. 4-5:	Polarisationskurven von MEAs unterschiedlicher Beladung	. 86
Abb. 4-6:	Zellspannung in Abhängigkeit von der auf die Platinoberfläche	
	bezogenen Stromdichte im Tafelbereich	. 87
Abb. 4-7:	Luft-Polarisationskurven in Abhängigkeit der auf die Platin-	
	oberfläche bezogenen Stromdichte.	. 88
Abb. 4-8:	Einfluss der Betriebstemperatur auf die Lebensdauer	. 89
Abb. 4-9:	Aufteilung der aktiven Fläche in charakteristische Bereiche	. 90
Abb. 4-10:	Änderung der Segmentstromdichte des Dauerlaufs aus Abb. 4-3	. 91
Abb. 4-11:	Zeitlicher Verlauf der Segmentstromdichten bei 0,2 A/cm ²	. 92
Abb. 4-12:	Degradation von Membran und Katalysatorschichten.	. 93
Abb. 4-13:	Schnittbild einer Elektrode nach Wasserstoffverarmung	. 95
Abb. 4-14:	Degradation der Kathode infolge Wasserstoffverarmung	. 96
Abb. 4-15:	Polarisationskurven zum Versuch aus Abb. 4-14.	. 97
Abb. 4-16:	Mechanismus der Potentialüberhöhung.	. 98
Abb. 4-17:	CO- und CO ₂ -Entstehung an Kohlenstoffelektroden	102
Abb. 4-18 a:	Korrosionsraten und zugehörige Zyklovoltammogramme von	
	Pt/C- und C-Elektroden in Stickstoff.	103
Abb. 4-18 b:	Korrosionsraten und zugehörige Polarisationskurven von	
	Pt/C- und C-Elektroden in Luft	104
Abb. 4-19:	Sauerstoffreduktion und Fluoridfreisetzung an einer reinen Kohlen-	
	stoffelektrode	107
Abb. 4-20:	Peak V im anodischen Potential-Ast	109
Abb. 4-21:	Vergleich dynamischer und stationärer Korrosionsvorgänge	110
Abb. 4-22:	Abnahme der Korrosionsrate in stationären Betriebspunkten	111
Abb. 4-23:	CO ₂ -Entstehung nach Haltezeit bei 1,0 V	113
Abb. 4-24:	Abhängigkeit der Kohlenstoffoxidation vom Molenbruch Wasser	114

Abb. 4-25:	Temperaturabhängigkeit der Kohlenstoffkorrosion.	. 116
Abb. 4-26:	Abnahme der Korrosionsrate mit der Betriebszeit bei Zyklierung	
	zwischen 650 und 1200 mV	. 117
Abb. 4-27:	Dynamische Kohlenstoffkorrosion einer MEA nach 20 min	
	Betrieb unter ganzflächiger Wasserstoffverarmung	. 118
Abb. 4-28:	Messung und Verlauf der berechneten Parameter für Peak II	. 122
Abb. 4-29:	Gemessener und berechneter Reduktionsverlauf der Platin-Oxidschicht	. 124
Abb. 4-30:	Berechnete Teilvorgänge II – V der Kohlenstoffoxidation	. 126
Abb. 4-31:	Messung und berechneter Verlauf der Kohlenstoffoxidation	. 126
Abb. 4-32:	TEM-Aufnahmen kohlenstoffgeträgerter Platinpartikel.	. 130
Abb. 4-33:	Partikelgrößenverteilung einer neuen Elektrode.	. 131
Abb. 4-34:	Abnahme von aktiver Fläche und Zellspannung bei Potential-	
	zyklierung zwischen 60 und 1200 mV in Luft und in Stickstoff	. 133
Abb. 4-35:	Änderung der aktiven Fläche von Platinmohr- und Pt/C-Elektroden	
	bei konstantem Potential	. 135
Abb. 4-36:	Pourbaix-Diagramm des Platins.	. 136
Abb. 4-37:	Einfluss der Zyklierungsgrenzen auf die Abnahme der aktiven	
	Fläche von Pt/C-Elektroden	. 138
Abb. 4-38:	Einfluss der Potentialzyklierung auf Platinmohr- und Pt/C- Elektroden.	. 138
Abb. 4-39:	REM-Querschnittsbilder an den Pt/C-Kathoden.	. 140
Abb. 4-40:	TEM-Aufnahmen der Elektroden aus Abb. 4-39.	. 142
Abb. 4-41:	Zusammenwachsen dreier Platinpartikel	. 142
Abb. 4-42:	Abnahme der aktiven Fläche verschiedener Elektrodentypen	
	bei Zyklierung.	. 143
Abb. 4-43:	Normierte Abnahme der aktiven Fläche	. 144
Abb. 4-44:	Verschlechterung des Polarisationsverhaltens von Pt/C-Elektroden nach	ı
	jeweils 8000 Zyklen in Abhängigkeit des anodischen Potentiallimits	. 145
Abb. 4-45:	Abnahme der Zellspannung von Pt/C-Elektroden bei 150 und	
	1200 mA/cm ² bei zyklischer Belastung als Funktion der Zyklenzahl	. 146
Abb. 4-46:	Abnahme der Zellspannung von Pt/C-Elektroden bei 150 und	
	1200 mA/cm ² bei zyklischer Belastung als Funktion der Zeit.	. 147

Abb. 4-47:	Wasserstoffdesorptionsbereich von Legierungselektroden 15	54
Abb. 4-48:	Spezifische Aktivitäten und Massenaktivitäten bei 0,9 V 15	55
Abb. 4-49:	Abnahme von aktiver Fläche und Zellspannung bei 0,2 A/cm ²	
	von MEAs mit verschiedenen Kathodenkatalysatoren 15	56
Abb. 4-50:	Abnahme von Ruhespannung und Membranintegrität der	
	verschiedenen Kathodenkatalysatoren 15	57
Abb. 4-51:	Verlauf der Membranwiderstände des Pt- und Pt ₃ Co-Dauerlaufs 15	59
Abb. 4-52:	EDX-Cobalt- und Platinprofile	50
Abb. 4-53:	Stabilitätsbereiche der Übergangsmetalle	51
Abb. 4-54:	Aktivitätsparameter des Pt ₃ Co/C-Dauerlaufs	52
Abb. 4-55:	Luft-Polarisationskurven der MEAs mit Platin- und Platin-Cobalt 16	54
Abb. 4-56:	Zyklovoltammogramme der MEAs mit Platin-und Platin-Cobalt 16	56
Abb. 4-57:	XRD-Spektren der Kathodenkatalysatorsschichten16	56
Abb. 4-58:	RRDE-Messungen der Wasserstoffperoxidentstehung an Pt/C und	
	Pt ₃ Co/C	58
Abb. 4-59:	Fluoridfreisetzung in Abhängigkeit der Zellspannung 16	58
Abb. 4-60:	Kohlenstoffoxidationsraten von Pt/C und Pt ₃ Co/C bei Peak III	
	und IV als Funktion der Temperatur 16	59
Abb. 4-61:	Abnahme der aktiven Fläche von Pt ₃ Co/C bei Potentialzyklierung 17	70
Abb. 4-62:	Abnahme der Zellspannung von Platin- und Platin-Cobalt-MEAs	
	bei Potentialzyklierung17	71

Tabellenverzeichnis

Tab. 3-1:	Lage der Adsorptionsmaxima der kristallographischen
	Hauptflächen von Platin64
Tab. 4-1:	Berechnete und gemessene Absenkung des Ruhepotentials
Tab. 4-2:	Messbedingungen für die Untersuchung der Temperatur-
	abhängigkeit der Kohlenstoffkorrosion115
Tab. 4-3:	Aktivierungsenergien der Korrosionsreaktionen116
Tab. 4-4:	Zur Berechnung der Oxidationsvorgänge berücksichtigte Reaktionen119
Tab. 4-5:	Durch Anpassen an die Messergebnisse berechnete Parameter der
	Oxidationsreaktionen des Kohlenstoffs125
Tab. 4-6:	Literaturübersicht zur Aktivität und Stabilität von Legierungs-
	katalysatoren151
Tab. 4-7:	Aktivitäten der Legierungskatalysatoren155
Tab. 4-8:	Degradationsdaten der Legierungskatalysator-MEAs157
Tab. 4-9:	CV- und Tafelparameter der kommerziellen Elektroden

Symbolverzeichnis

Lateinische Symbole

a_j	[mol/l]	Aktivität
Å	[m ²]	Geometrische Oberfläche
b	[mV/dec]	Tafelsteigung
<i>CCO</i> 2	[ppm]	CO ₂ -Konzentration im Kathodenabgas
CDefekt	$[\mu g/cm^2]$	Oberflächendichte der Defektatome von Kohlenstoff
C _{H2O}	$[\mu g/cm^2]$	Oberflächenkonzentration des Wassers
COF-Atom	$[\mu g/cm^2]$	Oberflächendichte der Kohlenstoffatome
C_j	[mol/l]	Molare Konzentration der Komponente j
C_{DS}	[F/cm ²]	Spezifische Doppelschichtkapazität
d_{Kat}	[µm]	Katalysatorschichtdicke
d_{PEM}	[µm]	Membrandicke
d_{Pt}	[nm]	Katalysatorpartikel-Durchmesser
\overline{d}_{Pt}	[nm]	gemittelter volumetrischer Katalysatorpartikel-Durchmesser
d_N	[µm]	Nernstsche Diffusionsschichtdicke
D_j	$[m^2/s]$	Diffusionskoeffizient
E_A	[kJ/mol]	Aktivierungsenergie
E_{OF}	[kJ/mol]	Oberflächenenergie
ECA	$[m^2_{Pt}/g_{Pt}]$	Gewichtsspezifische Katalysatoroberfläche
EPSA	$[m^2_{Pt}/m^2_{geo}]$	Flächenspezifische Katalysatoroberfläche
f	[Hz]	Frequenz
F	$[(A \cdot s)/mol]$	Faraday-Konstante
$\varDelta G^{0}$	[kJ/mol]	Freie Standardbildungsenthalpie
ΔH^0	[kJ/mol]	Standardbildungsenthalpie
НХо	$[ml/(h \cdot cm^2)]$	Wasserstoffdurchbruch
i, i _{geo}	$[A/cm^2]$	Geometrische Stromdichte
i_0	$[A/cm^{2}_{Pt}]$	Platin-oberflächenbezogene Austauschstromdichte
i_{DS}	[A/cm ²]	Doppelschichtstromdichte

$I_{H2,des}$	[A]	Wasserstoffdesorptionsstrom
i _{lim}	$[A/cm^2]$	Grenzstromdichte
i_M	[mA/mg _{Pt}]	Massenaktivität
i_{Pt}	[A/cm ² Pt]	Oberflächenspezifische Stromdichte
i_S	$[\mu A/cm^2_{Pt}]$	Spezifische Aktivität
\widetilde{I}	[A]	Wechselstrom
j	[-]	Komplexe Zahl
k	[1/s]	Geschwindigkeitskonstante
k_∞	[1/s]	Stoßfaktor
L	[H]	Induktivität
m_k	[mg/cm ²]	Flächenspezifische Belegung der Komponente k
m_{Pt}	$[g/m^2]$	Flächenspezifische Platinbelegung
М	[kg]	Masse
MW_j	[g/mol]	Molekulargewicht
n	[-]	Pro Formelumsatz übertragene Elektronen
N	[mol]	Molmenge
N_A	[1/mol]	Avogadro-Zahl
N_i	[-]	Partikelanzahl der Klasse i
N_Z	[-]	Zyklenzahl
р	[bar(a)]	(Absolut-) Druck
p_j	[bar]	Partialdruck der Komponente j
Р	[W]	Leistung
q_j	$[C/cm^2]$	Spezifische Oberflächenladung der Komponente j
q_{Pt}	$[\mu C/cm^2_{Pt}]$	Spezifische Wasserstoffbelegung polykristallinen Platins
Q	[C]	Oberflächenladung
r_j	$[\mu g/(h \cdot cm^2)]$	Reaktionsrate
r _{Fluorid}	$[\mu g/(h \cdot cm^2)]$	Fluoridfreisetzungsrate
r_C	$[\mu g/(h \cdot cm^2)]$	Oxidationsrate des Kohlenstoffs
r_{PEM}	$[m\Omega \cdot cm^2]$	Spezifischer Membranwiderstand
rF	[-]	Relative Feuchte
R _{spez}	$[\Omega \cdot cm^2]$	Spezifischer Widerstand der Tafelgleichung
R_M	[Ω]	Membranwiderstand
R_d	[Ω]	Diffusionswiderstand
R_D	$[\Omega]$	Durchtrittswiderstand
R	[J/(mol K)]	Universelle Gaskonstante
S^{0}	[kJ/ (mol K)]	Standardbildungsentropie
t	[s]	Zeit
Т	[K]	Absolute Temperatur
U	[V]	Zellspannung
U_0	[V]	Tafelparameter
$U_{j,rev}$	[V]	Reversible Zellspannung

\widetilde{U}	[V]	Wechselstrom
V	[m ³]	Volumen
\dot{V}	[l/min]	Volumenstrom
v	[mV/s]	Potentialänderungsgeschwindigkeit
v^n	[l/mol]	Molvolumen
X_j	[-]	Molenbruch
Ζ	[-]	Durchtrittswertigkeit
\widetilde{Z}	$[\Omega]$	Impedanz

Griechische Symbole

[-]	Durchtrittsfaktor
[F/m]	Dielektrizitätskonstante
[V]	Durchtrittsüberspannung
[V]	Diffusionsüberspannung
[°]	Phasenwinkel Strom/Spannung
[V]	Elektrodenpotential, Halbzellenpotential
[V]	Standardreduktionspotential der Halbzellenreaktion bei 25 °C, 1013 mbar, pH = 0 (gegen Normalwasserstoffelektrode)
[V]	Potential der Ionomerphase
[°C]	Temperatur
[-]	Stöchiometrie, Luftzahl; $\lambda = 1$ entspricht der nach Faraday für den elektrischen Strom umzusetzenden Stoffmenge
[-]	Stöchiometrischer Koeffizient der Komponente k
[-]	Bedeckungsgrad
$[kg/m^3]$	Dichte der Komponente j
[N/m]	Oberflächenspannung
[1/s]	Kreisfrequenz
	 [-] [F/m] [V] [V] [V] [V] [V] [C] [-] [kg/m³] [N/m] [1/s]

Sonstige Indices

ad	Adsorbierte Spezies
des	Desorption
norm	Normiert
ox	Oxidation
red	Reduktion

Abkürzungsverzeichnis

AES	Auger Electron Spectroscopy
AFC	Alkaline Fuel Cell (Alkalische Brennstoffzelle)
BET	Stickstoffadsorption nach Brunauer, Emmet, Teller
BOL	Begin-of-Life (Neuzustand vor Beginn der Messungen)
CCM	Catalyst Coated Membrane (Katalysatorbeschichtete Membran)
CPE	Constant Phase Element (Konstantphasenelement)
CV	Cyclic Voltammetry (Zyklovoltammetrie)
DEMS	Differential Electron Mass Spectroskopy (Differenzielle Elektronen- Massenspektroskopie)
DFT	Density Functional Theory
DMFC	Direct Methanol Fuel Cell (Direktmethanol-Brennstoffzelle)
ECA	Electrochemically Active Area (Katalysatoroberfläche bezogen auf die Platinbelegung)
EDX	Energy Dispersive X-ray Analysis (Energiedispersive Röntgenanalyse)
EELS	Low Energy Electron Loss Spectroscopy
EIS	Electrochemical Impedance Spectroscopy (Elektrochemische Impe- danzspektroskopie)
EOL	End-of-Life (degradierter Zustand nach Abschluss der Messungen)
EPSA	Electrochemical Platinum Surface Area (Katalysatoroberfläche bezogen auf die geometrische aktive Fläche)
GDE	Gas Diffusion Electrode (Gasdiffusionselektrode)
GDL	Gas Diffusion Layer (Gasdiffusionslage)
HOR	Hydrogen Oxidation Reaction (Wasserstoffoxidation)
ISE	Ion Selective Electrode (Ionenselektive Elektrode)
MCFC	Molten Carbonate Fuel Cell (Karbonatschmelze-Brennstoffzelle)
MEA	Membrane Electrode Assembly (Membran-Elektrode-Anordnung)
MOL	Mid-of-Life (Zustand bei Zwischenuntersuchungen während des Tests)
NDIR	Non-Dispersive Infrared Spectroscopy (Nichtdispersive Infrarotspektroskopie)

NECAR	New Electric Car (frühe Mercedes-Benz Brennstoffzellenfahrzeuge)
NHE	Normal Hydrogen Electrode (Normalwasserstoffelektrode)
OCV	Open Circuit Potential (Klemmenruhespannung)
ORR	Oxygen Reduction Reaction (Sauerstoffreduktion)
PAFC	Phosphoric Acid Fuel Cell (Phosphorsaure Brennstoffzelle)
PEK	Polyetherketon
PEM	Polymer Electrolyte Membrane (Polymerelektrolytmembran)
PEMFC	Polymer Electrolyte Membrane Fuel Cell (Polymerelektrolytmembran- Brennstoffzelle)
PSU	Polyethersulfon
Pt/C	Kohlenstoffgeträgerter Platinkatalysator
PTFE	Poly-Tetrafluorethylen ("Teflon")
PZC	Potential of Zero Charge (Nullladungspotential)
REM	Rasterelektronenmikroskopie
RHE	Reversible Hydrogen Electrode (Reversible Wasserstoffelektrode)
(R)RDE	Rotating (Ring) Disk Electrode (Rotierende Scheibenelektrode (mit Ring))
SOFC	Solid Oxide Fuel Cell (Festoxid-Brennstoffzelle)
TEM	Transmissionselektronenmikroskopie
TFMSA	Trifluormethanesulfonic Acid (Trifluormethansulfonsäure)
TISAB	Total Ionic Strength Adjustment Buffer (Pufferlösung)
UPS	Ultraviolet Photoemission Spectroscopy
XPS	X-ray Photoelectron Spectroscopy
XRD	X-Ray Diffraction (Röntgenstrahldiffraktometrie)

Abstract

For automotive application the fuel cell of choice is the polymer electrolyte membrane fuel cell (PEMFC). But, in addition to appreciable costs for catalyst and membrane, the low lifetime and high power degradation of fuel cells so far have prevented a broad commercialization of fuel cell technology in automotive application. This can mainly be attributed to the tough operating conditions, which are unavoidable for automotive fuel cells, like high dynamics and dry operation. In addition to that competition with conventional internal combustion engines does not allow costly measures to improve lifetime.

This work aims to examine place and mechanism of degradation processes and to evaluate mitigation strategies concerning materials and ways of operation. Though aging mechanisms of fuel cells cannot be strictly distinguished because of their close interactions, they are often classified into mechanical, thermal and chemical degradation.

Degradation as a consequence of mechanically induced edge-failure can be easily avoided by applying an appropriate design of the membrane-electrode-assembly (MEA). Thermal degradation can be counteracted by preventing hot-spots with an adequate flowfield and cooling concept. In contrast to that, chemical degradation dominates aging processes in todays PEM fuel cells. Consequently this work concentrates on chemically induced aging processes during fuel cell operation.

The work is divided into the general analysis of degradation processes during fuel cell operation, the deeper evaluation of the identified aging mechanisms which have highest impact on durability, i. e. carbon corrosion and platinum agglomeration, and concludes with the examination of the long-term stability of alloy catalysts as a promising way to improve fuel cell durability. Experiments were conducted in situ in membrane-electrode-assemblies (MEAs). This way fuel cell specific border conditions like solid electrolyte and under-saturated conditions are accounted for. Specific test protocols were developed to reduce the impact of the more inhomogeneous local conditions over the active area, compared to a microelectrode in liquid electrolyte. By means of specific test protocols it was possible to take into account fuel cell specific conditions and ensure reproducibility. Furthermore analytic tools were developed, e. g. the measurement of carbon corrosion rates by NDIR spectroscopy.

Relevant degradation mechanisms in long term operation were analyzed by periodic interruption of the test cycle to carry out polarization curves in air and oxygen, respectively, and in addition impedance spectroscopy and cyclic voltammetry. The results were used to calculate characteristic parameters which identify the state of health of the fuel cell, i. e. cell voltage degradation, active platinum surface area, hydrogen crossover and catalyst activity.

As a result, processes which take place in the cathode catalyst layer were identified as determining lifetime and performance degradation.

Generally the operational time of a fuel cell is limited by chemical membrane degradation which leads to membrane thinning and pinhole formation. Pinholes short circuit anode and cathode compartment and enable direct chemical reaction of hydrogen and oxygen. Together with mechanical stress and peroxide formation the recombination heat leads to accelerated growth of the pinholes and to destruction of the MEA. From cross sectional pictures it was possible to assign membrane thinning to chemical ionomer decomposition starting from the cathode side of the membrane. Though sometimes the anode side is reported as the starting point of membrane decomposition in the literature, anode-side degradation was only observed after pinholes had formed and high quantities of oxygen were able to react at the anode side. Membrane attack on the cathode side is caused by formation of hydrogen peroxide and desorption of peroxide intermediates in the indirect oxygen reduction path. These mechanisms particularly take place in dry areas where platinum-adsorbed OH-groups are not stabilized by chemisorbed water. Together with poor dilution and washing out due to lack of liquid water the accelerated degradation in the dry inlet areas of fuel cells is explained. By means of current density distribution measurements a corresponding deactivation of the inlet areas was detected.

Performance degradation of the MEAs could completely be correlated to the decrease of active catalyst area. Degradation of the platinum surface explains the increased kinetic loss

at low current densities as well as performance decrease at high current densities. The latter one often is assigned to loss of hydrophobicity of the gas diffusion layer or the deterioration of the catalyst layer pore structure. Here it was possible to show that the apparent mass transport losses result from a longer average diffusion path of the reactants to the decreased active catalyst area.

To sum up, results of long term tests showed that performance stability and lifetime of PEM fuel cells is limited by processes which take place in the cathode catalyst layer. Most important are the oxidation of the carbon catalyst support, the agglomeration of platinum particles and the formation of peroxy radicals.

Corrosion mechanisms of the catalyst support were analyzed in potentiodynamic measurements. Because electrochemical oxidation of the carbon support proceeds by reaction of water with carbon, it was possible to conduct most measurements in nitrogen atmosphere which excludes chemical degradation by peroxide formation during oxygen reduction. Furthermore a homogeneous humidity level can be maintained all over the active electrode area because of the lack of reaction water. As the most important advantage of measurements in inert gas atmosphere, cyclic voltammograms can be recorded which allow correlation of the carbon corrosion rates with processes that take place at the active electrode surface. Carbon corrosion rates were determined by NDIR measurement of carbon dioxide and carbon monoxide concentrations at the cell outlet. In contrast to mass spectroscopy NDIR allows to measure CO_x concentrations in the order of ppm in both, nitrogen and oxygen atmosphere.

From potentiodynamic measurements it was possible to identify different corrosion mechanisms as a function of electrode potential. The corrosion rates of pure carbon electrodes and of carbon-supported platinum electrodes showed an exponential Butler-Volmer-behaviour. This leads to the often observed cathode destruction at high electrode potentials that are caused by open circuit voltage or even worse by hydrogen starvation.

At potentials below the thermodynamic equilibrium potential of the carbon oxidation reaction an increase of corrosion rates could be observed on pure carbon and on carbonsupported platinum electrodes. By means of fluoride release rate measurements it was possible to prove the formation of hydrogen peroxide. This complies with the known formation of H_2O_2 on platinum and carbon and hydrogen-covered platinum in this potential area. Thus it was concluded that carbon corrosion below 0.3 V is caused by chemical oxidation of the carbon support by hydrogen peroxide.