
Olayinka Akinola Akinde

Studies on inevitable losses of amino acids and nitrogen in the Pekin duck and their consequences for maintenance nitrogen requirement

Aus dem Institut für Agrar- und Ernährungswissenschaften

der Naturwissenschaftlichen Fakultät III

der Martin-Luther-Universität Halle-Wittenberg

Studies on inevitable losses of amino acids and nitrogen in the Pekin duck and their consequences for maintenance nitrogen requirement

Dissertation

Zur Erlangung des akademischen Grades Doctor agriculturarum (Dr. agr.)

vorgelegt von

M.Sc. Animal Science
Olayinka Akinola Akinde
geboren am 04.09.1971 in Ibadan

Gutacher: Prof. Dr. M. Rodehutscord

Prof. Dr. E. von Borell

Prof. Dr. M. Grashorn

Dekan: Prof. Dr. P. Wycisk

Verteidigung am: 25. Juni 2007

Berichte aus der Agrarwissenschaft

Olayinka Akinola Akinde

Studies on inevitable losses of amino acids and nitrogen in the Pekin duck and their consequences for maintenance nitrogen requirement

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2007

Zugl.: Halle-Wittenberg, Univ., Diss., 2007

978-3-86727-305-3

Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes

© CUVILLIER VERLAG, Göttingen 2007

Nonnenstieg 8, 37075 Göttingen

Telefon: 0551-54724-0 Telefax: 0551-54724-21

www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2007

Gedruckt auf säurefreiem Papier

Table of content	Page
1 Introduction	1
2 Literature review, definitions and objectives	2
2.1 Theory of N maintenance	2
2.2 Physiological basis of N maintenance and inevitable losses	2
2.3 Experimental approaches to study and estimate inevitable losses	5
2.4 Physiological and dietary effects on inevitable losses and their implications	10
2.5 Practical importance of N maintenance and inevitable losses	12
2.6 Estimates of inevitable losses, N maintenance and N efficiency	13
2.7 Trends and implications in global ducks farming	18
2.8 Objectives of Study	21
3 Materials and Methods	22
3.1 Methodology	22
3.1.1 Theoretical considerations	22
3.1.2 Mathematical considerations	23
3.1.3 Consideration with respect to protein balance	24
3.1.4 Research locations and periods	25
3.1.5 Animals, housing and diets	25
3.1.6 General procedures for diet formulations	26
3.2 General procedures for balance studies	27
3.3 General procedures for precaecal flow studies	28
3.4 Specific details of individual balance experiments	29
3.4.1 Experiment 1: N balance of starting ducks fed varying levels of crude protein and crude fibre	29
3.4.1.1 Experimental design	29

3.4.1.2 Diets	30
3.4.1.3 Starter ducks bioassay	33
3.4.2 Experiment 2: N balance of adult ducks fed varying levels of crude protein and crude fibre	33
3.4.2.1 Experimental design	33
3.4.2.2 Diets	34
3.4.2.3 Adult ducks bioassay	37
3.4.3 Studies on recovery rate of Titanium dioxide	38
3.4.3.1 Diets	38
3.4.3.2 Measurements of recovery rate of Titanium dioxide	38
3.5 Specific details of precaecal flow studies	39
3.5.1 Precaecal Study I: Protein-Fibre interactions on inevitable precaecal CP and AA losses in adult ducks	39
3.5.1.2 Experimental design	39
3.5.1.3 Diets	39
3.5.1.4 Precaecal flow measurement I	39
3.5.2 Precaecal Study II: Investigations into effects of corn cob meal and supplemental fat on inevitably excreted CP and AA	40
3.5.2.1 Experimental design	40
3.5.2.2 Diets	41
3.5.2.3 Precaecal flow measurement II	43
3.6 Chemical analyses	43
3.7 Data handling and analysis	44
3.7.1 Data Validation	44
3.7.2 Calculations, statistical analysis and curve fitting	45
3.7.2.1 N balance experiments	45

3.7.2.1.1 Efficiency of N utilisation	46
3.7.2.1.2 Determinations of inevitable losses	46
3.7.2.1.3 Determinations of maintenance N requirement	47
3.7.2.1.4 Determinations of TiO ₂ recovery rates	47
3.7.2.2 Precaecal flow studies	48
3.7.2.2.1 Measurements of inevitable precaecal losses	48
3.7.2.2.2 Measurements of precaecal digestibility and the effects of dietary factors	49
4 Results	50
4.1 Results of N Balance experiments	50
4.2 Pattern of N utilisation in ducklings and adult ducks	52
4.2.1 Efficiency of N utilisation	53
4.2.1.1 Measurement of N efficiency in ducks in relation to age and dietary crude fibre intake mainly in the form of synthetic α -cellulose	53
4.3 Inevitable N losses and maintenance requirements	57
4.3.1 Inevitable N losses and maintenance requirements in ducks and the effects of supplementary crude fibre mainly in the form of synthetic α -cellulose	57
4.3.2 Maintenance nitrogen and crude protein requirements in adult ducks and the effects of supplementary crude fibre mainly in the form of synthetic α -cellulose	58
4.4 Measurements of TiO ₂ recovery in ducklings and adult ducks	64
4.4.1 TiO ₂ recovery in ducklings and adult ducks	64
4.4.2 Response relationships and parameter estimates of TiO ₂ excretion	67
4.5 Precaecal flow studies	70
4.5.1 Measurements of inevitable precaecal losses and precaecal digestibility of CP/AA	82

4.5.1.1 Dietary effects on inevitable precaecal losses of CP/AA	82
4.5.1.2 Comparison of estimates of IPL of CP/AA	87
4.5.1.3 Dietary effects on precaecal digestibility of CP/AA	90
4.5.1.4 Comparison of estimates of precaecal digestibility of CP/AA	92
5 Discussion	95
5.1 General discussion	95
5.2 Pattern of N utilisation in ducklings and adult ducks	96
5.2.1 Factors affecting efficiency of N utilisation	97
5.2.1.1 Effects of age on N efficiency	97
5.2.1.2 Effects of crude fibre intake on N efficiency	100
5.3 Inevitable N losses and N maintenance	102
5.3.1 Factors affecting inevitable N losses and N maintenance	102
5.3.1.1 Effects of age and body weight	102
5.3.1.2 Effects of crude fibre intake on inevitable losses	104
5.3.1.3 Effects of dry matter intake	106
5.3.2 Mathematical relationships of maintenance CP requirement to the total CP requirements	107
5.3.3 Literature overview on inevitable N losses and maintenance	108
5.3.4 Partitioning of inevitable N losses into its fractions	110
5.4 Inevitable precaecal crude protein and amino acids losses	111
5.4.1 Dietary factors affecting inevitable precaecal flow of CP/AA	112
5.4.1.1 Effects of level and types of crude fibre supplementation	112
5.4.1.2 Effects of dietary soybean oil supplementation	114
5.4.2 Estimates of precaecal inevitably excreted CP/AA	115
5.5 Precaecal digestibility of CP/AA in adult ducks	120

5.5.1 Impacts of dietary factors on precaecal digestibility by regression (PDR)	121
5.5.1.1 Effects of dietary crude fibre level and type on precaecal digestibility of CP/AA	122
5.5.1.2 Effects of dietary soybean oil level on precaecal digestibility of CP/AA	122
5.5.2 Estimates of precaecal digestibility of CP/AA	125
5.6 Effects of age on marker recovery rate in ducks	128
5.7 Conclusions and implications	130
5.8 Recommendations	132
6 Summary	133
7 Zusammenfassung	136
8 References	139
9 Appendices	154

List of Tables	Page
Table 1. Physiological processes contributing to N maintenance requirement	3
Table 2. Comparisons of experimental techniques used to study inevitable losses	7
Table 3. Estimates of N and CP maintenance in Poultry literature	16
Table 4. Some estimates of inevitable precaecal losses in Poultry (mg/kg DMI)	17
Table 5. Estimates of efficiency of N utilisation in literature	18
Table 6. Time Frame and description of individual experiments	25
Table 7. Nutrient requirement data for Pekin ducks compiled from recent literature	30
Table 8. Theoretical dietary AA balance for starting ducks in	31
comparison with experimental N+ mix (% basis)	
Table 9. Ingredient composition of N+ mix in experiment 1 (g/kg)	31
Table 10. Ingredient composition of mineral sub-mixes in experiment 1 (g/kg)	31
Table 11. Mixing ratio of sub-mixtures in experiment 1 (g/kg)	31
Table 12. Full description of ingredient composition of diets in experiment 1 (g/kg)	32
Table 13. Analysed content of AA in the diets of Experiment 1 (g/16 g N)	32
Table 14. Experimental plan for adult duck trial (experiment 2)	34
Table 15. Calculated ideal ratio (relative to lysine) for adult	34
ducks in comparison to experimental N+ mix	
Table 16. Ingredients composition of N+ mix in experiment 2 (g/kg)	35
Table 17. Ingredients composition of mineral mix in experiment 2 (g/kg)	35
Table 18. Mixing ratio of sub-mixtures in experiment 2 (g/kg)	35
Table 19. Full description of ingredient composition of diets in experiment 2 (g/kg)	36
Table 20. Analysed concentration of AA of experiment 2 diets (g/16 g N)	36
Table 21. Design of diets for precaecal study II	40
Table 22. Ingredients composition of summit N+ mix for precaecal study II (g/kg)	41
Table 23. Mixing ratio of sub-mixtures in precaecal study II (g/kg)	41
Table 24. Full description of Diets in precaecal study II (g/kg)	42
Table 25. Analysed concentration of AA in precaecal study II (g/16 g N)	42
Table 26. Records of dry matter intake and body weight (kg) of ducks	50
during N balance experiments	
Table 27. Metabolic response of ducklings and adult ducks to dietary	51
crude protein and crude fibre	
Table 28. Effects of age and crude fibre intake on maximum N efficiency in ducks	57

Table 29. Estimates of inevitable N losses (IL) and maintenance	63
requirements in ducks in relation to body weight (mg/kg BW d ⁻¹),	
dry matter intake (mg/kg DMI) determined at two levels of crude fibre intake	
Table 30. Details of analysed dietary concentration of TiO ₂ in experiments 1 and 2	64
Table 31. TiO ₂ recovery in ducklings and adult ducks fed diets containing	66
graded levels of crude fibre and crude-protein	
Table 32. Parameter and 95 % confidence interval of linear regression estimated for	69
TiO ₂ excretion (y) depending on TiO ₂ intake (x) of White Pekin	
ducks fed varying levels of dietary crude fibre	
Table 33. Average dry matter intake (g/d) and body weight (kg) of adult ducks	70
during all precaecal flow studies	
Table 34. Effects of crude fibre (CF) supplementation and CP level on DM intake (g/d)	71
and CP/AA intake (mg/d) in pc study I	
Table 35. Effects of natural crude fibre (CF) level and CP level on DM intake (g/d)	72
and CP/AA intake (mg/d) in pc study II	
Table 36. Effects of dietary fat and CP level on DM intake (g/d) and CP/AA	73
intake (mg/d) in pc study II	
Table 37. Main effects of dietary crude fibre (CF) level and CP level	74
on digestibility (%) of CP/AA of diets in pc study I	
Table 38. Main effects of dietary crude fibre (CF) level and CP on digestibility (%)	75
of CP/AA of diets in pc study II	
Table 39. Main effects of dietary fat level and CP level on digestibility (%)	76
of CP/AA of diets in pc study II	
Table 40. Main effects of crude fibre (CF) level and CP on precaecal flow (mg/d)	77
of CP/AA in pc study I	
Table 41. Main effects of crude fibre (CF) level and CP on precaecal flow	78
(mg/d) of CP/AA in pc study II	
Table 42. Main effects of dietary contents of fat and CP on precaecal flow	79
(mg/d) of CP/AA in pc study II	
Table 43. Main effects of natural crude fibre and crude protein levels on energy	80
intake, digestion and flow in pc study II	
Table 44. Main effects of dietary oil and crude protein levels on energy	80
utilisation in pc study II	

Table 45. Estimates (± SE) of inevitable precaecal CP/AA losses (mg/kg BW d ⁻¹)	83
as affected by dietary crude fibre mainly in the form synthetic α-cellulose	
Table 46. Estimates (± SE) of inevitable precaecal CP/AA losses (mg/kg DMI)	84
as affected by dietary crude fibre supplementation mainly in the form of synthetic α -cellulose	
Table 47. Estimates of inevitable precaecal CP/AA losses (mg/kg BW d ⁻¹)	84
as affected by natural crude fibre supplementation mainly in the form of corn cob meal	
Table 48. Estimates of inevitable precaecal CP/AA losses (mg/kg DMI) as affected	85
by natural crude fibre supplementation mainly in the form of corn cob meal	
Table 49. Effects of supplemental fat on inevitable precaecal CP/AA flow	86
(mg/kg BW d ⁻¹) in adult ducks	
Table 50. Effects of supplemental fat on inevitable precaecal CP/AA flow	86
(mg/kg DMI) in adult ducks	
Table 51. Range of estimates for inevitable precaecal CP/AA flow determined	89
for adult ducks	
Table 52. Amino acid composition (g/100g CP) of inevitable precaecal crude	89
protein (6.25 x N) for all precaecal flow studies and for means of pooled studies	
Table 53. Estimated coefficients of precaecal AA/CP digestibility in adult	91
ducks as affected by crude fibre supplementation mainly in the form of α -cellulose	
Table 54. Estimated coefficients of precaecal AA/CP digestibility in adult ducks as	91
affected by crude fibre supplementation mainly in the form of corn cob meal	
Table 55. Effects of dietary fat level in the form of soybean oil on precaecal	92
digestibility (%) of CP/AA in adult ducks	
Table 56. Chemical composition (g/kg DM) and dry matter content (g/kg)	112
of α-cellulose and corn cob meal	
Table 57. Amino acid composition of CP (g/100g CP) inevitably excreted precaecum	118
in broilers, layers and adult roosters	

List of Figures	Page
Figure 1. Global duck meat production (metric tonne per annum) from 1961 to 2005	20
Figure 2. Global duck export volume (metric tonne per annum) from 1990 to 2003	20
Figure 3. Schematic simulation of inevitable endogenous losses for this research work	23
Figure 4. Schematic representation of regression approach to estimate inevitable N losses	24
Figure 5. Diagrammatic representation of intestinal segments and ileal sampling procedure	29
Figure 6. N accretion (y) of ducklings in response to dietary N concentration (x)	52
Figure 7. N accretion (y) of adult ducks in response to dietary N concentration (x)	53
Figure 8. Cumulative efficiencies of nitrogen utilisation in ducklings	54
Figure 9. Marginal efficiencies of nitrogen utilisation in ducklings	55
Figure 10. Cumulative efficiencies of nitrogen utilisation in adult ducks	56
Figure 11. Marginal efficiencies of nitrogen utilisation in adult ducks	56
Figure 12. N excretion (mg/kg BW d ⁻¹ or mg/kg DMI) of ducklings in response	59
to N intake (mg/kg BW d ⁻¹ or mg/kg DMI)	
Figure 13. N excretion (mg/kg BW d ⁻¹ or mg/kg DMI) of adult ducks in response	60
to N intake (mg/kg BW d ⁻¹ or mg/kg DMI)	
Figure 14. N accretion (mg/kg BW d ⁻¹ or mg/kg DMI) of ducklings in response to	61
N intake (mg/kg BW d ⁻¹ or mg/kg DMI)	
Figure 15. N accretion (mg/kg BW d ⁻¹ or mg/kg DMI) of adult ducks in response to	62
N intake (mg/kg BW d ⁻¹ or mg/kg DMI)	
Figure 16. TiO ₂ excretion (mg/d) in ducklings and adult ducks in response to	68
TiO ₂ intake (mg/d)	
Figure 17. Mean of pooled IPL estimates (mg/kg BW d ⁻¹) for individual amino acids	88
and nitrogen obtained from both the crude fibre studies and from both the	
cellulose and fat studies	
Figure 18. Mean precaecal digestibility of CP/AA in adult ducks based on two	94
precaecal studies	

Figures in Appendices	Page
Appendix Figure 13. Precaecal flow (mg/kg BW d ⁻¹) of amino acid or crude protein	186
depending on intake (mg/kg BW d ⁻¹) in adult ducks as affected by crude fibre	
supplementation mainly in the form of synthetic α-cellulose	
Appendix Figure 14. Precaecal flow (mg/kg BW d ⁻¹) of amino acid or crude protein	189
depending on intake (mg/kg BW d ⁻¹) in adult ducks as affected by crude fibre	
supplementation mainly in the form of corn cob meal	
Appendix Figure 15. Precaecal flow (mg/kg BW d ⁻¹) of amino acid or crude protein	192
depending on intake (mg/kg BW d ⁻¹) in adult ducks fed varying levels of dietary fat	
in the form of soybean oil	
Appendix Figure 16. Precaecal digested amino acids (mg/d) depending on intake	195
(mg/d) in adult ducks as affected by crude fibre supplementation mainly in	
the form of synthetic α-cellulose	
Appendix Figure 17. Precaecal digested amino acids or crude protein (mg/d)	198
depending on intake (mg/d) in adult ducks as affected by crude fibre supplementation	
mainly in the form of corn cob meal	
Appendix Figure 18. Precaecal digested amino acid or crude protein (mg/d)	201
depending on intake (mg/d) in adult ducks as affected by dietary fat supplementation	
in the form of soybean oil	

List of abbreviation

AA Amino acid ALA Alanine

APD Apparent precaecal digestibility

ARG Arginine **ASP** aspartic acid BWbody weight °C degree Celsius Calcium Ca corn cob meal **CCM** CF crude protein CP crude protein Cystine **CYS** Day d

EHC enzyme hydrolysed casein ENL Endogenous nitrogen losses

g Gram
GLY Glycine
GLU glutamic acid
His Histidine

IFLinevitable faecal lossesILinevitable lossesILEUIsoleucine

IPL inevitable precaecal losses IUL inevitable urinary losses

kg Kilgramme
kJ kilo joules
LEU Leucine
LYS Lysine
MET Methionine

ME metabolisable energy

ME_n metabolisable energy nitrogen corrected

MJ mili joules N Nitrogen

Nmnitrogen maintenanceNPNnon protein nitrogen

P Phosphorus
P Probability
pc Precaecal

PDR Precaecal digestibility by regression

PHE phenylalanine PRO Praline

PSE Pooled standard error SAA sulphur amino acid SE standard error

SER Serine

SPD Standardised precaecal digestibility

THR Threonine titanium dioxide

TPD true precaecal digestibility

TRP tryptophan VAL valine

1 Introduction

There is a need to study and estimate the minimum nutrient need of farm species. This is in line with economic and environmental considerations. With regards to dietary nitrogen (crude protein and amino acids), the minimum nitrogen requirement is the inevitable losses. It forms an integral component of the total animal requirement that is used to maintain the nitrogen integrity of the animal. It can be readily understood, therefore, that it is fundamental to the total nitrogen requirement, and would have to be met before dietary nitrogen is diverted to growth or some other index of production. Estimates of inevitable losses are useful in modern feed evaluation where a distinction is made between the nitrogen requirement of the animal and the nitrogen supplying capacity of different feedstuffs (Short et al., 1999; Lemme et al., 2004). Again, inevitable losses may help to explain the discrepancies in amino acids and protein utilisation commonly observed among poultry species (Kluth and Rodehutscord, 2006). Similarly, research into inevitable losses is justifiable on the premise that estimates of inevitable losses are useful to determine the animal requirements based on the factorial approach (Rodehutscord, 2006). As reviewed by Owens and Pettigrew (1989) and D'Mello (2003), factorising the total requirement into its inevitable fractions and those for production (or growth) provides a non-static basis for extrapolation of requirements to animals differing in environment and production specifications. Moreover, since the modelling of requirement is tending to be more conventional (Moughan and Fuller, 2003) inevitable losses and indeed the total maintenance should no more be based on assumptions rather they should be systematically studied. Studies in these regards should as well include thorough investigations into possible physiological and dietary modulating factors. A review of terminologies and literature with special relevance to the overall title is hereby presented as an important prelude to the main objectives and reports on the experimental investigations undertaken.

2 Literature review, definitions and objectives

2.1 Theory of N maintenance

Generally, N maintenance is the amount of nitrogen needed by an animal under resting condition and in optimal environment to maintain zero nitrogen balance. In the maintenance state, nitrogen is neither gained nor lost, that is, a state of nitrogen equilibrium. Requirement for maintenance must first be satisfied before an animal can utilise any protein or amino acid for growth or production.

Although, maintenance is a hypothetical state, it is explained by experimental data (Fisher and Scott, 1954) showing that proportional needs for certain amino acids do not fully match animal body composition. Also it is demonstrated in the fact that protein accretion does not occur in matured animals yet there is still an obligatory protein requirement by this age group. These aspects have been reviewed by Owen and Pettigrew (1989), who noted that the use of carcass amino acid accretion to estimate net requirement is inadequate because maintenance portion is not considered.

2.2 Physiological basis of N maintenance and inevitable losses

During nitrogen (crude protein or amino acid, CP/AA) equilibrium, protein and amino acids metabolism nonetheless continue for the sustenance of life. This sustenance of life involves obligatory and irreversible processes (Table 1) that must continuously use nitrogen. These nitrogen (N) usages would not result in some 'growth' but in maintenance and therefore represent net loss to the overall nitrogen nutrition of the animal. Therefore, they are referred to as 'inevitable losses'.

Current information regarding the sources of inevitable losses contributing to physiological maintenance have been summarised by Fuller (1994), Moughan (1994), and Moughan and Fuller (2003). Major processes are:

- a. Body protein turnover (Urinary N excretion)
- b. Urinary amino acid loss
- c. Irreversible modification of amino acids
- d. Gut endogenous N losses
- e. Synthesis of non protein nitrogen (NPN)

Table 1. Physiological processes contributing to N maintenance requirement

Processes	Amino acid	Consumption routes
Synthesis of NPN	Methionine	glutathione, taurine,
		choline, creatine,
		methylation reactions
	Lysine	Carnitine
Neurotransmitters and	Tryptophan	Serotonine, melatonin
hormones		
	Tyrosine and	Neurotransmitters (Dopa,
	glutamate	adrenaline), hormones
		(thyroxine)
	Histidine	Histamine, carnosine,
		anserine
	Glycine	Nucleic acid bases, haem,
		creatine
Replacement of	Histidine	1-methylhistidine, 3-
irreversibly modified		methylhistidine
AA		
	Lysine	Hydroxylysine,
		methyllysine

Adapted from Fuller, 1994 and D'Mello, 2003

Inevitable losses are excreted via different routes such as the urine and faeces. Based on their routes of excretion, inevitable losses may be simplified and mathematically described according to the following equations:

Inevitable losses = faecal (IFL) + urinary (IUL) + Scurf equation 1

Maintenance cost = Inevitable losses / Efficiency of utilisation equation 2

Based on equation 1, three avenues of losses contribute to the total maintenance cost. These are inevitable faecal losses, inevitable urinary losses and inevitable scurf or integument losses.

Inevitable Faecal Losses (IFL): These are the nitrogen recovered from the digestive tract under condition of zero N intake. They are contributed by unreabsorbed enzyme residues, mucins, abraded gut linings and microbial debris.

Inevitable Urinary Losses (IUL): Sometimes referred to as minimum amino acid oxidation, or as inevitable catabolism (Black, 2000). It measures nitrogen resulting from inefficiency in basal body protein turnover. Free amino acids that are lost in the urine (O'Dell et al., 1960) may possibly be included in this scheme as well (Moughan and Fuller, 2003). A recent review of quantitative data on these losses concluded that they range between 126-207 mg/kg BW^{0.75} with an average value of 155 mg/kg BW^{0.75} in swine (Black, 2000). Leeson and Summers (2001) suggested that IUL in adult birds on a N free diet is about 140 mg/kg BW^{0.75} and IFL is about 40 mg/kg BW^{0.75}

Inevitable Scurf Losses: these are the nitrogen losses originating from integument structures such as feathers, hairs, horns, nails, beaks and skin. In swine, scurf losses form only about 2 % of the total N maintenance (Fuller, 1991 as cited by Fuller, 1994). Moughan (1999) has provided information indicating that about 17 mg/kg^{0.75} d⁻¹ of nitrogen is lost via the integuments in growing pigs.

Efficiency of N utilisation: the efficiency value in the total maintenance requirement is necessitated by the fact that inevitable losses is a 'net' value, and that their supply must take cognisance of inefficiencies in utilisation of protein supplied either through body protein reserves or from dietary sources (Fuller, 1988). The inefficiencies in utilisation of protein in meeting inevitable losses mainly come from oxidative losses of absorbed dietary nitrogen (Heger and Frydrych, 1985) and to a lesser extent from incomplete digestion of dietary sources. Oxidative losses comes about because the array of limiting amino acids in the body protein to be replenished usually differ to those of the source of re-supply, meaning that their content of non-required amino nitrogen is not utilised.

2.3 Experimental approaches to study and estimate inevitable losses

The measurements of inevitable losses depend on the route of excretion. To do this, two basic and simple sampling approaches exist namely tissue carcass retention analysis (Fatufe and Rodehutscord, 2005) and N balance (Burnham and Gous, 1992; Xu et al., 2002). Between these methods, tissue carcass analysis is regarded as the more direct and accurate approach since N balance method might be more susceptible to errors, the most important being incomplete recovery of excreted nitrogen (Eggum, 1989; McNab, 1994). However, N balance assays provide more detailed information, flexibility and obviously less experimental efforts when working with large animals. With the N balance approach, it is possible to collectively study the total maintenance requirements, as well as individual aspects of inevitable losses according to schemes depicted by equations 1 and 2 (section 2.2).

In using the N balance method to study inevitable losses, it is noteworthy to mention that peculiar cases exist for the different livestock species. First, in poultry unlike in swine or ruminants, scurf losses may conveniently be categorised not as maintenance cost but as part of the productive or growth cost. This is for practical reasons because in poultry feathers preserve carcass value, are saleable products (see review of Pingel, 2004) and impacts energy utilisation in cold environments. Secondly, because urine and faeces are voided together as excreta in poultry, inevitable faecal losses (IFL) and urinary losses (IUL) may be measured together as inevitable losses (IL).

There is yet another variant of inevitable losses, in which case these losses are measured at the terminal ileum as inevitable precaecal losses (IPL). IPL is contained in IFL. IPL is useful for modern feed evaluation schemes (further discussed in the section on practical uses of inevitable losses, section 2.5). This is because current information indicate that precaecal rather than excreta digestibility more accurately reflects protein availability in poultry (Ravindran et al., 1999), and that amino acid absorption beyond the terminal ileum does not contribute to the protein nutrition of the animal (Jamroz et al., 2001).

In conjunction with both of the above mentioned sampling techniques of carcass analysis or the N balance, quantitative estimation of the above discussed aspects on inevitable losses can be undertaken by the construction of regression equations

describing the existing relationships between nitrogen (CP/AA) intake and some measure of N utilisation such as N accretion or N excretion. This is the basis of the so called regression approach (Nyachoti et al., 1997). This approach forms the basis of the experiments reported in this thesis and it is further explained in the next section under materials and methods.

In addition to the regression method, experimental efforts may also use an array of other common but different techniques as summarised on Table 2. All these methods operate on different assumptions, and have come under the scrutiny of reviewers (Nyachoti et al., 1997; Lemme et al., 2004). Some investigators have undertaken studies including comparative ones looking into their usability, validity and accuracy (Donkoh et al., 1995; Schulze et al., 1995; Angkanaporn et al., 1996a; Angkanaporn et al., 1997a). However, the accuracy and reliability of many of these techniques are still unclear (Angkanaporn et al., 1977b), although some are of the opinion that the enzyme hydrolised casein (EHC) is perhaps the most accurate and reliable for poultry simply because it overcomes most of the draw backs of the other methods (Lemme et al., 2004).

It is also clear from literature that each of these methods are suitable for different experimental conditions, an instance is the EHC which is restricted to semi purified diets and not usable to study proteins in practical diets containing high levels of anti nutritional factors (Nyachoti et al., 1997). Sometimes different quantitative interpretations are given to the different techniques. For example, estimates given by homoarginine and radioisotope dilution refer to total endogenous secretion of nitrogen (Lemme et al., 2004). On the other hands, the conventional methods such as the N-free diet, feeding highly digestible protein, peptide alimentation technique, and the regression techniques refer to inevitable losses. It should be noted therefore, that inevitable losses are integral part of the total endogenous losses, the latter containing an additional quantity referred to as specific endogenous losses which results directly from intrinsic effects of the diet components per se (Nyachoti et al., 1997). Specific losses may be obtained by subtracting inevitable losses from the total endogenous losses (Stein et al., 2007).