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1 Introduction

There is a need to study and estimate the minimum nutrient need of farm species. This 

is in line with economic and environmental considerations. With regards to dietary 

nitrogen (crude protein and amino acids), the minimum nitrogen requirement is the 

inevitable losses. It forms an integral component of the total animal requirement that 

is used to maintain the nitrogen integrity of the animal. It can be readily understood, 

therefore, that it is fundamental to the total nitrogen requirement, and would have to 

be met before dietary nitrogen is diverted to growth or some other index of 

production. Estimates of inevitable losses are useful in modern feed evaluation where 

a distinction is made between the nitrogen requirement of the animal and the nitrogen 

supplying capacity of different feedstuffs (Short et al., 1999; Lemme et al., 2004). 

Again, inevitable losses may help to explain the discrepancies in amino acids and 

protein utilisation commonly observed among poultry species (Kluth and 

Rodehutscord, 2006). Similarly, research into inevitable losses is justifiable on the 

premise that estimates of inevitable losses are useful to determine the animal 

requirements based on the factorial approach (Rodehutscord, 2006). As reviewed by 

Owens and Pettigrew (1989) and D’Mello (2003), factorising the total requirement 

into its inevitable fractions and those for production (or growth) provides a non-static 

basis for extrapolation of requirements to animals differing in environment and 

production specifications. Moreover, since the modelling of requirement is tending to 

be more conventional (Moughan and Fuller, 2003) inevitable losses and indeed the 

total maintenance should no more be based on assumptions rather they should be 

systematically studied. Studies in these regards should as well include thorough 

investigations into possible physiological and dietary modulating factors. A review of 

terminologies and literature with special relevance to the overall title is hereby 

presented as an important prelude to the main objectives and reports on the 

experimental investigations undertaken.   
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2 Literature review, definitions and objectives 

2.1 Theory of N maintenance 

Generally, N maintenance is the amount of nitrogen needed by an animal under 

resting condition and in optimal environment to maintain zero nitrogen balance. In the 

maintenance state, nitrogen is neither gained nor lost, that is, a state of nitrogen 

equilibrium. Requirement for maintenance must first be satisfied before an animal can 

utilise any protein or amino acid for growth or production.

Although, maintenance is a hypothetical state, it is explained by experimental data 

(Fisher and Scott, 1954) showing that proportional needs for certain amino acids do 

not fully match animal body composition. Also it is demonstrated in the fact that 

protein accretion does not occur in matured animals yet there is still an obligatory 

protein requirement by this age group. These aspects have been reviewed by Owen 

and Pettigrew (1989), who noted that the use of carcass amino acid accretion to 

estimate net requirement is inadequate because maintenance portion is not considered.   

2.2 Physiological basis of N maintenance and inevitable losses 

During nitrogen (crude protein or amino acid, CP/AA) equilibrium, protein and amino 

acids metabolism nonetheless continue for the sustenance of life. This sustenance of 

life involves obligatory and irreversible processes (Table 1) that must continuously 

use nitrogen. These nitrogen (N) usages would not result in some ‘growth’ but in 

maintenance and therefore represent net loss to the overall nitrogen nutrition of the 

animal. Therefore, they are referred to as ‘inevitable losses’.  

Current information regarding the sources of inevitable losses contributing to 

physiological maintenance have been summarised by Fuller (1994), Moughan (1994), 

and Moughan and Fuller (2003). Major processes are:

a. Body protein turnover (Urinary N excretion) 

b. Urinary amino acid loss 

c. Irreversible modification of amino acids 

d. Gut endogenous N losses 

e. Synthesis of non protein nitrogen (NPN) 
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Table 1. Physiological processes contributing to N maintenance requirement 

Processes Amino acid Consumption routes 

Synthesis of NPN Methionine glutathione, taurine,  

  choline, creatine, 

methylation reactions 

 Lysine Carnitine 

Neurotransmitters and 

hormones 

Tryptophan Serotonine, melatonin 

 Tyrosine and 

glutamate 

Neurotransmitters (Dopa, 

adrenaline), hormones 

(thyroxine)

 Histidine Histamine, carnosine, 

anserine 

 Glycine Nucleic acid bases, haem, 

creatine

Replacement of 

irreversibly modified 

AA

Histidine 1-methylhistidine, 3-

methylhistidine 

 Lysine Hydroxylysine, 

methyllysine 

Adapted from Fuller, 1994 and D’Mello, 2003 

Inevitable losses are excreted via different routes such as the urine and faeces. Based 

on their routes of excretion, inevitable losses may be simplified and mathematically 

described according to the following equations: 

Inevitable losses = faecal (IFL) + urinary (IUL) + Scurf …..….…………... equation 1   

Maintenance cost = Inevitable losses / Efficiency of utilisation  ..……...…. equation 2 

Based on equation 1, three avenues of losses contribute to the total maintenance cost. 

These are inevitable faecal losses, inevitable urinary losses and inevitable scurf or 

integument losses.  
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Inevitable Faecal Losses (IFL): These are the nitrogen recovered from the digestive 

tract under condition of zero N intake. They are contributed by unreabsorbed enzyme 

residues, mucins, abraded gut linings and microbial debris.  

Inevitable Urinary Losses (IUL): Sometimes referred to as minimum amino acid 

oxidation, or as inevitable catabolism (Black, 2000). It measures nitrogen resulting 

from inefficiency in basal body protein turnover. Free amino acids that are lost in the 

urine (O’Dell et al., 1960) may possibly be included in this scheme as well (Moughan 

and Fuller, 2003). A recent review of quantitative data on these losses concluded that 

they range between 126-207 mg/kg BW0.75 with an average value of 155 mg/kg 

BW0.75 in swine (Black, 2000). Leeson and Summers (2001) suggested that IUL in 

adult birds on a N free diet is about 140 mg/kg BW0.75 and IFL is about 40 mg/kg BW0.75                                  

Inevitable Scurf Losses: these are the nitrogen losses originating from integument 

structures such as feathers, hairs, horns, nails, beaks and skin. In swine, scurf losses 

form only about 2 % of the total N maintenance (Fuller, 1991 as cited by Fuller, 

1994). Moughan (1999) has provided information indicating that about 17 mg/kg0.75 d-

1 of nitrogen is lost via the integuments in growing pigs.   

Efficiency of N utilisation: the efficiency value in the total maintenance requirement 

is necessitated by the fact that inevitable losses is a ‘net’ value, and that their supply 

must take cognisance of inefficiencies in utilisation of protein supplied either through 

body protein reserves or from dietary sources (Fuller, 1988). The inefficiencies in 

utilisation of protein in meeting inevitable losses mainly come from oxidative losses 

of absorbed dietary nitrogen (Heger and Frydrych, 1985) and to a lesser extent from 

incomplete digestion of dietary sources. Oxidative losses comes about because the 

array of limiting amino acids in the body protein to be replenished usually differ to 

those of the source of re-supply, meaning that their content of non-required amino 

nitrogen is not utilised.
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2.3  Experimental approaches to study and estimate inevitable losses 

The measurements of inevitable losses depend on the route of excretion. To do this, 

two basic and simple sampling approaches exist namely tissue carcass retention 

analysis (Fatufe and Rodehutscord, 2005) and N balance (Burnham and Gous, 1992; 

Xu et al., 2002). Between these methods, tissue carcass analysis is regarded as the 

more direct and accurate approach since N balance method might be more susceptible 

to errors, the most important being incomplete recovery of excreted nitrogen (Eggum, 

1989; McNab, 1994). However, N balance assays provide more detailed information, 

flexibility and obviously less experimental efforts when working with large animals. 

With the N balance approach, it is possible to collectively study the total maintenance 

requirements, as well as individual aspects of inevitable losses according to schemes 

depicted by equations 1 and 2 (section 2.2). 

In using the N balance method to study inevitable losses, it is noteworthy to mention 

that peculiar cases exist for the different livestock species. First, in poultry unlike in 

swine or ruminants, scurf losses may conveniently be categorised not as maintenance 

cost but as part of the productive or growth cost. This is for practical reasons because 

in poultry feathers preserve carcass value, are saleable products (see review of Pingel, 

2004) and impacts energy utilisation in cold environments. Secondly, because urine 

and faeces are voided together as excreta in poultry, inevitable faecal losses (IFL) and 

urinary losses (IUL) may be measured together as inevitable losses (IL).  

There is yet another variant of inevitable losses, in which case these losses are 

measured at the terminal ileum as inevitable precaecal losses (IPL). IPL is contained 

in IFL. IPL is useful for modern feed evaluation schemes (further discussed in the 

section on practical uses of inevitable losses, section 2.5). This is because current 

information indicate that precaecal rather than excreta digestibility more accurately 

reflects protein availability in poultry (Ravindran et al., 1999), and that amino acid 

absorption beyond the terminal ileum does not contribute to the protein nutrition of 

the animal (Jamroz et al., 2001). 

In conjunction with both of the above mentioned sampling techniques of carcass 

analysis or the N balance, quantitative estimation of the above discussed aspects on 

inevitable losses can be undertaken by the construction of regression equations 
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describing the existing relationships between nitrogen (CP/AA) intake and some 

measure of N utilisation such as N accretion or N excretion. This is the basis of the so 

called regression approach (Nyachoti et al., 1997). This approach forms the basis of 

the experiments reported in this thesis and it is further explained in the next section 

under materials and methods.  

In addition to the regression method, experimental efforts may also use an array of 

other common but different techniques as summarised on Table 2. All these methods 

operate on different assumptions, and have come under the scrutiny of reviewers 

(Nyachoti et al., 1997; Lemme et al., 2004). Some investigators have undertaken 

studies including comparative ones looking into their usability, validity and accuracy 

(Donkoh et al., 1995; Schulze et al., 1995; Angkanaporn et al., 1996a; Angkanaporn 

et al., 1997a). However, the accuracy and reliability of many of these techniques are 

still unclear (Angkanaporn et al., 1977b), although some are of the opinion that the 

enzyme hydrolised casein (EHC) is perhaps the most accurate and reliable for poultry 

simply because it overcomes most of the draw backs of the other methods (Lemme et 

al., 2004).

It is also clear from literature that each of these methods are suitable for different 

experimental conditions, an instance is the EHC which is restricted to semi purified 

diets and not usable to study proteins in practical diets containing high levels of anti 

nutritional factors (Nyachoti et al., 1997). Sometimes different quantitative 

interpretations are given to the different techniques.  For example, estimates given by 

homoarginine and radioisotope dilution refer to total endogenous secretion of nitrogen 

(Lemme et al., 2004). On the other hands, the conventional methods such as the N-

free diet, feeding highly digestible protein, peptide alimentation technique, and the 

regression techniques refer to inevitable losses. It should be noted therefore, that 

inevitable losses are integral part of the total endogenous losses, the latter containing 

an additional quantity referred to as specific endogenous losses which results directly 

from intrinsic effects of the diet components per se (Nyachoti et al., 1997). Specific 

losses may be obtained by subtracting inevitable losses from the total endogenous 

losses (Stein et al., 2007). 


