

Optical investigations of bioorganic systems by spectrally resolved ellipsometry

Optical investigations of bioorganic systems by spectrally resolved ellipsometry

Dissertation

zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von Danny Chan aus Hamburg

Hamburg, 2005

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2005 Zugl.: Hamburg, Univ., Diss., 2005 ISBN 3-86537-505-7

Gutachter der Dissertation:	Prof. Dr. M. Rübhausen Prof. Dr. U. Hahn
Gutachter der Disputation:	Prof. Dr. M. Rübhausen Dr. R. Wepf
Datum der Disputation:	26.05.2005
Vorsitzender des Prüfungsausschusses:	Dr. K. Petermann
Vorsitzender des Pomotionsausschusses:	Prof. Dr. G. Huber
Dekanin / Dekan des Fachbereichs:	Prof. Dr. G. Huber

© CUVILLIER VERLAG, Göttingen 2005 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2005 Gedruckt auf säurefreiem Papier

ISBN 3-86537-505-7

Inhaltsangabe

Methoden für quantitative Spektroskopie an biologischer Geweben basieren häufig auf der Analyse des diffus gestreuten Lichts [1, 2]. Im Gegensatz dazu wird in dieser Arbeit die spektral aufgelöste Ellipsometrie für biophysikalische Anwendungen diskutiert. Die Ellipsometrie misst die Änderung der Polarisation von Licht bei der direkten Reflexion an einer Probenoberfläche. Diese Technik hat mehrere interessante Eigenschaften, wie z.B. Selbstnormalisierung, niedrige Energiedichten im Strahl und Empfindlichkeit auf morphologische und chemische Parameter über den komplexen Brechungsindex. Die hohe Informationsdichte der Messungen erfordern jedoch eine nicht-triviale, numerisch aufwendige Auswertung.

In Wissenschaft und Industrie wird die Ellipsometrie zumeist für die Charakterisierung von Festkörpersystemen mit kontrollierten und gut strukturierten Eigenschaften eingesetzt. Die bei biologischen Systemen deutlich erhöhte Komplexität der Morphologie der Systeme ist sicherlich mit ein Grund für die geringe Anzahl an wissenschaftlichen Publikationen in diesem Feld. Als Beispiele für Veröffentlichungen in diesem Bereich seien hier Untersuchung von Insektenflügeln und Muskelfasern genannt, sowie Messungen der Hydrationsdynamik menschlicher Nägel [3–5].

Die biologischen Systeme in dieser Arbeit sind zumeist Haut und Hautanhänge wie Haare und Nägel. Die Bedeutung dieser Gewebe für landgebundenes Leben sollte nicht unterschätzt werden. Im Laufe dieser Arbeit wurden hierbei Messungen der Hydrationsdynamik menschlicher Nägel gemacht, welche zeigen, dass Ellipsometrie zwischen gebundenem und freien Wasser unterscheiden kann. Eine im weiteren durchgeführte "Tapestripping"-Studie zeigt, dass die Technik detaillierte Profile der optischen und strukturellen Parameter der menschlichen Haut liefern kann. Die zu Ende der Arbeit gezeigten Resultate von menschlichen Haaren schließlich betonen die Empfindlichkeit der Technik für Oberflächeneffekte. Die dabei gezeigte Differenzierung zwischen Proben mit unterschiedlichen, typischen Produktbehandlungen demonstrieren, dass Ellipsometrie eine für industrielle Applikationen interessante Technik darstellt.

Zuletzt zeigen erste Messungen an den Wurzeln von *allium cepa*, der gewöhnlichen Küchenzwiebel, dass dieses System ein geeignetes Modellsystem darstellt, um ein tieferes Verständnis für die Ausbreitung von polarisiertem Licht in biologischen Geweben zu erlangen, insbesondere in Hinblick auf den Einfluss des experimentellen Setups selber.

Die Zusammenfassung der gesammelten Erfahrungen führt schließlich auf eine Liste von instrumentellen Eigenschaften, welche von einem für biologische Applikationen optimierten Ellipsometer erfüllt werden sollten.

Introduction

Methods for quantitative tissue spectroscopy are often based on the analysis of diffusively scattered light [1, 2]. This work in contrast discusses the application of spectrally resolved ellipsometry to biophysical problems. Optical ellipsometry is a technique that measures the change in polarization of a light beam due to direct reflection on a sample surface. It has several interesting properties, such as self normalization, low power densities in the probe beam and sensitivity to both morphological as well as chemical parameters. The high information density of ellipsometric spectra however comes with the price of a non-trivial analysis.

Ellipsometry is used in the scientific community and in industrial applications for the characterization of solid state systems, where the samples under investigation are typically well controlled and well structured, thereby reducing the complexity of the analysis considerably. This is a likely reason for the lack of ellipsometric applications for bioorganic systems in the literature. Publications employing ellipsometry for biological systems include investigations of the structure of insect wings and muscle fibers, as well as measurements of the hydration dynamics of human nails [3–5].

The biological systems investigated in this work are mainly skin and skin appendages such as hairs and nails. The importance of these systems for terrestrial live cannot be overemphasized. In the course of this work, measurements of the hydration dynamics of human nails were performed, that show the ability of ellipsometric techniques to distinguish between bound and free water in a bioorganic sample. A tapestripping study on human skin reveals the depth profile of structural parameters of the skin and shows, that ellipsometry is able to resolve fine details in the optical and structural parameters. Finally, measurements on human hair show the sensitivity of ellipsometry to surface roughness effects in biological media. The ability of ellipsometry to resolve the effects of typical products on the hair emphasizes, that this technique can become a useful technique for industrial applications.

Somewhat unrelated biologically are measurements on *allium cepa*, the normal onion. The preliminary results of these measurements show however, that this system can be used as a simple model system to gain a deeper understanding of the interaction of polarized light in biological tissues, especially with regard to the influence of the instrumental setup.

The experience gained in the course of this work leads finally to a characterization of the most beneficial properties of ellipsometry for biological applications and a listing of instrumental properties for a specialized bio-ellipsometer.

Contents

Co	onter	tents	
\mathbf{Li}	st of	Figures	9
1	The	eory and Instrumental Details	13
	1.1	Principle of Ellipsometry	13
		1.1.1 Maxwell Equations	14
		1.1.2 Mathematical Representation of Polarization	15
		1.1.3 Jones Vector and Jones Matrix Formalism	16
		1.1.4 Photometric Ellipsometry	17
	1.2	Modelling Ellipsometric Spectra	18
		1.2.1 Reflection on a Bulk System - the Fresnel Coefficients	18
		1.2.2 Layered systems	20
		1.2.2.1 Ambient/Film/Substrate system	20
		1.2.2.2 Stratified planar isotropic systems	21
		1.2.3 Effective Medium Approximation	23
	1.3	Numerical Optimization	24
		1.3.1 L-BFGS-B	25
		1.3.2 Differential Evolution	26
		1.3.3 Simulated Annealing	28
	1.4	Instrumental Details	30
2	Inve	estigated Biological Systems: Skin and Skin Appendages	33
	2.1	Nail	33
	2.2	Skin	35
	2.3	Hair	37
3	Exp	periments	41
	3.1	Studies on Allium Cepa	41
	3.2	Hydration Studies on Human Fingernails	43
		P I Hydration dynamics of human fingernails: An ellipsometric study .	56
		P II Spectroscopic ellipsometry on biological materials — investigation of	
		hydration dynamics and structural properties	61

Contents

3.3	In-Viv	o Study on Human Skin	61
	P III	In-vivo spectroscopic ellipsometry measurements on human skin	75
3.4	Struct	ural Studies on Human Hair	75
	3.4.1	Single Hair Measurements	75
	3.4.2	Measurements on Hair Strands	76
	3.4.3	A Dielectric Model of the Hair	85
	P IV	Structural investigations of human hairs by spectrally resolved ellip-	
		sometry	103
a			
Sun	nmary		103
Cor	clusio	ns and Outlook	105
COL	leiubioi		100
bliog	graphy		109
cknov	wledge	ments	113
A A Programmer's Overview over ElliPv2		115	
	3.3 3.4 Sun Con bliog cknov A P	3.3 In-Viv P III 3.4 Struct 3.4.1 3.4.2 3.4.3 P IV Summary Conclusion bliography cknowledge A Program	 3.3 In-Vivo Study on Human Skin

List of Figures

1.1	Schematic setup of an ellipsometer. R_p , R_s : complex reflection coefficients for parallel and perpendicular component, respectively; α_1 , α_2 : angle of the polarizer and analyzer; ϕ_0 : angle of incidence.	13
1.2	Parameters determining the Polarization Ellipse: Azimuth angle Θ , ampli- tude A and ellipticity $\tan \epsilon = b/a$. The time dependence of the electric field vector can be described by superposition of two linearly, along the coordinate axis polarized orthogonal waves $E_x(\vec{r}, t)$ and $E_y(\vec{r}, t)$.	16
1.3	Interference in an ambient/film/substrate system	21
1.4	Influence of interface roughnesses on the polarization; a) The optical path length of the partial waves is changed by the height modulation of the in- terface roughness; b) The interface roughness is modelled by an additional layer with an effective complex refractive index given by an effective medium comprised of the two media.	24
2.1	Schematic picture of the human fingernail; PNF: proximal nail fold, NM: nail matrix, CU: cuticle, L: lunula, NB: nail bed, NP: nail plate, HYP: hyponchium	34
2.2	Schematic overview of skin	35
2.3	Microscopic picture of the epidermis, showing the sublayers in various stages of differentiation	36
2.4	Schematic representation of the hair follicle, showing the inner root sheat (IRS) and the outer root sheath (ORS)	38
2.5	Schematic picture of a hair fibre	38
3.1	Ψ spectrum of an onion root, measured at several positions along the root. Bold line: Ψ spectrum of a silicon wafer	42
3.2	Comparison of the behaviour of the refractive index in a nail hydration/dehydra experiment and the dehydration of a piece of bovine liver. a) Changes in the refractive index of a human nail clipping on hydration; both the abso- lute value and the shape of the spectrum are changing; b) Comparison of wavelength averages of the refractive index of a nail hydration experiment and the dehydration of liver; full lines are results of a fit of eq. 3.1	ation 44
		17

3.3	Long time hydration dynamics of nails. a) Volume content profile of the free and bound water states; b) development of the refractive index n and absorption coefficient k in a long time hydration/dehydration experiment; full and dashed line are the result of the model shown schematically in figure	
3.4	3.4	45
	the nail matrix (large circles) and then converted to bound water (small circles). On dehydration evaporation of free water occurs as well as further	
0 5	conversion to bound water	47
3.0 2.6	Comparison of a tangetrin ampriment on human chin (left column) and the	01
3.0	hydration of a human nail clipping (right column). The parameters show	co
37	Model of the human skin for modelling the tapostrip experiments. Colls and	02
0.1	lipid layers are modelled by isotropic layer matrices according to eq. 1.23	
	D_{R} , f_{Air} : thickness and air inclusion of the roughness layer: f_{H2O} : water	
	volume ratio in the cell; D_C : thickness of the cell; D_L , f_L : thickness and cell	
	medium inclusion in the lipid layer; d: distance into the skin	63
3.8	Result of the fit of the model depicted in figure 3.7 for one representative	
	measurement. Full line: measured spectrum; dashed line: calculated spectrum	65
3.9	Results obtained by a fit in a tapestrip experiment. a) assumed water in-	
	clusion profile f_{H2O} ; b) air inclusion f_{Air} in the roughness layer; c) lipid	
	inclusion f_L in the lipid layer; d) thickness of the roughness layer D_R ; e)	0-
9 10	thickness of the cell layer D_C ; f) thickness of the lipid layer D_L	65
3.10	Sample holder for single hair measurements consisting of pieces of sand-	76
3 11	Single hair measurements on 10 positions along an european natural blond	10
0.11	hair Left: hair oriented parallel to the plane of incidence: right: hair	
	oriented perpendicular to the plane of incidence. Values of Δ in the range	
	$180^\circ \le \Delta \le 360^\circ$ are mapped to the range $-180^\circ - 0^\circ$ for better visibility	
	of the zero crossings in the parallel orientation	77
3.12	Setup for measurements on hair strands. The hairs are fixated in a bridge	
	configuration to prevent back reflexes from the sample holder	78
3.13	Measurements of Ψ and Δ on strands of human hair from single persons. Left	
	column: measurements on darker hair types; right column: measurements	
	on brighter hair types. For each person, two samples were measured, marked	70
914	by equal color and the circles. \dots	79
J.14	$\Psi \rightarrow \Delta$ spectra for two samples with unlefent angle of incluence φ_0 . Left:	
	the refractive index in the same wavelength range with an v-axis scaling	
	from 1.38 to 1.48. The lower insets are the absorption coefficient k in the	
	same wavelength range with an y-axis scaling from 0 to 0.15. The complex	
	refractive indices were computed assuming the bulk model from eq. 1.17 .	79

3.15	Ψ - Δ spectra of european natural blond hairs, damaged by different exposure to artificial sunlight	80
3.16	Ψ - Δ spectra of hairs treated with two hair sprays. Left column: european	00
	trum is the average of ten samples prior to product application. The spectra	
	labeled "product 1" and "product 2" are each averages of the spectra of five	
	treated samples. Error bars give the standard deviation over all measurements.	81
3.17	Ψ - Δ spectra of undamaged, european natural blond hairs treated by two	
	different shampoos. Dashed line indicates height of the Δ spectrum in the region 400 to 600 pm, while arrows estimate the glope of the survey. For each	
	treatment, three samples are shown. Error bars give the standard deviation	
	of the measurements on different positions on one sample.	83
3.18	Ψ - Δ spectra of damaged, bleached european natural blond hairs treated by	
	two different shampoos. Dashed lines indicate height and position of the	
	peak in the Δ spectrum in the region 400 to 600 nm. For each treatment,	
	three samples are shown. Error bars give the standard deviation of the	Q /
3.19	Schematic representation of the dielectric layer model for human hair d_{ACC} :	04
0.10	thickness interface air/cuticle; f_A : effective medium ratio cuticle/air; d_{Cu} :	
	thickness cuticle; n_{Cu} , k_{Cu} : refractive index and absorption coefficient of the	
	cuticle; d_{CuCo} : thickness interface cuticle/cortex; f_{CuCo} : effective medium	
	ratio cortex/cuticle; n_{Co} , k_{Co} : refractive index and absorption coefficient of	
2 20	the cortex	85
3.20	Full lines: measured spectra: dashed lines: calculated spectra given by the	
	model shown in figure 3.19 while assuming constant dispersions for the cu-	
	ticle and the cortex. a) european black; b) european brown; c) european	
	natural blond; d) chinese; e) european blond; f) european red	87
3.21	Ψ - Δ spectra calculated from the model of figure 3.19 using two different	
	values for the thickness of the cuticle. Full line: $d_{Cu} = 1.72 \mu\text{m}$; dashed line: $d_{cu} = 1 \mu\text{m}$	88
3.22	$a_{Cu} = 1 \mu \text{m}$	00
0	fits to Ψ - Δ measurements on human hair strands. 1: european black, 2:	
	european brown, 3: european natural blond, 4: chinese, 5: european blond,	
	6: european red. Column 5 and 6 belong to hairs showing a peak structure	
	in the parameter Δ . The most prominent differences to the other samples	00
3 23	are marked by bold typeface	88
0.20	Full lines: measured spectra; dashed lines: calculated spectra given by the	
	model shown in figure 3.19. Left column: european black hair; right column:	
	european blond hair. The model was first assuming constant dispersions as	
	for figure 3.20, followed by a pointwise fit of the cuticle and cortex dispersion	00
	while holding the structural parameters fixed	89

3.24	Optical parameters of the cuticle and cortex of an european natural black	
	hair. Left column: refractive index and absorption coefficient of the cuticle;	
	right column: refractive index and absorption coefficient of the cortex. The	
	optical parameters were obtained by a fit of the model while assuming con-	
	stant dispersions, followed by fitting the dispersions wavelength dependent	
	while keeping the structural parameters fixed	90
3.25	Δ spectrum caused by changing structural and optical parameters of the	
	cuticle/air interface. a) Change in the thickness of the roughness layer; b)	
	change in the air content of the roughness layer; c) change in the absorption	
	coefficient k of the cuticle.	92

Chapter 1 Theory and Instrumental Details

1.1 Principle of Ellipsometry

The measurements described in this thesis were made using spectrally resolved ellipsometry. While the basic experimental setup of an ellipsometer is relatively simple, the interpretation of the measured spectra is not trivial.

In ellipsometry, the change in polarization of a light beam upon reflection on a sample is measured. The basic setup of an ellipsometer is shown in figure 1.1. A light beam from a white light source or a monochromatic source such as a laser is polarized and incident on the sample under an angle ϕ_0 with the surface normal. The directly reflected light from the sample surface is analyzed using a second polarizer. The resulting intensity in dependence on the analyzer angle is then detected at the detector.

Figure 1.1: Schematic setup of an ellipsometer. R_p , R_s : complex reflection coefficients for parallel and perpendicular component, respectively; α_1 , α_2 : angle of the polarizer and analyzer; ϕ_0 : angle of incidence.

The polarization change is quantified in terms of the ellipsometric parameters Ψ and Δ . These parameters are related to the sample properties by

(1.1)
$$\tan \Psi e^{i\Delta} = \frac{R_p}{R_s}$$