


Facets of Online Optimization
Online Dial-a-Ride Problems and Dynamic

Configuration of All-Optical Networks

vorgelegt von
Dipl.-Math. Diana Poensgen

Berlin

Von der Fakultät II – Mathematik- und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Dirk Ferus
1. Berichter: Prof. Dr. Martin Grötschel
2. Berichter: Dr. Sven O. Krumke

Tag der wissenschaftlichen Aussprache: 26. August 2003

Berlin 2003

D 83



Bibliografische Information Der Deutschen Bibliothek 

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen 

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über 

http://dnb.ddb.de abrufbar. 

1. Aufl. - Göttingen : Cuvillier, 2003 

Zugl.: Berlin, Univ., Diss., 2003 

ISBN 3-89873-919-8
 

 

  

 

 

 

 

�  CUVILLIER VERLAG, Göttingen 2003 

     Nonnenstieg 8, 37075 Göttingen 

      Telefon: 0551-54724-0 

      Telefax: 0551-54724-21 

      www.cuvillier.de 

 

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung  

des Verlages ist es nicht gestattet, das Buch oder Teile 

daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) 

zu vervielfältigen. 

1. Auflage, 2003 

Gedruckt auf säurefreiem Papier 

 

ISBN 3-89873-919-8



Zusammenfassung

Die Online-Optimierung befasst sich mit Optimierungsproblemen, die unmittel-
bare und schnelle Entscheidungen auf Basis unvollständiger Information erfordern.
In dieser Arbeit untersuchen wir zwei Klassen von Online-Optimierungsproblemen:
Online-Dial-a-Ride-Probleme und die dynamische Konfiguration optischer Netze.
Bei einem Online-Dial-a-Ride-Problem muss ein Bediengerät Transportaufträge aus-
führen, die im Verlauf der Zeit eintreffen. Typische Anwendungen sind die Steuerung
von Aufzügen sowie Auslieferdienste. Die Aufgabe bei der dynamischen Konfigura-
tion optischer Telekommunikationsnetze besteht darin, nach und nach eintreffende
Verbindungsanfragen zu routen oder sie abzulehnen. Das Ziel ist es, den durch die
Annahme von Anfragen erhaltenen Gesamtprofit zu maximieren. Dabei müssen spe-
zielle Eigenschaften der optischen Technologie berücksichtigt werden.

Wir betrachten Online Dial-a-Ride Probleme mit zwei verschiedenen Zielfunk-
tionen: der gewichteten Summe der Bedienzeiten und der maximalen Flusszeit. Für
die Summe der Bedienzeiten stellen wir neue Algorithmen vor und bewerten sie
mittels kompetitiver Analyse. Zusätzlich beweisen wir neue untere Schranken. Al-
le vorgestellten Resultate verbessern die bisher bekannten Ergebnisse. Die maximale
Flusszeit ist für die Praxis besonders relevant, da sie ein Maß für die maximale Kun-
denunzufriedenheit darstellt. Hier zeigt sich die Schwäche der kompetitiven Analy-
se: Werden Online-Algorithmen mit diesem worst-case-Ansatz evaluiert, so sind sie
alle beliebig schlecht. Wir präsentieren eine natürliche Modifikation der kompetiti-
ven Analyse, die es uns erlaubt, den ersten beweisbar kompetitiven Algorithmus für
Online-Dial-a-Ride-Probleme mit der maximalen Flusszeit als Zielfunktion zu ent-
wickeln.

Für die Konfiguration optischer Netze stellen wir wir ein neues Online-Modell
vor, das eine Vielzahl von Anforderungen aus der Praxis abbildet. Zudem entwickeln
wir eine Reihe von praxisnahen sowie von theoretisch motivierten Algorithmen. Die
zum Teil recht komplexen praxisnahen Algorithmen vergleichen wir mit bekann-
ten Greedy-Algorithmen mittels Simulation. Dazu erzeugen wir Verbindungsanfra-
gen für zwei existierende Topologien anhand eines fundierten Verkehrsmodells, das
auf realen Daten basiert. Auf den betrachteten Probleminstanzen ist der beste Greedy-
Algorithmus nur dann annähernd so gut wie der beste der neuen Algorithmen, wenn
die Tie-Breaking-Regel sehr sorgfältig ausgewählt wird. Die theoretisch motivierten
Algorithmen, die wir für zwei Teilproblemklassen entwickeln, bewerten wir wieder-
um per kompetitiver Analyse. Sie sind die ersten kompetitiven Algorithmen für die
betrachteten Problemklassen und erweitern damit bekannte Resultate.
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Chapter 1

Introduction

Online Optimization

In classical optimization, all input data of a problem instance is assumed to be avail-
able at once. Many real-life problems, however, require decisions before information
about the data is complete. This insight has prompted the research in online opti-
mization. In an online optimization problem, decisions have to be made while parts
of the data are still missing.

Many real-life problems are naturally online. Picture, for instance, your next
weekend trip to a European city. You want to see the most important sights, includ-
ing monuments and museums, and walk around to immerse into the city’s special
atmosphere. When you arrive, one of the first decisions you will need to make is
whether to buy a 4-day ticket, valid on all public transport, at a price of 18 Euro, or
whether to buy tickets whenever you need them. Single ride tickets have a validity of
90 minutes, and their prices range from 1.50 Euro to 2.30 Euro, depending on the
length of your ride and the means of transportation you choose. So, what should you
do? A 4-day ticket would be convenient, of course: you don’t have to bother about
buying tickets any more. But is it worth it? On the one hand, if the weather is nice,
then you’ll probably walk most of the time, and you could save some money now and
afford another (probably too expensive) coffee on one of the main boulevards later.
On the other hand, if it rains a lot, then it would be nice to take a bus ride through
the city or to catch the subway to the next museum. A lot of information such as
the actual weather conditions, special events you might want to attend, etc., are not
known to you in advance. This forces you to make decisions under uncertainty.

Incomplete information is a feature common to many real-life problems. Online
problems arising in practice include distributed data management, foreign exchange
and stock trade, the control of elevators, and the routing of calls in a telecommuni-
cation network.

In online optimization, the input data is usually modeled as a sequence of requests
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2 Chapter 1. Introduction

that is revealed piecewise. An online algorithm may base its decisions at any time only
on the requests known to it so far. Request sequences can be classified into two types:
the sequence model and the time stamp model .

In the sequence model, an online algorithm must process the requests one by
one. It gets to know the next request only after it has made an irrevocable decision
for the previous one. A well-known example is paging in a virtual memory system: a
central processing unit (CPU) must decide which page to evict from its fast memory
upon receiving a request for some page in its slow memory. The next request is only
disclosed when the previous one has been processed, i.e., when the CPU has ensured
that the requested page is in its fast memory. Time does not play any role in this
model. Each decision of an online algorithm results in some gain or loss, and the
objective function usually depends on the total gain or loss.

In contrast, time is decisive in the time stamp model. Here, each request has
a non-negative release time, and an online algorithm gets to know further requests
as time is progressing. The objective function usually depends on time. An online
optimization problem in which new requests arrive over time is the Online Traveling
Repairman Problem, an online variant of the famous Traveling Salesman Problem.
In the Online Traveling Repairman Problem, a repairman has a set of jobs to do.
Each job requires him to drive to a customer. While he is on his way, the repairman
receives new requests and must decide how to rearrange his schedule such as to finish
each job as early as possible.

Evaluation of Online Algorithms

For the comparison of online algorithms, it is necessary to have meaningful measures
for assessing their quality. Several approaches have been taken to evaluate online
algorithms.

In the traditional distributional or stochastic approach, a distribution over the
problem instances is assumed, and the expected objective value of the online algo-
rithm under consideration is computed. The major weakness of this average-case
approach is that the assumed distribution is often either unrealistic, or too complex,
making the computation of the expected value intractable. Another option is to
compare the worst-case objective values of two algorithms. Alas, this approach is also
problematic: what if all algorithms are equally bad in the worst-case? In the pag-
ing problem mentioned above, for instance, all algorithms show the same worst-case
behavior: they incur a page fault in each step.

Competitive analysis tries to overcome this weakness by introducing a (hypo-
thetical) benchmark algorithm, the optimal offline algorithm, that knows the given
sequence in advance and can process it in an optimal way. The worst-case perfor-
mance of an online algorithm is measured relative to the optimal offline algorithm:
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Given a minimization problem, an online algorithm ALG is said to be �-competitive,
if, for any problem instance �, the objective function value of ALG on � is at most
� times the objective value of the optimal offline algorithm on �. Since the ratio of
the online and the offline objective value must be bounded by the constant � for all
instances, competitive analysis is a worst-case approach. It is intended to answer the
question what is lost in the worst case by the lack of complete information.

Competitive analysis has become the standard tool in online optimization. Ne-
vertheless, it suffers from several conceptual deficiencies. For instance, it completely
disregards complexity issues; an online algorithm is not required to be efficient or
to make real-time decisions. Fast computation becomes important, however, when
online algorithms are to be used in practice. Very frequently, decisions have to be
made within a given time bound, often within seconds. Therefore, online algorithms
intended for real world problems must be efficient, or at least workable.

An important instrument for the assessment of practical algorithms is simulation.
Simulation experiments are indispensable to emulate and evaluate the behavior of on-
line algorithms designed for practical use. In particular when worst-case performance
bounds are not available or based on unrealistic scenarios, carefully chosen simula-
tion runs provide valuable experimental performance guarantees. It is important to
use real data for simulation whenever possible.

Other weaknesses of competitive analysis, as well as efforts to overcome them,
will be addressed in Section 2.3.

Online Dial-a-Ride Problems

In the Dial-a-Ride Problem (Darp), one or several servers of given capacities and of
unit speed have to transport objects between points in a metric space. Each trans-
portation request specifies a source and a destination. The task is to design a sequence
of moves for each server such that all transportation requests, also called rides, are cov-
ered, the server’s capacity bounds are not exceeded, and a given objective function is
minimized. Moreover, unless specified otherwise, preemption is prohibited: once an
object has been picked up, it can only be dropped at its destination. In some variants
of the Darp, the servers are additionally required to eventually return to their initial
position.

The class of Dial-a-Ride Problems comprises many well-studied problems in
combinatorial optimization. For instance, the Traveling Salesman Problem is the spe-
cial case of the single-server Darp with the makespan as objective function in which
source and destination of each ride coincide. Also many Vehicle Routing Problems
can be formulated within the Darp framework. Moreover, Dial-a-Ride Problems can
be used to model scheduling problems in which the jobs have order dependent setup
costs.
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We are interested in the online version of the Dial-a-Ride Problem with a single
server, further referred to as the Online Dial-a-Ride Problem (OlDarp). In the
OlDarp, transportation requests are not known beforehand but become known over
time. That is, in addition to source and destination, each ride specifies a release
time. In the online setting, the server has at no point in time any information about
requests whose release time is greater than that point in time. In particular, it neither
knows the total number of requests, nor the release time of the last request. Objective
functions that have been considered for the OlDarp are the makespan (completion
time of the schedule), the latency (weighted sum of completion times of all requests),
the average flow time (average time in which a request remains in the system), and
the maximum flow time. In this thesis, we present new results for the OlDarp with
the latency and with the maximum flow time as objective functions.

Online Dial-a-Ride Problems occur frequently in practice, in particular in logis-
tics. Applications are machine scheduling, field service, delivery and courier services,
elevator and stacker crane control, transportation of disabled persons, and the dis-
patching of automobile service units, among others.

Online Call Admission in All-Optical Networks

All-optical telecommunication networks are the optical networks of the next gener-
ation. While in today’s networks, signals are already transmitted as light pulses via
glass fibers, but still switched electronically in intermediate nodes, new devices will
shortly allow to process signals completely within the optical domain.

The Wavelength Division Multiplexing (WDM) technique, deployed for the first
time in the early 1990ies, brought a substantial increase in transmission capacities
of telecommunication networks. By installing so-called multiplexers and demulti-
plexers at the beginning and the end of a fiber, respectively, the available bandwidth
of a fiber is separated into different wavelengths that can be used in parallel by dif-
ferent signals. Recently, new devices for the switching and the insertion/extraction
of signals in optical form have been developed, the so-called Optical Cross-Connects
and Optical Add-Drop-Multiplexers. They are expected to be commercially avail-
able very soon. Moreover, wavelength converters are being devised that enable the
(optical) switching of signals from one wavelength to another. Altogether, these new
devices supersede current time-consuming conversions between optics and electron-
ics. All-optical networks refer to optical networks that deploy these new switches in
addition to the WDM technique.

All-optical networks require new mathematical models and give rise to new prob-
lems. Their crucial difference to the networks currently in use is that a signal sent
through an all-optical network remains in optical form on its whole path from start
to end node. Therefore, a connection in an all-optical network is realized via a light-
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path , which is a path in the network together with a wavelength. Resources are
limited: each wavelength may only be used once per fiber; consequently, two light-
paths that use the same fiber must have different wavelengths. This crucial restriction
is called wavelength conflict constraint. A natural online problem is the dynamic
configuration of optical networks. In its simplest variant it can be stated as follows:
new connection requests arrive over time, and an (online) algorithm has to decide for
each request whether to accept or reject it (call admission). If the request is accepted,
the algorithm must provide a lightpath to realize the required connection without
violating the wavelength conflict constraint (routing and wavelength assignment).

Overview

This thesis is divided into two major parts: in Part I, we investigate various Online
Dial-a-Ride Problems; Part II is concerned with the dynamic configuration of all-
optical networks.

Preceding these two major parts is Chapter 2, which is intended as a short ref-
erence to the concepts and the basic notation used in this thesis. We give a formal
introduction to online optimization and competitive analysis, including deterministic
as well as randomized online algorithms. We also introduce a useful technique for ob-
taining lower bounds on the competitive ratio of randomized algorithms. Moreover,
we discuss the weaknesses of competitive analysis and cover known modifications and
extensions of it.

In Part I, we present new results for several Online Dial-a-Ride Problems. After a
formal introduction to Online Dial-a-Ride Problems in Chapter 3, Chapter 4 deals
with Online-Dial-a-Ride Problems with the latency as objective function (

�
����-

OlDarp). The latency is defined as the weighted sum of completion times, where the
completion time of a request is the time when the corresponding object is dropped at
its destination. We present new lower bounds on the competitive ratio of any online
algorithm, both for the general

�
����-OlDarp and for the special case in which

each ride’s source and destination coincide, the
�
����-OlTsp, also known as the

Online Traveling Repairman Problem (OlTrp). The main result of this chapter is a
�� �

�
���-competitive deterministic online algorithm for the

�
����-OlDarp in

general metric spaces. This algorithm significantly improves previous upper bounds
for both the

�
����-OlDarp and the

�
����-OlTsp. Moreover, a modification

of the algorithm yields a new randomized upper bound.
In Chapter 5, we investigate the OlDarp with the maximum flow time ����

as objective function, shortly ����-OlDarp. Again, we also consider the special
case in which each ride’s source and destination coincide, the ����-OlTsp. Easy
worst-case sequences reveal that there is no competitive online algorithm for neither
problem, showing that competitive analysis fails to evaluate and distinguish online
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algorithms. This motivates the search for new concepts to restrict the adversary’s
power in the OlDarp. As a start, we consider the concept of fairness, defined for
Euclidean metric spaces by Blom, Krumke, de Paepe, and Stougie, see [25], and
extend it to the uniform metric space. On the uniform metric space, a first-come-
first-serve strategy turns out to be best possible for the ����-OlTsp against a fair
adversary. For the more general ����-OlDarp on the uniform metric space, we prove
that no deterministic online algorithm can be competitive against a fair adversary.
We then consider the real line endowed with the Euclidean metric and show that
the fairness condition is still too weak to allow for competitive algorithms, even in
the ����-OlTsp. Therefore, we introduce a new adversary type that is subject to
a stronger restriction: the non-abusive adversary. On the uniform metric space,
the negative result for the ����-OlDarp against a fair adversary carries over to the
non-abusive adversary. For the real line, the situation is different. One of our major
results is a constant-competitive algorithm for the ����-OlTsp against a non-abusive
adversary on the real line. This is the first competitive algorithm for the minimizing
the maximum flow time on this metric space.

Part II is dedicated to the dynamic configuration of all-optical networks. In
Chapter 6, we give an introduction to all-optical networks, including their tech-
nical features as well as the mathematical model used to describe them. We then
report on problems involved with the dynamic configuration of all-optical networks,
and we introduce an online optimization model for the so-called Dynamic Multiclass
Call Admission Problem (Dmcap). Our model is suitable to map a variety of real-
life characteristics, such as different degrees of service quality and various customer
classes. Moreover, the model is suitable to map failure situations.

In Chapter 7, we present several new algorithms developed for a restricted ver-
sion of the Dmcap. These fitness-algorithms realize the routing choice that yields
the smallest decrease of the network fitness, a quantity that seeks to measure poten-
tial future profit. Our algorithms are designed for practice and evaluated by means
of simulation. In particular, we compare them to known greedy strategies on re-
alistic instances. The experimental setup and the results of the simulation runs are
reported on in Section 7.4. It emerges that the best greedy algorithm performs almost
as well as the best of the fitness-algorithms. Yet, traffic is comparatively evenly dis-
tributed in the instances we have considered. On more realistic scenarios, we expect
our algorithms to outperform the algorithms of greedy type more significantly. Our
experiments furthermore reveal that as little as a tie-breaking rule can decide about
failure or success of a greedy algorithm, thereby providing important information to
practitioners who often use the tie-breaking rule that is easiest to implement. The
chapter closes with a discussion of our experimental set-up and an outlook on further
lines of research.

Finally, Chapter 8 is dedicated to a more theoretical approach to online call ad-
mission in optical networks. We present and analyze algorithms for a restricted vari-



7

ant of the previously considered online call admission problem. The problem variant
we consider is more general than those problems for which competitive algorithms
are known to exist. Our main contribution are two competitive algorithms, one
for general networks, and an improved one for trees. Moreover, we investigate the
preemptive version of the problem and show how our non-preemptive algorithm
for trees can be combined with techniques for preemptive call admission in non-
optical line networks to obtain competitive preemptive algorithms for the line. The
algorithms we present are the first competitive algorithms for preemptive online call
admission in all-optical networks.

Although the algorithms presented in this chapter are not suited for immediate
practical use, their assessment via competitive analysis is nevertheless helpful for the
design of practical algorithms, as it helps to identify decisions that may lead to very
unfavorable scenarios.
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Chapter 2

Preliminaries

In this chapter, we give an introduction to online optimization, competitive analysis,
and simulation. We also discuss the weaknesses of competitive analysis and efforts to
overcome them.

We introduce online optimization in Section 2.1. In Section 2.2, we define the
main concepts of competitive analysis and briefly present Yao’s Principle, a useful
technique to obtain lower bounds on the competitive ratio of randomized online
algorithms. We try to keep our presentation as precise as necessary, but at the same
time intuitive enough to understand the important concepts without getting lost in
formal details. A rigorous introduction to online optimization using a game-theoretic
setting is given in Appendix A.

We address the weaknesses of competitive analysis and report on known modifi-
cations and extensions that have been proposed as a remedy in Section 2.3. Finally,
we discuss simulation as another tool for the evaluation of online algorithms in Sec-
tion 2.4.

2.1 Online Optimization

An optimization problem is defined by a set of (input) instances, a set of valid solu-
tions (outputs) for each instance, an objective function that assigns a value to each
input-output combination, and the declaration whether the objective function has
to be minimized or maximized (see Section B.2 for the formal definition). In the
sequel, we assume that we are given a minimization problem and use the terms ob-
jective function and cost function interchangeably.

An algorithm ALG for an optimization problem computes for each input in-
stance � a valid solution ALG���. The cost of this solution is the value assigned by
the objective function to the pair ��� ALG����.

Informally speaking, online optimization problems are those optimization prob-
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lems in which the input is not given at once, but instead as a sequence of requests.
An online algorithm must serve each request without knowing the future requests or
the length of the sequence.

Definition 2.1 (Online Optimization Problem, Online Algorithm). An online op-
timization problem is an optimization problem where the input is given as a sequence
� � ��� � � � � �� of requests.

Definition 2.2 (Online Algorithm). An online algorithm for an online optimiza-
tion problem � must give an answer �� to each request �� in the given sequence
that is solely based on the previous requests ��� � � � � ���� and its previous answers
��� � � � � ����. The sequence of answers ��� � � � � �� generated by the online algorithm
must have the property that ��� � � � � �� is a valid solution for the input ��� � � � � �� for
each � � �� � � � � �.
The output of ALG on input � is defined as ALG��� �� ��� � � � � ��. The cost of ALG

on input � � ��� � � � � �� is defined by ALG��� �� ���� ALG����, where � is the cost
function of �.
An algorithm is deterministic, if its output is unique for each fixed input instance.

In the sequence model, cf. Chapter 1, the algorithm must serve the current re-
quest before it is given the next one in the sequence. In the time stamp model, the
requests have an associated release time at which they become known to the online
algorithm. When a new request is released, the algorithm must not immediately
serve it, but it must give an answer that indicates when and how it plans to serve the
request. The two models are illustrated by the following examples.

Example 2.3 (� Server Problem). In the � Server Problem, we are given a fixed
integer � � �, and a metric space �	� 
� where 	 is a set of points with �	� � �

and 
 is a metric on 	 (cf. Section B.1). An online algorithm has � servers at its
disposition that are initially located in � distinct points of 	 , and is presented with
a sequence of requests each of which specifies a point in 	 . Upon revelation of the
next request, the algorithm must decide which of its servers to move to the requested
point. The cost associated with this decision equals the distance the chosen server has
to cover. The � Server Problem is an example for the sequence model. �

Example 2.4 (Online Scheduling on Identical Machines). The following variant of
online scheduling on identical machines is formulated using the time stamp model.
An online algorithm is given a set of � identical machines, and it has to assign jobs of
given duration that arrive over time to the machines. Each machine can only process
one job at a time. More precisely, each request � �� �� 
� � ��� � ��� specifies
a release time  and a duration 
. We assume that the requests are ordered in non-
decreasing release times and the sequence unfolds as time goes by. As soon as a new
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request is released, the algorithm must assign it to a machine and give it a start time.
As long as the machine has not yet started to process the job (because earlier jobs on
this machine are not finished yet), this decision is revocable. The goal is to minimize
the makespan, that is, the earliest time at which all jobs have been processed. �

We now consider randomized algorithms. For a formal introduction to the basic
concepts of probability theory, see Section B.5 in the Appendix.

Definition 2.5 (Randomized Online Algorithm). A randomized online algorithm
RALG for an online optimization problem � is a probability distribution over the set
of all deterministic online algorithms for �.

Both the output RALG��� and the cost RALG��� of RALG on input � are random
variables; its expected cost � �RALG���� on input � is defined as the expected value
of the random variable RALG���.

2.2 Competitive Analysis

Competitive analysis provides a framework to measure the quality of online algo-
rithms. More precisely, it seeks to answer the question what is lost in the worst-case
due to lack of information. To this end, a benchmark algorithm is introduced that
has complete knowledge of the request sequence in advance and can serve it in an
optimal way. Such an algorithm is called an optimal offline algorithm. In order to be
competitive, an online algorithm must compete well with the optimal offline algo-
rithm on all input instances. Hence, competitive analysis is a worst-case approach.

Competitive analysis has been introduced formally for the first time in 1985 by
Sleator and Tarjan, see [94]; the term competitive analysis was coined in a paper
by Karlin, Manasse, Rudolph, and Sleator in 1988, cf. [60]. The method itself was
already used in the 1960s, when Graham analyzed and evaluated his algorithm for
list accessing, see [49] and [50]. For a more extensive survey on the history of online
optimization and competitive analysis, we refer to the introductory chapter in the
book by Fiat and Woeginger, cf. [42].

In this section, we define competitiveness for deterministic and randomized al-
gorithms and provide a useful technique to derive lower bounds against randomized
algorithms.

2.2.1 Deterministic Algorithms

We start with a definition of the benchmark algorithm that is required for the assess-
ment of online algorithms.
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Definition 2.6 (Optimal Offline Algorithm). An optimal offline algorithm OPT

for an online optimization problem � is an algorithm that knows the whole input
sequence � in a given instance in advance and serves it at optimal cost.

Its output OPT��� on input � is called the optimal offline output, its cost OPT���
on input � the optimal offline cost.

The optimal offline algorithm is usually not described by a set of rules but only
defined via the collection of optimal outputs. In fact, the optimal offline algorithm
often remains unspecified, and only the optimal offline cost is computed for specific
instances, or bounded on arbitrary input sequences. The crux of the matter is that the
optimal offline algorithm has the full view on the problem instance, and can choose
its answer for each request such that the resulting output on the whole sequence is
optimal w.r.t. the cost. The core of competitive analysis is the following definition.

Definition 2.7 (Competitive Deterministic Algorithm). Let � be an online opti-
mization problem, and let � � �, � � �. A deterministic online algorithm for � is
�-competitive, if there exists a constant � � � such that

ALG��� � � � OPT��� � �

for all input instances �. If � 	 �, then ALG is said to be strictly �-competitive.

For a maximization problem ����, competitiveness is defined analogously: An
online algorithm ALG for ���� is �-competitive if there exists a constant � � � such
that ALG��� � �

�
� OPT���� � on all input sequences �.

Hence, an online algorithm’s performance is measured in relation to that of the
optimal offline algorithm introduced above. We can think of competitive analysis as a
game in which an online player must compete with a malicious adversary, also called
the offline player, who tries to maximize the ratio of online over offline cost. The
adversary’s task is twofold: he chooses a worst-case instance, and he has to process it
in an optimal way.

Given a deterministic online algorithm, we are interested in finding the smallest
constant � such that the algorithm is �-competitive.

Definition 2.8 (Competitive Ratio). Let ALG be a deterministic competitive online
algorithm for the online optimization problem �. The competitive ratio of ALG on
� is the infimum over all � � � such that ALG is �-competitive.

In large parts of this thesis, we will omit the word “strictly”, although the constant
� can indeed be chosen equal to zero. When it is of interest to allow a positive constant
�, we will explicitly point this out.
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2.2.2 Randomized Algorithms

If an online algorithm uses randomization, we must be more specific about the ad-
versary it is playing against. The power of the adversary depends on both the degree
of information he has when choosing the worst-case sequence and the rules he must
obey when serving it.

In [22], Ben-David, Borodin, Karp, Tardos, and Wigderson have proposed three
different types of adversaries. We only introduce the most common one here, called
the oblivious adversary. The other two adversary types are defined in Section A.2,
where we also review the known results about their relative powers. These results
show that the oblivious adversary is the weakest and the most interesting type of
adversary.

Definition 2.9 (Oblivious Adversary). The oblivious adversary OBL knows the prob-
ability distribution used by the randomized online algorithm, but it must construct
its worst-case sequence � without knowing the outcomes of the random experiments.
OBL serves the sequence in the end, after having finished its construction, in an op-
timal manner w.r.t. cost. We denote the cost of OBL on input � by OBL���.

Competitiveness against this adversary is defined as follows.

Definition 2.10 (Competitiveness against the Oblivious Adversary). Let � � �,
� � �. A randomized algorithm RALG for an online optimization problem � is
�-competitive against the oblivious adversary, if there exists a constant � � � such
that

� �RALG���� � � � OBL��� � �

for all input sequences �. The expectation is taken over the random choices made by
RALG.

In this thesis, we always consider the oblivious adversary when applying competi-
tive analysis to randomized algorithms. Hence, whenever speaking of the competitive
ratio of a randomized online algorithm in the sequel, we assume that it is competing
with the oblivious adversary.

2.2.3 Yao’s Principle

We now introduce a useful technique for proving lower bounds on the competitive
ratio of randomized online algorithms. Lower bounds on the competitive ratio of
randomized online algorithms are also called randomized lower bounds.

To obtain a lower bound on the competitiveness of any online algorithm, we
must provide for each online algorithm a worst-case sequence and compute the (ex-
pected) cost of the algorithm on that instance. This proves to be much more difficult
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for randomized than for deterministic online algorithms. Fortunately, the following
variant of Yao’s Principle from game theory makes the construction of randomized
lower bounds easier.

Suppose that the set of possible request sequences for a given online problem is
� �� � � � � � for a suitable index set � . Analogously, let � ALG� � � � � � be the
set of deterministic online algorithms for the problem. Furthermore, we define the
expected cost on a randomized sequence of a deterministic algorithm ALG� w.r.t. the
distribution � on � by

�� �ALG������ ��

�
�

ALG����� ������

With this notation, we can state the version of Yao’s Principle applicable to the
online setting as follows.

Theorem 2.11 (Yao’s Principle). Let �� � �, �� � � and ��� � � � �� be the
set of input sequences for the considered online optimization problem. If �� is a
distribution over � such that

�
�� �ALG������ � �� � �

�� �OPT�����

holds for all deterministic algorithms ALG�� � � � , then �� is a lower bound on the
competitive ratio of any randomized online algorithm against the oblivious adversary.

Hence, in order to prove a lower bound, it suffices to provide one randomized
sequence on which the expected cost of any deterministic online algorithm is high
in comparison to the optimal offline cost. We will apply this technique in all our
constructions for randomized lower bounds.

It goes beyond the scope of this thesis to introduce all game-theoretic notions and
theorems needed for an exact proof of Theorem 2.11. In Section A.3, we give a proof
sketch and show how to verify that the necessary preconditions are satisfied for Yao’s
Principle in its game-theoretic form. Readers not familiar with basic game-theory are
referred to the book by Vorob’ev, see [105].

2.3 Weaknesses, Modifications, and Extensions of Com-
petitive Analysis

Competitive analysis is of substantial theoretical value, because it provides a measure
for what is lost in the worst case due to lack of information. Nevertheless, competitive
analysis has rightly been criticized. One of its drawbacks is to ignore computational
complexity issues completely. In fact, competitive analysis allows an algorithm to
draw on unlimited computational resources. This is an unrealistic assumption when
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designing online algorithms intended for practical use. Disregarding restrictions on
computational resources is but one shortcoming of competitive analysis. Its major
weakness is being overly pessimistic: the adversary is often too powerful to allow for
a distinction of online algorithms. It is not uncommon that two online algorithm
achieve the same competitive ratio, although one outperforms the other on inputs
relevant for practice. Moreover, some problem classes do not even allow for any
competitive online algorithm at all, since the adversary can force the online algorithm
to have positive cost, whereas he himself can serve the sequence with zero cost. This
is, for instance, the case in the Online Dial-a-Ride Problem with the maximum flow
time as objective function, see Chapter 5.

Several modifications and extensions of competitive analysis have been proposed
as a remedy. Comparative analysis, introduced by Koutsoupias and Papadimitriou
in [66], removes some of the adversary’s power, for instance by restricting its looka-
head. In the diffuse adversary model, also proposed in [66], the adversary must create
an input according to a probability distribution from a class of distributions that is
known to the online algorithm. Then, the worst-case ratio of the expected objective
value achieved by the online algorithm over that of an optimal offline algorithm is
computed. By resource augmentation, all alterations of the model are referred to in
which the online player’s restrictions on the resources are looser than those that must
be obeyed by the offline algorithm. E.g., one might grant the online algorithm a
certain lookahead, allow its server to move at faster speed than the optimal offline
server, or increase its capacity.

Young introduces the concept of loose competitiveness in the context of paging,
cf. [110]. It is based on the following two ideas. First, the online algorithm does not
have to be �-competitive for all given memory sizes �, but only for a large fraction
of them. Second, the ratio of online over offline cost is irrelevant when the absolute
cost of the online algorithm is very small. Ajtai, Aspnes, Dwork, and Waarts, cf. [4],
investigate a refinement of competitive analysis for a distributed environment. In a
distributed setting, there are additional sources of non-determinism other than the
request sequence. Rather than comparing the cost of a distributed online algorithm
to that of an optimal global-control offline algorithm, the authors suggest to compare
it to an optimal distributed algorithm that has to pay extra to learn about other parts
of the network.

Another possibility to obtain a meaningful competitive ratio is to impose problem
specific restrictions on the adversary. In this thesis, we extend existing and develop
new concepts to restrict the adversary’s power in Online Dial-a-Ride Problems (see
Chapter 5). It sometimes also pays to restrict the set of possible input sequences
in order to rule out pathological cases. The concept of reasonable load for Online-
Dial-a-Ride Problems, proposed in [54] by Hauptmeier, Krumke, and Rambau, falls
into this category. Finally, Becchetti, Leonardi, Marchetti-Spaccamela, Schäfer, and
Vredeveld have recently introduced smoothed competitive analysis, a step towards an
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average-case analysis, cf. [21]. Here, the input instance is chosen by the adversary
but afterwards disturbed according to a specified distribution, and the expected ratio
of online over offline cost is computed for the resulting random input. The authors
use smoothed competitive analysis to evaluate the Multi-Level Feedback algorithm
for minimizing the total flow time on a sequence of jobs whose processing times only
become known when they are completed.

2.4 Simulation

In the design, enhancement, and optimization of a real system and its processes, it is
often desirable to make predictions on how the alteration of one or several compo-
nents influences the whole system. Alas, it is often too costly or even impossible to
conduct the necessary experiments on the real system, and a tractable mathematical
model that captures all important aspects is out of reach. In this case, simulation is
one resort. In the Merriam-Webster online dictionary (see [77]), simulation is de-
fined as “the imitative representation of the functioning of one system or process by
means of the functioning of another”.

When simulation is performed by means of a computer, only finitely many as-
pects of the real system can be modeled. It is a non-trivial task to find out which
components and processes are decisive, and it is often time-consuming to develop a
good simulation model that reflects all the necessary interactions correctly. Yet, sim-
ulation can be of substantial benefit for the understanding of a system. Moreover,
it is sometimes the only means to study the effect of optimization strategies on the
system, and it is very helpful in their design and visualization. Simulation models
often allow to obtain results within shorter time periods than possible in reality, since
model time usually runs faster than real time. They are flexible in the sense that one
can alter the model easily, for instance, such as to take stochastic aspects into account.

All these arguments provide strong support for the use of simulation when opti-
mizing real systems. One must be aware, however, that simulation does not provide
worst-case, but only experimental performance guarantees. Thus, conclusions de-
rived from simulation depend heavily on the experimental set-up. It is particularly
important to use real data in simulation experiments whenever possible.

Simulation models can be classified into several types. In this thesis, we are only
concerned with discrete event simulation, which is used to describe systems where
changes occur at distinguished points in time. Ascheuer discusses different types of
simulation and gives a detailed description how to build a discrete event simulation
model in [8]. It is supplemented by the software package AMSEL (cf. [7]), a library
for discrete event simulation. An introduction to discrete event simulation can also
be found in the book [91] by Siegert.
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