
Increase of erucic acid content in oilseed rape (*Brassica napus* L.) through the combination with genes for high oleic acid

Increase of erucic acid content in oilseed rape (*Brassica napus* L.) through the combination with genes for high oleic acid

Doctoral Dissertation submitted for the degree of Doctor of Agricultural Science of the Faculty of Agricultural Sciences Georg-August-University Göttingen (Germany)

> by Nurtjahjo Dwi Sasongko Born in Jakarta, Indonesia

Göttingen, 22 May 2003

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2003 Zugl.: Göttingen, Univ., Diss., 2003 ISBN 3-89873-741-1

D7

1. Referee: Prof. Dr. Heiko C. Becker2. Co-referee: Prof. Dr. Elke PawelzikDate of oral examination: 22 May 2003

© CUVILLIER VERLAG, Göttingen 2003 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2003 Gedruckt auf säurefreiem Papier

ISBN 3-89873-741-1

Table of contents

			Page
	List	of Abbreviations	iv
1	Introduction		
	1.1	Importance of rapeseed oils	1
	1.2	Biosynthesis of fatty acids in <i>Brassica napus</i> L.	3
	1.3	Genetic approaches to modify fatty acid content	
		in rapeseed oil	6
	1.4	Development of rapeseed cultivars	
		with increased erucic acid content	10
	1.5	Utilisation of near infrared reflectance spectroscopy	
		(NIRS) in breeding for quality traits	12
	1.6	Aims of the study	13
2	Mate	erial and Methods	15
	2.1	Plant material	15
	2.2	Methodology	16
	2.2.1	Crossing of the parental plants	16
	2.2.2	Analysis for fatty acid content in F ₁ seeds	
		and preparation for F ₁ plants	16
	2.2.3	Selection of F_2 seeds for the field experiment	17
	2.2.4	Field experiment with selected F_2 seds	18
	2.2.5	Development of NIRS calibrations for the determination	
		of the fatty acid content in single seeds	18
	2.2.6	Gas liquid chromatography (GLC)	21
	2.2.7	Data analysis	23

3 Results

3.1	Analysis of fatty acids segregation	25
3.1.1	Fatty acid content of parental and F_1 seeds of the cross	
	HOAR DH's x cv. Maplus	25
3.1.2	Fatty acid content of F2 seeds of the cross	
	HOAR DH's x cv. Maplus	27
3.1.3	Fatty acid content of parental and F_1 seeds of the cross	
	R239 x #3411	34
3.1.4	Fatty acid content of F2 seeds of the cross	
	R239 x #3411	35
3.2	Development of NIRS calibrations for fatty acid content	
	in singleseed rape seeds	38
3.2.1	Development of NIRS calibrations for fatty acid content	
	in F_2 seeds of the cross HOAR DH's x cv. Maplus	38
3.2.2	Prediction of fatty acid content in F_2 seeds of the cross	
	HOAR DH's x cv. Maplus	41
3.2.3	Development of NIRS calibration for fatty acid content	
	in F_2 seeds of the cross R239 x #3411	44
3.2.4	Prediction of fatty acid content in F_2 seeds of the cross	
	R239 x #3411	45
3.3	Fatty acid content of F_3 seeds of the cross	
	HOAR DH's x cv. Maplus	46
3.3.1	Fatty acid content in EEEE class of the cross	
	HOAR DH's x cv. Maplus	49
Disc	ussion	57
4.1	Segregation of fatty acid content in F ₂ seeds	57
4.2	Development of singleseeds NIRS calibrations for fatty acids	60

	4.3	.3 Prediction of erucic acid content in F ₂ seeds by NIRS		
	4.4	Fatty acid content in F ₃ seeds obtained from		
		the selected F ₂ plants 63		
	4.5	High Erucic High Oleic (HEHO) - a new type of oil?	68	
	4.6	Further attempts to increase C22:1 content	70	
		in <i>Brassica napus</i> L.		
5	Sum	mary	71	
6	References			
7	Acknowledgements		88	
8	Арре	endix	90	

List of Abbreviations

Acc.	Accession
ACP	acyl carrier protein
AG	Aktien Gesellschaft
°C	centigrade/degree Celcius
ca.	circa
cDNA	copy DNA
cm	centi metre
CoA	Coenzyme A
CoASH	Activated CoA
cv.	cultivar
DH	doubled haploid
DUE	Development for Undergraduate Education
et al.	Et aleri
etc.	Et cetera
EU-15	European Union-15
fad	fatty acid desaturase
fae1	fatty acid elongation
FAS	fatty acid synthethase
FFA	free fatty acid
g GH	gram a critical value to eliminate samples with spectral distance too far from the population mean
GLC	gas (liquid) chromatography
GSL	glucosinolate
ha	hectare
HEAR	high erucic acid rapeseed
HO	high oleic
HOAR	high oleic acid rapeseed
HOLL	high oleic low linolenic acid rapeseed
HPLC	high pressure liquid chromatography
ISI	infrasoft international
KCS	β-ketoacyl CoA synthase
kpa	kilopascal
L.	Linnaeous
LG	Linkage group
LL	Iow linolenic
LEAR	Iow erucic acid rapeseed

LPAAT	lysophosphatidic acid acyl transferase				
max	maximum				
µl	micro litre				
µm	micro metre				
mol	molar				
µ mol/g	micro molar per gram				
m	metre				
M x E	Mansholt x Express				
mg	milli gram				
min	minimum				
mm	milli metre				
MPLS	modified partial least square				
MUFA	mono unsaturated fatty acid				
n	total number of sample				
Na-methylate	sodium-methylate				
nd	not determined				
No.	Number(s)				
NIRS	near-infrared reflectance spectroscopy				
NPZ	norddeutsche pflanzenzüchtung				
PtC	phosphatidyl choline				
PUFA	poly unsaturated fatty acid				
R239	Resynthesis line 239				
ref.	reference				
rpm	rotary per minute				
r₅	Spearman's rank correlation				
RSQ	Coefficient determination				
RT	room temperature				
SD	standard deviation				
SEC	standard error of calibration				
SECV	standard error of cross validation				
SEP	standard error of performance				
SEPC	standard error of performance after cross validation				
<i>slc1-1</i>	sphingolipid compensation				
<i>sn-2</i>	second position of the triacylglycerols backbone				
SNV	standard normal variance				
spp.	Sub species				
SR	Spring rape				
T TAG	critical value is to eliminate the samples from the regression model triacyl glicerols				
UNSOED	University of Jenderal soedirman				

USA	United States of America
1-VR VLCFA WR	coeffiecient of determination after cross validation Very long chain fatty acid Winter rape
Х	critical value to eliminate the samples with unsual spectra

1 Introduction

1.1 Importance of rapeseed oils

Rapeseed (*Brassica napus* L.) is one among several important plants used as source of vegetable oils. At present, rapeseed oil is following soybean and palm oil in world production and is used for both nutritional and industrial purposes (Piazza and Foglia, 2001, Walker and Booth, 2001). Nutritionally, replacement of saturated fats/oil with unsaturated ones contained in vegetable oils on the daily diet could help to prevent from coronary heart disease (Freese, 2001), mainly by lowering serum cholesterol levels (see Velasco et al., 1999d). Fast growing demands of rapeseed oil as food source, therefore, is related to increased consciousness of healthy food (Murphy, 1994). Industrial use of vegetable oils, however, is more related to its different fatty acid contents. Sonntag (1995) stated that behenic acid (C22:0), and erucic acid (C22:1) have been applied substantially in the oleochemical industry.

In traditional *Brassica* oilseeds, the occurence of two components C22:1 and glucosinolates (GSL) traditionally distinguishes them from other major oil seeds (Lühs and Friedt, 1994). Since these two components are considered as antinutritional for both human and animals their contents were minimized by traditional breeding, which finally resulted in the release of Canola or '00' quality type. This rapeseed oil contains $\leq 2\%$ C22:1, and in Europe contains $\leq 25 \mu$ mol/g seed GSL. Furthermore, Canola type rapeseed contains only about 7% saturated fatty acids (palmitic, C16:0+stearic, C18:0) while having about 60% oleic acid (C18:1), 20% linoleic acid (C18:2), and 10% linolenic acid (C18:3). Nowadays, different types of rapeseeds with a modified fatty acid composition are available for different purposes (Table 1.1).

	Oil quality	Saturated*	Oleic	Linoleic	Linolenic	Erucic
	(fatty acids)		C18:1	C18:2	C18:3	C22:1
	'00' Canola	7	60	20	10	<2
	High Erucic (HEAR)	6	15	13	9	58**
	Low Linolenic (LL)	7	60	30	2	<2
	High Oleic (HOAR)	5	86	4	4	<2
	High Oleic/Low Linolenic (HOLL)	5	85	6	2	<2

Table 1.1 Fatty acid composition of different rapeseed quality types in % of total fatty acids (Möllers, 2002b)

* mainly C16:0 (3-4%) and C18:0 (1-2%)

** includes ≈8% C20:1

Apart from their nutritional value, reduction of polyunsaturated fatty acids are important from technical point of view. Oil containing a low content of polyunsaturated fatty acids (C18:2 and C18:3) is more stable at high temperature without smoking, and it is less prone to oxidative changes during refining, storage and frying (Miller et al., 1987, Scarth et al., 1988, Lopez et al., 2000). The first attempt to increase the oil stability was started by developing 'Stellar', a Canadian spring rape cultivar following the success of mutagenesis of the 'Oro' cultivar (Röbbelen and Nitsch, 1975), to produce 'Low Linolenic' (LL, see Table 1.1) type rapeseed.

Tailoring oleic acid content to more than 80% and lowering C18:2 and C18:3 to around 10% for the sum of these fatty acids has been achieved through mutation breeding and gene technology. These types are classified as high oleic acid rapeseed or high oleic/low linolenic rapeseed (HOLL) (Auld et al. 1992, Rücker and Röbbelen, 1995, Stoutjesdijk et. al., 1999, Schierholt and Becker, 2001).

Development of rapeseed containing high erucic acid is also of interest for plant breeders, since this component and its derivatives are important raw material for industrial applications (Piazza and Foglia, 2001). This fatty acid is