Mohamad Amin

CHARACTERIZATION AND APPLICATION OF MOLECULAR MARKERS IN THE PEKING DUCK AND OTHER WATERFOWL SPECIES

Institute of Animal Breeding and Husbandry with Veterinary Clinic Faculty of Agriculture (Dean: Prof. Dr. agr. habil. W. Merbach) Martin-Luther University Halle-Wittenberg

Characterization and application of molecular markers in the Peking duck and other waterfowl species

Doctoral Dissertation Submitted for the degree of Doctor of Agricultural Sciences

by

Mohamad Amin (M. Sc) Indonesia

Halle/Saale, January 2003

Institute of Animal Breeding and Husbandry with Veterinary Clinic

Characterization and application of molecular markers in the Peking duck and other waterfowl species

Faculty of Agriculture

Martin-Luther University Halle-Wittenberg

A dissertation For the award of the degree of Doctor agriculturarum (Dr. agr.)

By

Mohamad Amin (M. Sc) Born in 19.01.1967 Nganjuk, Indonesia

Reviewers: Prof. Dr. E. Weber Prof. Dr. R. Gattermann PD. Dr. S. Maak

Date of disputation: February 24, 2003

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2003 Zugl.: Halle, Wittenberg, Univ., Diss., 2003 ISBN 3-89873-684-9

Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes

 CUVILLIER VERLAG, Göttingen 2003 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2003 Gedruckt auf säurefreiem Papier

ISBN 3-89873-684-9

Dedicated:

to my parent, my loving wife, Yayuk, whose love, moral support and spiritual understanding kept me going, to my sons Rizal and Eki, whose love and encouragement made the effort worthwhile and also to my brothers and sisters.

I.	LIST OF TABLES	Ι	
II.	LIST OF FIGURES	III	
III.	ABBREVIATIONS	V	
1. Int	Introduction		
1.1	DNA markers		
	 Mitochondrial DNA 	2	
	 Restriction fragment length polymorphisms (RLFPs) 	3	
	∉ Randomly amplified polymorphic DNA (RAPDs)	3	
	 Amplified fragment length polymorphisms (ALFPs) 	4	
	 Single nucleotide polymorphisms (SNPs) 	5	
	∉ Microsatellites	5	
1.2	The use of microsatellites as genetic marker	6	
1.3	Aims of the research	7	
2. Lit	terature Review	8	
2.1	Taxonomic position and domestication of the Peking duck	8	
2.1.1	Taxonomic position of ducks	8	
2.1.2	Domestication and breeding history of ducks used in this study	10	
2.2	Mitochondrial DNA in the evolution research	11	
2.3	Variable number tandem repeats (VNTRs)	13	
2.3.1	Category and definition	13	
2.3.2	Mutation and evolution of microsatellites	14	
2.3.3	Models of microsatellite mutation	16	
2.3.2.1	Unequal crossing over (UCO)	16	
2.3.2.2	Slip-strand mispairing (SSM)	17	
2.3.2.3	Polarity substitution	19	
2.3.4	Implication of microsatellites mutation for population	20	
2.4	Microsatellites in avian species	21	
2.4.1	The frequency and heterozygosity of alleles compared to mammalian		
	species	21	
2.4.2	Microsatellite resources in waterfowl	22	
2.4.2.1	Description of markers isolated for waterfowl species	22	
2.5	Cross species applicability	23	

2.6	Application of microsatellites in diversity studies	24
3. Mater	ial and Methods	26
3.1	Animals	26
	a. Isolation of microsatellites	26
	b. Characterization of microsatellites	26
	c. Cross species amplification and phylogenetic analysis	26
3.2	Methods	27
3.2.1	Microsatellite isolation	27
3.2.1.1	Standard protocol	27
	1. Preparation and size fractioning of genomic DNA	27
	2. Ligation and transformation	28
	3. Isolation of recombinant clones	28
	4. Blotting	29
	5. Probe preparation	29
	6. Hybridization	30
	7. Plasmid preparation	30
	8. Sequencing	31
3.2.1.2	Enrichment protocol	32
	1. Preparation and size fractioning of genomic DNA	32
	a. Genomic DNA digestion and size selection	32
	b. Attachment of linker sequences	33
	c. The first PCR	33
	2. Capture of target DNA	33
	a. Hybridization of PCR to biotin-tagged microsatellite probes	33
	b. Binding to the avidin matrix	34
	c. Isolation of targeted genomic fragments	34
	3. Cloning and screening for recombinant colonies with microsatellites	35
	a. Removal of SauL A/B linker	35
	b. Ligation and transformation	35
	c. Isolation of recombinant clones	35
	d. Blotting, probe preparation, hybridization, washing	
	and autoradiography	35
	e. Sequencing	35
3.3	Characterization of the isolated markers	35

3.4	Analysis of partial cytochrome-b sequences	36
3.4.1	Cytochrome- <i>b</i> gene analysis	36
	1. Extraction of genomic and mitochondrial DNA	37
	2. PCR	37
	3. Isolation of DNA fragments from agarose gel (DNA Clean TM)	38
	4. Ligation	38
	5. Transformation	39
	6. Cloning	39
	7. Preparing of plasmid	39
	8. Sequencing	39
3.5.	Statistical procedures	39
3.5.1	Data analysis	39
	a. Microsatellites	39
	b. Cytochrome- <i>b</i>	40
	1) Sequence comparison	40
	2) Base composition and genetic variation	40
	3) Phylogenetic analysis	40
4. Results		42
4.1	Isolation of microsatellites in the Peking duck (Anas platyrhynchos)	42
4.2	Characterization of microsatellites	43
	a. Allele frequency, number of alleles and heterozygosity	43
	b. Population differentiation	46
	Genic and genotypic differentiation	46
	• F statistics	47
4.3	Cross species applicability of selected markers	49
	a. Allele frequency and heterozygosity in Cairina moschata	49
	b. Sequence of markers APH09 and APH07 in different species	52
4.4	Phylogenetics analysis inferred from microsatellite and cytochrome- <i>b</i> data	55
4.4.1	Microsatellite sequence data	55
4.4.2	Cytochrome- <i>b</i> data	58
4.4.2.1	Sequence comparison	58
4.4.2.2	Base composition and gene variation	64
4.4.2.3	Phylogenetic analysis	65
	∉ All taxa	65

	∉	Subset taxa: Anatinae	67
	¢	Subset taxa: Aythyni, Cairini, Mergini, Tadornini and Oxyurini	67
4.5	Мı	atation and evolution of selected microsatellite in ducks	69
4.5.1	Mi	crosatellite mutation	69
4.5.2	Mi	crosatellite evolution	73
	1.	Microsatellite evolution in locus APH07	73
		a. Flanking region	73
		b. Repeat region	77
	2.	Microsatellite evolution in locus APH09	78
5. Discussi	on		81
5.1	Isc	lation and characterization of microsatellites loci in Peking ducks	81
5.2	Cr	oss species amplification	83
5.3	Ph	ylogenetic analysis	85
	∉	Microsatellite sequence	85
	∉	Cytochrome- <i>b</i>	86
	∉	Wobble hypothesis and compositional bias of codons	89
5.4	Mi	crosatellite mutation and evolution	90
	a.	Flanking region	90
	b	Repeat region	92
6. Summary			97
7. Zusamn	nen	fassung	101
8. Referen	ces		105

9. Appendix

List of tables

Table 1	Definition and comparison of the DNA tandem repeats	14
Table 2	Microsatellite loci and observed heterozygosity in six species	
14010 2	of waterfowl (family <i>Anatidae</i>)	24
Table 3	Breeding lines and number of examined individuals	24 26
Table 4	List of used marker to amplify product in different domestic duck lines	20 26
Table 5	Characterization of DNA library to isolate of microsatellites	20
	in Palring duales	12
Table 6	Demost type, size of the sloped ellele, and emplification peremeter	42
Table 6	Repeat type, size of the cloned affele, and amplification parameter	42
T 11 T	for fifteen markers in Peking ducks	43
Table /	Number of alleles and heterozygosity for fifteen markers	
	in Peking ducks	44
Table 8	Allele frequencies of fifteen markers in Peking ducks	45
Table 9	Genic and genotypic differentiation in four populations of	
	Peking duck	46
Table 10	Genic differentiation for pairwise comparison of Peking duck	
	populations	47
Table 11	Genotypic differentiation for pairwise comparison of Peking duck	
	populations	47
Table 12	F _{ST} values in all Peking duck populations	48
Table 13	Estimate values of F_{ST} for all loci in four Peking duck populations	48
Table 14	Number of allele and heterozygosity for fifteen markers	
	in Cairina moschata	49
Table 15	Allele frequencies of fifteen markers in Cairina moschata	51
Table 16	Parts of the flanking sequences and pattern of repeat sequences of	
	APH09 in all sampled species	53
Table 17	Parts of the flanking sequences and pattern of repeat sequences of	
	APH07 in all examined species	54
Table 18	DNA sequence similarities (below diagonal) and amino acid	
	homology (above diagonal) of partial cytochrome-b sequence	
	in 26 species of Anatidae and Gallus domesticus as outgroup	59
Table 19	Number of base substitutions at first, second and third codon	
	position within a 307 bp fragment in comparison to the chicken	

	sequence	61
Table 20	Number of transitions/transversions of partial cytochrome-b DNA	
	sequences in 26 species of Anatidae and Gallus domesticus as outgroup	62
Table 21	Transitions/transversions ratio of partial cytochrome-b DNA sequence	
	at first, second, third and all site codon	64
Table 22	The frequency of nucleotide of cytochrome- <i>b</i> DNA sequence	
	at different positions	65
Table 23	Type of mutation in all region microsatellite loci APH09	69
Table 24	Type of mutation in all region microsatellite loci APH07	70
Table 25	Positions of mutations in parts of flanking regions of microsatellite	
	APH07 and the pattern of their repeats in all sampled species	71
Table 26	Positions of mutations in parts of the flanking regions microsatellite	
	APH09 and the pattern of their repeats in all sampled species	72

List of figures

Figure 1	Model of the mutation process at microsatellites loci	18
Figure 2	Outline of the microsatellite cloning strategy	27
Figure 3	Populations distance of four Peking duck strains	48
Figure 4	Phylogenetic tree (original) from DNA microsatellite locus	
	APH09 - minimum evolution model	56
Figure 5	Phylogenetic tree (original) from DNA microsatellite locus	
	APH07 - minimum evolution model	57
Figure 6	Base substitutions (transitions (Ts) and transversions (Tv)) average	
	in pairwise combinations of all examined samples at first, second	
	and third codon positions	63
Figure 7	Phylogenetic tree resulting from partial cytochrome- b	
	sequence was constructed by the neighbor-joining method	66
Figure 8	Phylogenetic tree resulting from cytochrome-b genus Anas	
	was constructed by the neighbor-joining method	67
Figure 9	Phylogenetic tree resulting from partial cytochrome-b sequence	
	in four tribes ducks was constructed by the neighbor-joining	
	method	68
Figure 10	Phylogenetic tree was obtained from partial cytochrome- b	
	sequence by neighbor-joining method and it was compared	
	to part of 5'-flanking sequence and repeats region of APH07	73
Figure11	Phylogenetic tree was obtained from partial cytochrome- b	
	sequence by neighbor-joining method and it was compared	
	to part of 3'-flanking sequence and repeats region of APH07	74
Figure 12	The proposed evolution pattern of 5'-flanking of APH07	75
Figure 13	The proposed evolution pattern of 3'-flanking of APH07	76
Figure 14	Nucleotide substitution rate in the flanking region according	
	to the distance to the repeat region (5'-)	76
Figure 15	Nucleotide substitution rate in the flanking region according	
	to the distance from repeat region (3'-)	76
Figure 16	Phylogenetic tree was obtained from partial cytochrome-b	
	sequence by neighbor-joining method and it was compared	
	to part of flanking sequence and repeats region of APH09	80

Figure17	Biogeographic reconstruction of ancestral areas using	
	Ronquist's (1997) method of dispersal vicariance analysis	
	(modified by Johnson et al. 1999)	88
Figure 18	Biogeographic reconstruction of ancestral area Anas using	
	Brooks' (1990) methods (modified by Johnson et al. 1999)	89
Figure 19	Schema of forming different repeat types in microsatellite APH07	92
Figure 20	Schema of forming different repeat types in microsatellite APH09	94