Jürgen Gottwald

Kernspinresonanzuntersuchungen zur Diffusion von Wasserstoff in den Di- und Trihydriden der Übergangsmetalle

Kernspinresonanzuntersuchungen zur Diffusion von Wasserstoff in den Di- und Trihydriden der Übergangsmetalle

Von der Fakultät Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

> Vorgelegt von Dipl. Phys. Jürgen Gottwald geboren in Bayreuth

Hauptberichter:	Prof. Dr. H. Kronmüller	
Mitberichter:	Prof. Dr. M. Mehring	
Tag der Einreichung:	17.10.2001	
Tag der mündlichen Prüfung:	20.11.2001	

Max-Planck-Institut für Metallforschung, Stuttgart

2001

Gottwald, Jürgen:

Kernspinresonanzuntersuchungen zur Diffusion von Wasserstoff in den Di- und Trihydriden der Übergangsmetalle

In der vorliegenden Arbeit wurde die Diffusion von Wasserstoff in den Dihydriden des Hafniums (Hf) und des Yttriums (Y), sowie in LaH_{3,0} untersucht. Der Wasserstoff ist in diesen Substanzklassen interstitiell gelöst und nimmt in Hafnium als Vertreter der Gruppe IVb des Periodensystems nur Tetraeder (T)-Plätze ein, während in Yttrium und Lanthan (Gruppe IIIb) auch Oktaeder (O)-Plätze besetzt werden können. Der makroskopische Diffusionskoeffizient D wurde mit Hilfe der gepulsten Feldgradienten (PFG)-NMR gemessen, während die Diffusion auf mikroskopischer Ebene durch die Messung der Spin-Gitter-Relaxationsrate Γ_1 erfolgte. Eine kombinierte Auswertung beider Meßmethoden erlaubte die Bestimmung der Sprungweiten und Anlauffrequenzen des Diffusionsprozesses und trug somit zur Aufklärung des Diffusionsmechanismus bei.

Für HfH_x (1,71 $\le x \le 1,94$) wird die Temperaturabhängigkeit von D (580 K $\le T \le 770$ K) durch ein einfaches Arrheniusgesetz beschrieben. D nimmt aufgrund von Blockierungseffekten mit steigender Wasserstoffkonzentration $x \ ab$ und die resultierende Aktivierungsenthalpie H_a nimmt leicht von 0,61 eV auf 0,71 eV zu. Die erzielten Diffusionsdaten für HfH_x sind denen des ZrH_x und des TiH_x, zwei weiteren Vertretern der Gruppe IVb, sehr ähnlich. In dem betrachteten Konzentrationsbereich ist die Zunahme von H_a mit steigendem x noch nicht so ausgeprägt, wie dies für $x \to 2$ erwartet wird. Die an den deuterierten Proben (x = 1,68, 1,76, 1,90) durchgeführten Γ_1 -Messungen (360 K $\le T \le 760$ K) sind durch die quadrupolaren Beiträge dominiert. Wie theoretisch von Sholl vorhergesagt, werden die Relaxationsmaxima für alle x bei derselben Temperatur gemessen, und die Relaxationsstärke skaliert in Abhängigkeit der Leerstellenkonzentration c ungefähr mit c (1-c). Die gefundenen H_a stimmen mit den aus Γ_1 -Messungen an den protonierten Proben (350 K $\le T$ ≤ 770 K) erzielten Werten überein.

Die gemeinsame Auswertung von D und Γ_1 zeigt, daß die Diffusion durch einen T-T-Leerstellenmechanismus, d. h. durch Sprünge des Wasserstoffs von besetzten auf benachbarte (NN) unbesetzte T-Plätze, bestimmt ist und liefert eine Sprungweite L, die mit aus Röntgenmessungen abgeleiteten Gitterabständen sehr gut übereinstimmt.

Für YH_x (x = 1,91, 1,95, 2,03) nimmt *D* im Gegensatz zu HfH_x mit steigendem *x* stark *zu*. Für den relativ kleinen Konzentrationsbereich nimmt *H*_a von 530 meV auf 380 meV stark *ab*, wobei der Temperaturverlauf von *D* bei konstantem *x* ein einfaches Arrheniusverhalten zeigt. Im Vergleich mit TiH_x, ZrH_x HfH_x und LaH_x ist die gemessene Diffusivität *D* bei vergleichbarem *x* signifikant größer. Der Temperaturverlauf der Γ_1 -Daten zeigt neben den dipolaren Maxima zusätzliche Maxima oder Schultern. Diese dominieren $\Gamma_1(T)$ unterhalb von ca. 500 K, sind auf geringste Mengen von paramagnetischen Verunreinigungen zurückzuführen und dürfen nicht als zweiter Bewegungsprozeß mißgedeutet werden. Die Maxima der dipolaren Γ_1 treten für steigendes *x* bei tieferen Temperaturen auf und zeigen wie die PFG-Ergebnisse eine Zunahme der Diffusivität.

Der Hauptdiffusionsmechanismus wird im gesamten Konzentrationsbereich durch Sprünge zwischen NN T-Plätzen bestimmt. Die Abnahme des Vorfaktors D_0 zwischen x = 1,91 und x = 1,95kann als Blockierung bereits besetzter T-Lücken gedeutet werden, während der konstant bleibende Wert für eine weitere Konzentrationssteigerung auf x = 2,03 auf eine Aufnahme des Wasserstoffs auf O-Plätze schließen läßt.

Erstmals wurde bei Γ_1 -Messungen an LaH_{3,0} ein schwacher und leicht zu übersehender Knick bei T = 400 K im sonst linearen Verlauf der Arrheniusauftragung von Γ_1 im Bereich der Hochtemperaturflanke (T > 300 K) gefunden, wobei Γ_1 zusätzlich eine von der thermischen Vorgeschichte abhängige Hysterese zeigt. Dieser Knick wurde in früheren Arbeiten bereits bei PFG-Messungen festgestellt und ist auf einen Phasenübergang zurückzuführen, bei dem sich die Sprungweite L und gleichzeitig auch die atomare Sprungfrequenz ν ändert.

Inhaltsverzeichnis

Inhal	ltsverze	eichnis
Abbi	ldungs	verzeichnis9
Tabe	llenver	zeichnis11
1	Einlei	tung13
2	Grund	llagen15
	2.1	Theorie der Diffusion leichter Teilchen15
	2.2	Makroskopische Größen
	2.3	Diffusion in kubischen Gittern
3	Mikro	ostruktur19
	3.1	Seltenerdmetalle und Yttrium
	3.2	Mikrostruktur
		3.2.1 α-Phase ("Solid Solution")
		3.2.2 β-Phase
		3.2.3 γ-Phase
		3.2.4 δ- und ε-Phase
	3.3	Strukturbildung, Metall-Halbleiter-Übergang
		3.3.1 Ordnung in der α-Phase
		3.3.2 Ordnung in der β -Phase
	3.4	Yttrium
	3.5	Hafnium
		3.5.1 α-Phase
		3.5.2 δ-Phase
		3.5.3 δ - δ '-Phasenübergang
		3.5.4 E-Phase
	3.6	Strukturuntersuchungen an Hafniumdihydriden
	3.7	Literaturdaten Hafnium
4	Probe	nherstellung
	4.1	Yttrium und Lanthan
		4.1.1 Yttrium
		4.1.2 Lanthan
	4.2	Hafnium

Inhaltsverzeichnis

5	Diffu	sionsuntersuchungen mittels NMR41
	5.1	Spin-Gitter-Relaxation41
		5.1.1 Elektronische Relaxation
		5.1.2 Dipolare Relaxation
		5.1.2.1 Das 2. Moment
		5.1.2.2 BPP
		5.1.2.5 Gitterspezifische Modelle
		5.1.4 Relaxation an paramagnetischen Ionen
		5.1.5 Anomale Relaxation
	5.2	Spin-Spin-Relaxation
	5.3	PFG
6	Exper	imentelles
	6.1	T ₁ -Pulsfolgen
	6.2	T ₂ -Pulsfolgen
	6.3	PFG
	6.4	Berechnung des Doppelintegrals61
	6.5	PFG-Pulsfolgen61
		6.5.1 Die Pulsfolge nach Stejskal und Tanner61
		6.5.2 Die Pulsfolge nach Tanner
		6.5.3 Die Pulsfolge nach Karlicek und Lowe
	6.6	Hintergrundgradient65
	6.7	Einfluß des internen Hintergrundgradienten
7	Exper	imenteller Aufbau71
	7.1	Signalerzeugung
	7.2	Detektion73
	7.3	Erzeugung der Gradienten73
	7.4	Die Gradientenspule75
	7.5	Die Abschirmspule
	7.6	Probenköpfe79
		7.6.1 PFG (Hochtemperatur)
		7.6.2 T ₁ -Spektrometer (Hochtemperatur)
	7.7	Temperaturregelung
8	Meße	rgebnisse und Diskussion

	8.1	Wasserstoff in Hafnium	83
		8.1.1 PFG-Ergebnisse	83
		8.1.2 Spin-Gitter-Relaxationsmessungen	84
		8.1.2.1 Wasserstoff-Wirts-Wechselwirkung	84
		8.1.2.2 Konzentrationsabhängigkeit der Spin-Gitter-Relaxation	85
		8.1.2.3 Relaxationsdaten für $x = 1,71$	87
		8.1.2.4 Relaxations für $x = 1,81$	88
		8.1.2.5 Relaxationsdaten für <i>x</i> = 1,90 und 1,94	89
		8.1.3 Sprungweiten	93
	8.2	Vergleich der HfH _x -Messungen mit Literaturdaten	96
	8.3	Deuterium in Hafnium	98
	8.4	Wasserstoff in Yttrium	05
		8.4.1 Diffusionsdaten	05
		8.4.2 Spin-Gitter-Relaxationsmessungen	07
	8.5	Vergleich der YH _x -Messungen mit Diffusionsdaten anderer Dihydride1	10
	8.6	Lanthantrihydrid1	12
9	Zusan	nmenfassung12	21
10	Sumn	nary12	23
Symbole und Abkürzungen		31	
Liter	atur		35

Abbildungsverzeichnis

Abb. 3.1:	fcc-Gitter mit T- und O-Plätzen
Abb. 3.2:	Löslichkeit von H in α -Phase der Seltenerdmetalle
Abb. 3.3:	Ordnung auf T-Plätzen von YH _x 25
Abb. 3.4:	Strukturbildung auf O-Platz-Untergitter der Seltenerdmetallhydride RH _x 26
Abb. 3.5:	Phasendiagramm von YH _x 27
Abb. 3.6:	Phasendiagramm von HfH _x
Abb. 3.7:	Wasserstoffdruck in HfH _x , TiH _x und ZrH _x
Abb. 3.8:	Röntgenbeugungsspektren der HfH _x -Proben
Abb. 3.9:	Detail der HfH _x -Röntgenbeugungsspektren
Abb. 3.10:	Gitterkonstanten der HfH _x / HfD _x -Proben
Abb. 3.11:	Gitterverhältnis (Asymmetrieparameter) c/a der HfH _x / HfD _x -Proben
Abb. 3.12:	Volumen der Einheitszelle der HfH _x / HfD _x -Proben
Abb. 5.1:	Vergleich BPP / Sholl-Modell für sc-Untergitter
Abb. 5.2:	Reinheitsabhängigkeit der Γ_1 -Daten für YH _{1,98} 50
Abb. 6.1:	Inversions-Erholungs-Pulsfolge
Abb. 6.2:	T ₁ -Messung am Beispiel YH _{1,95} 56
Abb. 6.3:	T ₂ -Messung am Beispiel YH _{1,95} 57
Abb. 6.4:	Spin-Echo bei angelegtem Hintergrundgradienten am Beispiel YH _{1,95} 58
Abb. 6.5:	Fouriertransformierte des Zeitsignals des Spin-Echos am Beispiel YH _{1,95} 59
Abb. 6.6:	Feldgradientenabhängigkeit der fouriertransformierten Spin-Echos60
Abb. 6.7:	Echoabschwächung und Diffusionskoeffizient D60
Abb. 6.8:	PFG-Pulsfolge nach Stejskal und Tanner
Abb. 6.9:	PFG-Pulsfolge nach Tanner (PFG-SE-Pulsfolge)64
Abb. 6.10:	APFG-Pulsfolge nach Karlicek und Lowe65
Abb. 6.11:	Massenbezogene Suszeptibilitäten von YH _x 69
Abb. 7.1:	Übersicht des PFG-Spektrometers71

Abbildungsverzeichnis	
Abb. 7.2:	Darstellung der Verschaltung der Konstantstromquellen74
Abb. 7.3:	Gradientenspule
Abb. 7.4:	Pulskorrekturen
Abb. 7.5:	Kryostatkonzept für Hochtemperaturprobenkopf80
Abb. 7.6:	Hochtemperaturprobenkopf81
Abb. 8.1:	PFG-NMR-Messungen des Diffusionskoeffizienten D für HfH _x 83
Abb. 8.2:	Temperaturabhängigkeit von Γ_1 für HfH _x bei 37,3 MHz85
Abb. 8.3:	$\Gamma_1 \operatorname{der} \operatorname{HfH}_{1,71}$ -Probe
Abb. 8.4:	Γ_1 der HfH _{1,71} -Probe mit BPP- und Sholl-Anpassung
Abb. 8.5:	Γ_1 der HfH _{1,81} -Probe
Abb. 8.6:	$\Gamma_1 \text{ der HfH}_{1,90}$ -Probe
Abb. 8.7:	Γ_1 der HfH _{1,94} -Probe91
Abb. 8.8:	Berechnung von $\Gamma_{\rm 1,dip}$ nach Sholl für ein sc-Gitter
Abb. 8.9:	Abhängigkeit von ½ $\omega \tau_{\rm d}$ von der Wasserstoffkonzentration x
Abb. 8.10:	Γ_1 der HfH _x -Proben bei 21,1 MHz (Literaturdaten)96
Abb. 8.11:	Vergleich der Diffusivität D in Dihydriden der Gruppe IVb98
Abb. 8.12:	Γ_1 der HfD _x -Proben bei 10,4 MHz (Übersicht)100
Abb. 8.13:	$\Gamma_1 \operatorname{der} \operatorname{HfD}_{1,68}$ -Probe102
Abb. 8.14:	$\Gamma_1 \operatorname{der} \operatorname{HfD}_{1,90}$ -Probe
Abb. 8.15:	PFG-NMR-Messungen des Diffusionskoeffizienten D für YH _x 105
Abb. 8.16:	$\Gamma_1 \operatorname{der} \operatorname{YH}_x$ -Proben107
Abb. 8.17:	Vergleich der Diffusivität D in Dihydriden der Gruppe IIIb und IVb110
Abb. 8.18:	PFG-NMR-Messungen des Diffusionskoeffizienten D für LaH _{3,00} 112
Abb. 8.19:	Γ_1 der LaH _{3,00} -Proben
Abb. 8.20:	Γ_1 der LaH _{3,00} -Probe (Detail)114
Abb. 8.21:	Γ_1 der La $H_{3,00}$ -Probe während des Abkühlens115
Abb. 8.22:	Γ_1 der LaD _{3,00} -Probe (Literaturdaten)117

Tabellenverzeichnis

Tab. 3.1:	Literaturwerte der Geometrie und der Gitterparameter von HfH _x
Tab. 4.1:	Verunreinigungen an Seltenerdelementen in reinstem Yttrium
Tab. 6.1:	Vergleich verschiedener Suszeptibilitäten
Tab. 6.2:	Übersicht der relativen Meßfehler der Diffusivitäten D69
Tab. 7.1:	Spulendaten der Gradientenspulen76
Tab. 8.1:	HfH _x : Anpaßparameter der PFG- und Γ_1 -NMR Messungen
Tab. 8.2:	HfH _x : BPP-Anpaßparameter der Γ_1 -NMR-Messungen bei 37,3 MHz86
Tab. 8.3:	HfH _{1,71} : Anpaßparameter der Γ_1 -NMR-Messungen
Tab. 8.4:	HfH _{1,81} : Anpaßparameter der Γ_1 -NMR-Messungen
Tab. 8.5:	HfH _{1,90} : Anpaßparameter der Γ_1 -NMR-Messungen
Tab. 8.6:	HfH _{1,94} : Anpaßparameter der Γ_1 -NMR-Messungen
Tab. 8.7:	HfH _x : Sprungweiten und Anlauffrequenzen95
Tab. 8.8:	HfH _x : Literaturdaten der Γ_1 -NMR-Messungen bei 21,1 MHz97
Tab. 8.9:	HfD _x : BPP-Anpaßparameter der Γ_1 -NMR-Messungen bei 10,4 MHz 104
Tab. 8.10:	HfD _x : Sholl-Anpaßparameter der Γ_1 -NMR-Messungen bei 10,4 MHz 104
Tab. 8.11:	YH _x : Diffusionsparameter aus PFG-NMR106
Tab. 8.12:	LaH _{3,0} : Vergleich der Γ_1 - und PFG-NMR-Ergebnisse

1 Einleitung

Eine zunehmende Verknappung der weltweiten fossilen Energiequellen sowie das steigende öffentliche Interesse an Emissionsreduktion und Klimaschutz lassen mehr und mehr alternative Energien in den Vordergrund treten. Dabei wird neben anderen Realisierungen oft der Wasserstoff als direkter Kraftstoff für Wärmekraftmaschinen und Brennstoffzellen diskutiert. Abgesehen von der Anwendung im mobilen Fahrzeugbereich wird auch zunehmend über eine Verwendung von Brennstoffzellen in stationären Energieversorgungen nachgedacht. Mit ihrer Hilfe soll die Idee einer verstärkten Dezentralisierung und des damit verbundenen breiten Einsatzes von Strom- und Wärmeerzeugung im Haushaltsbereich technisch attraktiv umgesetzt werden. Eine neuere Realisierung der Brennstoffzellentechnik zeichnet sich im Bereich der sogenannten CCC-Anwendungen (Computer, Cellular Phones, Camcorder) ab. Der Energieverbrauch dieser neuen Kleingeräte steigt schneller als die Energiedichte neuer Batterien, was letztendlich zu kürzeren Betriebszeiten führt. Darum werden zur Zeit Mini-Brennstoffzellen-Systeme entwickelt, die ihren Wasserstoff aus Metallhydridspeichern erhalten (z. B. [Hebling 2000]). Der Vorteil gegenüber Batterien o. ä. liegt bei deutlich erhöhten netzunabhängigen Betriebszeiten und einer viel geringeren Selbstentladung.

Unabhängig von der jeweiligen Anwendung des Wasserstoffs ist ein geeigneter Wasserstoffspeicher immer einer der wichtigsten Schlüsselfaktoren, wie u. a. im Bericht des "Büros für Technikfolgen-Abschätzung beim Deutschen Bundestag" (TAB) [TAB 2001] nachzulesen ist. Als Speicher für Wasserstoff bieten sich z. B. Metall-Wasserstoff-Systeme an. Sie haben neben hohen Speicherdichten den Vorteil, im Gegensatz zu Gasdruckbehältern oder Flüssiggastanks, auch im Fall einer mechanischen Beschädigung keinen Wasserstoff an die Umgebung abzugeben. Für mögliche Anwendungen sind neben hohen Speicherdichten auch kurze Be- und Entladezeiten wichtig, die durch Oberflächeneffekte und die Diffusion des Wasserstoffs im Metall bestimmt sind. Um nun geeignete Speichersysteme entwickeln zu können, müssen die diffusionsbestimmenden mikroskopischen und makroskopischen Prozesse in solchen Metall-Wasserstoff-Systemen verstanden werden.

Dazu kann die Grundlagenforschung einen wichtigen Beitrag liefern. Die in dieser Arbeit verwendeten und in Kapitel 6 vorgestellten Methoden der Kernspinresonanz sind dabei hervorragend geeignet, das Verhalten des Wasserstoffs im Volumen des Materials zu studieren. So gelingt es einerseits, auf mikroskopischer Skala mit Hilfe der Spin-Gitter-Relaxation und geeigneter Modelle Informationen über die atomaren Sprungraten der Teilchen zu erzielen. Die technisch weit anspruchsvollere Methode der gepulsten magnetischen Feldgradienten, die sogenannte PFG-NMR ("Pulsed-Field-Gradient-NMR"), erlaubt es andererseits, auf makroskopischer Skala den Diffusionskoeffizienten *D* des Wasserstoffs im Metall direkt und modell*un*abhängig zu bestimmen. Aus der Temperaturabhängigkeit der Meßdaten können die Aktivierungsenthalpien der atomaren Sprungprozesse abgeleitet und Aussagen über Phasenübergänge, die den Diffusionsprozeß beeinflussen, getroffen werden. Die

Einleitung

Betrachtung der Konzentrationsabhängigkeit der Diffusion läßt ebenfalls Rückschlüsse auf den zugrunde liegenden Diffusionsmechanismus zu. Außerdem ermöglicht es die kombinierte Auswertung von PFG-Daten und Spin-Gitter-Relaxationsmessungen, Sprungweiten und Diffusionspfade des Sprungprozesses anzugeben. Alle hier beschriebenen NMR-Untersuchungen können am MPI für Metallforschung mit hoher Präzision über einen großen Temperaturbereich von 4 K bis 1000 K durchgeführt werden.

In der vorliegenden Arbeit werden Hafnium als Vertreter der Gruppe IVb und Yttrium als Vertreter der Gruppe IIIb des Periodensystems im Konzentrationsbereich der Dihydride untersucht. Dabei ist für beide Systeme besonders der Bereich des stöchiometrischen Grenzfalls für $x \rightarrow 2$ von besonderem Interesse. Beide Systeme nehmen den Wasserstoff in den Zwischengitterplätzen auf, die durch das Metallgitter gebildet werden. Hafnium kann dabei maximal Wasserstoff bis hin zum Dihydrid aufnehmen, wobei ausschließlich Tetraederplätze besetzt werden. Daher erwartet man mit steigender Wasserstoffkonzentration x eine zunehmende Blockierung der zur Verfügung stehenden Plätze, wodurch die Wasserstoffdiffusion abnehmen müßte. Yttrium kann hingegen Trihydride bilden, wobei der zusätzliche Wasserstoff Oktaederplätze besetzt. Es stellt sich die Frage, welche Auswirkungen die Oktaederplatzbesetzung in YH_x auf die Diffusion im Bereich des Dihydrids hat. Die erzielten Ergebnisse werden mit Messungen an weiteren Elementen der Gruppe IIIb und IVb verglichen.

Zusätzlich wurden Messungen am stöchiometrischen La $H_{3,0}$ durchgeführt. Die Temperaturabhängigkeit der Diffusivität *D* dieser Substanz zeigt kein einfaches Arrheniusverhalten und weist zusätzlich eine noch nie bei einem Metallhydrid beobachtete Hysterese auf [Kaess 1997]. Ob auch die atomaren Sprungprozesse und damit die Spin-Gitter-Relaxationsdaten eine Abweichung von einem Arrheniusverhalten zeigen, wurde erstmals mit temperaturabhängigen Γ_1 -Messungen systematisch untersucht.

Die Arbeit ist wie folgt gegliedert. In Kapitel 2 werden die Grundlagen der Wasserstoffdiffusion in Metall-Wasserstoff-Systemen behandelt. Kapitel 3 stellt zuerst die Mikrostruktur der Elemente der Gruppe IIIb und IVb des Periodensystems allgemein und dann speziell die der im Rahmen dieser Arbeit gemessenen Hydride von Yttrium und Hafnium dar. Daran schließen sich Strukturuntersuchungen an den Hafniumdihydriden an, die auch als NMR-Proben verwendet wurden. Die Probenherstellung wird in Kapitel 4, die Methoden der NMR zur Diffusionsuntersuchung in Kapitel 5 und die dazu nötigen experimentellen Aufbauten und Details in Kapitel 6 und 7 beschrieben. Die erzielten Meßergebnisse werden dann in Kapitel 8 beschrieben, diskutiert und mit weiteren Metallhydrid-Systemen früherer Arbeiten verglichen.