Marco Gymnopoulos

Die mRNA-Verteilung von Ca²⁺-abhängigen Kaliumkanälen (SK) in der Entwicklung des Nervensystems der Ratte

Die mRNA-Verteilung von Ca²⁺-abhängigen Kaliumkanälen (SK) in der Entwicklung des Nervensystems der Ratte

Dissertation zu Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie der Ruhr-Universität Bochum

angefertigt im Max-Planck-Institut für experimentelle Medizin Abteilung: Molekulare Biologie neuronaler Signale

> vorgelegt von Marco Gymnopoulos

> > aus Flensburg

Bochum 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Gymnopoulos, Marco:

Die mRNA-Verteilung von Ca²⁺-abhängigen Kaliumkanälen (SK) in der Entwicklung des Nervensystems der Ratte / vorgelegt von Marco Gymnopoulos. -1. Aufl. - Göttingen : Cuvillier, 2002 Zugl.: Bochum, Ruhr-Univ., Diss., 2002 ISBN 3-89873-331-9

Tag der Disputation:11.01.2002

Prüfungskommission:

Prof. Dr. Dr. H. Hatt (Vorsitz)

Prof. Dr. K. P. Hoffmann (1. Gutachter)

Prof. Dr. H. Lübbert (2. Gutachter)

© CUVILLIER VERLAG, Göttingen 2002 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2002 Gedruckt auf säurefreiem Papier

ISBN 3-89873-331-9

I	Abkürzu	ngsverzeichnis	V
1	Einleitung		
1.1	Spannungsabhängige Ca ²⁺ -unabhängige Kaliumströme		
1.2	Calciumabhängige Kaliumströme		
1.3	Molekula	re Diversität der Kaliumkanäle	4
1.4	Calciuma	abhängige Kaliumkanäle	4
1.5	Die Rolle des Ca ²⁺ -Gleichgewichts in der Entwicklung des Gehirns		
			•
2	Material	und Methoden	10
2.1	Material		10
	2.1.1	Geräte	10
	2.1.2	Verbrauchsmaterialien	10
	2.1.3	Kits und Säulenmaterial	11
	2.1.4	Chemikalien	12
	2.1.4.1	Chemikalien zur Analyse	12
	2.1.4.2	Oligonukleotide	12
	2.1.4.3	Radiochemikalien	13
	2.1.4.4	Längenstandards für DNA	13
	2.1.4.5	Längenstandards für RNA	13
	2.1.5	Puffer und Lösungen	13
	2.1.6	Nährmedien und Agarplatten	16
	2.1.6.1	Medien	16
	2.1.6.2	Agarplatten	16
	2.1.7	Plasmide	17
	2.1.8	Enzyme und Proteine	17
	2.1.9	Biologisches Material	18
	2.1.9.1	Bakterienstämme	18
	2.1.9.2	Ratten (<i>Rattus norvegicus</i>)	18
2.2	Methoden		19
	2.2.1	Isolierung, Identifizierung und Charakterisierung von DNA-Fragmenten	19
	2.2.1.1	Klonierungsmethoden	19
	2.2.1.1.1	Spaltung von DNA mit Restriktionendonukleasen	19
	2.2.1.1.2	Vektorpräparation	19
	2.2.1.1.3	Gelelektrophoretische Trennung von DNA	19
	2.2.1.1.4	Isolierung von DNA aus Agarosegelen	20
	2.2.1.2	DNA-Amplifikation in Bakterien	20
	2.2.1.2.2	Ligation	20

3 3.1

	2.2.1.2.3	Isolierung von Plasmid-DNA aus Flüssigkulturen	21
	2.2.1.3	PCR-Sequenzierung mit fluoreszierenden Terminatoren	22
	2.2.1.4	DNA-Amplifikation mittels Polymeraselettenreaktion (PCR)	22
	2.2.1.5	RACE (Rapid amplification of cDNA ends)	23
	2.2.1.5.1	5'-RACE	23
	2.2.1.5.2	3'-RACE	24
	2.2.1.6	λ-Phagen	24
	2.2.1.6.1	cDNA-λ-Phagen Bibliotheken	24
	2.2.1.6.2	Titerbestimmung der Phagenbibliotheken	24
	2.2.1.6.3	Ausplattieren von λ -Phagen Bibliotheken und Herstellung	
		von Filterabzügen	25
	2.2.1.6.4	Herstellung von radioaktiv markierten DNA-Sonden	25
	2.2.1.6.5	Hybridisierung- und Waschbedingungen	26
	2.2.1.6.6	Autoradiografie	26
	2.2.1.6.7	Vereinzelung der λ-Phagen	26
	2.2.1.6.8	In vivo Excision von pBluescript SK(-) Phagemid Vektoren	27
	2.2.2	Isolierung, Identifizierung und Charakterisierung von RNA	27
	2.2.2.1	Gewebepräparation für RNA-Experimente	28
	2.2.2.2	Isolierung von Gesamt-RNA	28
	2.2.2.3	Isolierung von polyA [⁺] -RNA aus Geweben	28
	2.2.2.4	RNA-Quantifizierung	29
	2.2.2.5	Elektrophorese von RNA in Agarosegelen	29
	2.2.2.6	cDNA-Erststrangsynthese	30
	2.2.2.7	<i>In vitro</i> Transkription	30
	2.2.2.8	Transfer von RNA auf Nylon-Membranen ("Northern-Blotting") und	
		Hybridisierung an immobilisierter RNA	31
	2.2.3	In situ Hybridisierung mit Oligonukleotiden	31
	2.2.3.1	Silanisierung der Objektträger	31
	2.2.3.2	Gewebepräparation und Kryostatschnitte	31
	2.2.3.3	Radioaktive Polyadenylierung von Oligonukleotiden	32
	2.2.3.4	Hybridisierung	32
	2.2.3.5	Exposition in Photoemulsion und Entwicklung	33
	2.2.3.6	Gegenfärbung nach Nissl	33
	2.2.4	Bildbearbeitung	33
Ergebnisse 34			
Isolierung und Charakterisierung von cDNAs der			
	Ca ²⁺ -abh	ängigen K [⁺] -Kanäle mit geringer Leitfähigkeit (SK)	34
	3.3.1	Isolierung von SK cDNA-Klonen aus cDNA-λ-Phagen-Bibliotheken	34
	3.1.2	Charakterisierung ausgewählter SK-cDNAs	34

	3.1.2.1	Die SK1-Kanaluntereinheit der Ratte	35
	3.1.2.2	Charakterisierung von rSK1-Varianten	39
	3.1.2.3	Die SK2-kanaluntereinheit der Ratte	41
	3.1.2.4	Die SK3-Kanaluntereinheit der Ratte	44
3.2	.2 Untersuchung zur Expression der isolierten SK-Kanalunterein		n
	in Ratten		46
	3.2.1	Aufklärung der gewebespezifischen Transkription der	
		rSK2-Kanaluntereinheit mittels Northern-Blot-Analyse	46
	3.2.2	Untersuchung der entwicklungsspezifischen Expression der	
		rSK-Kanaluntereinheiten in pränatalen Rattenhirnen mittles Northern-Blot-	
		Analysen	48
	3.2.3	Untersuchung der entwicklungsspezifischen Expression in postnatalen	
		Stadien des Rattenhirns mittels Northern-Blot-Analysen	50
3.3	Analyse	der Verteilung von rSK-Transkripten im Gehirn der Ratte	
	durch <i>in</i>	<i>situ</i> Hybridisierung	52
	3.3.1	Analyse der Expressionsmuster von rSK-Kanaluntereinheiten in	
		pränatalen Stadien des Rattenhirns	52
	3.3.1.1	Übersichten der pränatalen Expressionsmuster der rSK2-Untereinheiten	
		in sagittalen Gewebeschnitten	52
	3.3.1.2	Analyse der embryonalen Expression der rSK-Untereinheiten auf	
		zellulärer Ebene	56
	3.3.1.2.1	rSK-Expression im Vorderhirn (Striatum, Cortex, Hippocampus)	56
	3.3.1.2.2	Expression der rSK-Untereinheiten im Ganglion trigeminale	60
	3.3.1.2.3	Expressionsmuster der rSK-Untereinheiten im Ganglion inferius	61
	3.3.1.2.4	SK-Transkripte im Cerebellum des pränatalen Rattenhirns	62
	3.3.1.2.5	Expressionsmuster der rSK-Untereinheiten im Rückenmark	64
	3.3.1.2.6	Expression des rSK2 und rSK3 in nicht-neuralem Gewebe	65
	3.3.2	Analyse der Expressionsmuster von rSK-Kanaluntereinheiten	
		in postnatalen Stadien des Rattenhirns	66
	3.3.2.1	Übersichten der rSK-Expressionsmuster in sagittalen und horizontalen	
		Gewebeschnitten	66
	3.3.2.1.1	Die rSK1-Kanaluntereinheit	66
	3.3.2.1.2	Die rSK2-Kanaluntereinheit	68
	3.3.2.1.3	Die rSK3-Kanaluntereinheit	70
	3.3.2.2	Analyse der postnatalen Transkription der rSK-Untereinheiten auf	
		zellulärer Ebene	72
	3.3.2.2.1	Der olfaktorische Bulbus	72
	3.3.2.2.2	Der Cortex	73
	3.3.2.2.3	Der Hippocampus	75

	3.3.2.2.4	Der Thalamus	77
	3.3.2.2.5	Die Habenula	78
	3.3.2.2.6	Die Substantia nigra	78
	3.3.2.2.7	Area tegmentalis ventralis	80
	3.3.2.2.8	Der Locus coeruleus	81
	3.3.2.2.9	Die inferiore Olive	82
	3.3.2.2.10	Der cochleare Nukleus	82
	3.3.2.2.1	1 Das Cerebellum	83
_			
4	Disskuss	sion	87
4.1	Molekula	re Charakterisierung der isolierten SK-cDNA-Sequenze	n 87
4.2	Entwickl	ungsspezifische Expression der SK-Kanaluntereinheite	n 89
4.3	Korrelati	on zwischen SK-Transkripten und AHP-Strömen	92
4.4	Physiolo	gische Rolle der SK-Kanäle in der Entwicklung des	
	Rattenge	hirns	95
	•		
5	Zusamm	enfassung	98
6	Literatur	verzeichnis	99
II	Anhang		VIII
11.1	Oligonukl	eotide zur Sequenzierung und für PCR	VIII
11.11	Oligonukleotide der Marathon-RACE		VIII
11.111	Oligonukl	eotide der Amplifinder 3´-RACE	VIII
II.IV	Oligonukl	eotidsonden für die in situ Hybridisierung	IX
II.V	Isolierte c	DNA-Klone aus den λ -Phagenbibliotheken	IX
II.VI	Quantifizi	erungen der in situ Hybridisierungssignale (postnatal)	XI
	II.VI.I	rSK1	XI
	II.VI.II	rSK2	XIII
	II.VI.III	rSK3	XVI
II.VI	Quantifizi	erungen der in situ Hybridisierungssignale (pränatal)	XVIII
	II.VII.I	rSK1	XVIII
	II.VII.II	rSK2	XIX
	II.VII.III	rSK3	ХХ

I Abkürzungsverzeichnis

°C	Grad Celsius
μ	mikro- (10 ⁻⁶)
A	Adenin
Abb.	Abbildung
ATP	Adenosintriphosphat
bp	Basenpaar
С	Cytosin
Ca	Calcium
cDNA	doppelsträngige Kopie einer mRNA
Cd	Cadmium
Ci	Curie $(3,7 \times 10^{10} \text{ Becquerel})$
cm	Zentimeter
Co	Kobalt
cpm	counts per minute
cRNA	Transkript der cDNA
C-terminal	am COOH-terminalen Ende des Proteins gelegen
C-Terminus	COOH-Terminus eines Proteins
СТР	Cytidintriphosphat
dATP	Desoxyadenosintriphosphat
dCTP	Desoxycytidintriphosphat
DEPC	Diethylpyrokarbonat
dGTP	Desoxyguanosintriphosphat
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTPs	Desoxynukleosidtriphosphat
dTTP	Desoxythymidintriphosphat
E. coli	Escherichia coli
EC ₅₀	Agonistenkonzentration mit halbmaximaler Wirkung
EDTA	Ethylendiamintetraessigsäure
et al.	et alteres

EtOH	Ethanol
g	Gramm
G	Guanin
G	Leitfähigkeit
GTP	Guanosintriphosphat
h	Stunde
H ₂ O	Wasser
IC ₅₀	Antagonistenkonzentration mit halbmaximaler Wirkung
IPTG	Isopropyl-β-D-thiogalaktopyranosid
ISH	in situ Hybridisierung
К	Kalium
kb	Kilobase
КОН	Kaliumhydroxid
1	Liter
LB	Luria Broth
m	milli- (10 ⁻³)
М	Molar
min	Minute
MOPS	3-(N-Morpholino-)propansulfonsäure
mRNA	Boten-Ribonukleinsäure
n	nano- (10 ⁻⁹)
NaCl	Natriumchlorid
NaOH	Natriumhydroxid
N-terminal	am NH ₂ -terminalen Ende eines Proteins gelegen
N-Terminus	NH ₂ -Terminus eines Proteins
OD	optische Dichte
ORF	offener Leserahmen
Р	Porenregion
р	piko- (10 ⁻¹²)
PBS	phosphatgepufferte Salzlösung
PCR	Polymerasekettenreaktion
PFA	Paraformaldehyd
pfu	plaque forming unit

pН	negativ dekadischer Logarithmus der
	Protonenkonzentration
RNA	Ribonukleinsäure
RNase	Ribonuklease
rpm	Umdrehungen pro Minute
RT	Raumtemperatur
SDS	Natriumdodecylsulfat
sek	Sekunde
SM	Phagenelutionspuffer
SSC	Natriumcitrat-Puffer
Т	Thymin
Taq	Thermus aquaticus
TdT	terminale Transferase
TBE	Tris-Borat-Puffer
TE	Tris-EDTA-Puffer
TM	Transmembrandomäne
u	unit
ü.N.	über Nacht
UTR	untranslatierte Region
UV	ultraviolettes Licht
V	Volt
X-Gal	5-Brom-4-Chlor-3-Indolyl-β-D-galaktopyranosid
x g	Erdbeschleunigung (9,81 m/s ²)

1 Einleitung

Kaliumkanäle spielen in der Zellmembran von erregbaren Zellen des Nervensystems, sowie von Herz- und Muskelzellen eine fundamentale Rolle. Sie sind dort unter anderem für die Aufrechterhaltung des Membranruhepotentials verantwortlich, halten schnelle Aktionspotentiale kurz, beenden Phasen hoher Aktivität, bestimmen die Aktionspotentialfrequenz und erschweren im allgemeinen die Weiterleitung von erregenden Signalen auf eine Zelle (Hille, 1992).

In einer Zelle sind die unterschiedlichsten Arten von Ionenkanälen vorhanden und es ist deshalb sehr schwer, den einzelnen Beitrag jedes Typs zum Gesamtstromaufkommen zu ermitteln. In nahezu jeder untersuchten Zelle konnten Kaliumströme identifiziert werden. Eine genaue Zuordnung zu bestimmten Kaliumkanälen bzw. Kaliumkanalfamilien ist jedoch kompliziert. Ein gut untersuchtes System für die Charakterisierung von Kaliumströmen in Neuronen stellen die Pyramidenzellen des Hippocampus in Vertebaten dar. In den CA1-Pyramidenzellen wurden mehrere unterschiedliche Kaliumströme beschrieben, von denen vier spannungsabhängig sind, einer Ca²⁺-abhängig und einer sowohl spannungs- als auch Ca²⁺-abhängig ist (Storm, 1990).

1.1 Spannungsabhängige Ca²⁺-unabhängige Kaliumströme:

Der Kaliumstrom I_A wurde als erstes in CA3-Zellen des adulten Meerschweinchen-Hippocampus beschrieben (Gustafsson *et al.*, 1982). Der I_A , welcher durch Depolarisationen auf Potentiale positiver als –60 mV aktiviert wird, weist eine schnelle Aktvierungs- und Inaktivierungskinetik auf. Der I_A -Strom in den CA1-Pyramidenneuronen der Ratte zeichnet sich pharmakologisch durch seine Sensitivität gegenüber 4-Aminopyridin und dem Schlangengift Dendrotoxin aus. Aufgrund der schnellen Aktivierung trägt der I_A -Strom wesentlich zur initialen Phase der Repolarisation des Aktionspotentials bei (Storm, 1987).

In CA1-Pyramidenzellen der Ratte wurde der verzögerte Kaliumstrom I_D (*delayed current*) beschrieben (Storm, 1988), der in diesem Zelltyp mit dem schnelleren Strom I_A koexistiert. Der I_D -Strom wird durch Depolarisation auf Potentiale positiver als -70 mV aktiviert, und weist im Gegensatz zum I_A eine langsamere Kinetik auf; besonders in der Phase der Inaktivierung. Pharmakologisch zeichnet sich der I_D -Strom durch eine höhere Sensitivität gegenüber 4-Aminopyridin aus. Die relativ schnelle Aktivierung läßt

vermuten, daß auch der I_D -Strom für die Repolarisationphase mitverantwortlich ist (Storm, 1990).

Der verzögerte gleichrichtende Kaliumstrom I_K (*delayed rectifier*) wurde ebenfalls in CA1-Zellen adulter Ratten beschrieben (Madison et al., 1987). Im Gegensatz zu den vorher beschriebenen IA- und ID-Strömen wird dieser durch Depolarisation auf Potentiale positiver als -40 mV aktiviert, also nur in der Phase von generierten Aktionspotentialen. Die pharmakologischen Eigenschaften betreffend, zeigt der I_K-Strom eine geringe Sensitivität in bezug auf Tetraethylammonium und eine Insensitivität gegenüber 4-Aminopyridin. Es wird angenommen, daß der IK-Strom ebenfalls an der Repolarisationsphase der Aktionspotentiale beteiligt ist (Storm, 1988b). Der I_M-Strom in CA1-Zellen des Rattenhippocampus wurde als einer der ersten beschrieben (Halliwell und Adams, 1982). Die Aktivierung erfolgt hier durch Depolarisation auf Potentiale positiver als -60 mV und sowohl die Aktivierung als auch Deaktivierung sind dabei sehr langsam. Pharmakologisch zeichnet sich der I_M-Strom durch eine Sensitivität gegenüber Tetraethylammonium (TEA), Acetylcholin und anderen muscarinische Agonisten aus. In den Pyramidenzellen des Hippocampus scheint dieser Kaliumstrom mit anderen Kaliumkanälen für die frühe Phase der Adaptation der Feurerungsrate zuständig zu sein, sowie für das mittlere hyperpolarisierende Nachpotential (mAHP, medium afterhyperpolarisation), welches jeweils einem Aktionspotential folgt (Madison und Nicoll, 1984).

1.2 Calcium-abhängige Kaliumströme:

In Pyramidenzellen des Hippocampus wurden zwei Ca^{2+} -abhängige Kaliumströme beschrieben, die aufgrund ihrer pharmakologischen Eigenschaften voneinander unterschieden werden konnten: Der schnelle TEA-sensitive I_C-Strom und der langsame sI_{AHP}, der insensitiv gegenüber TEA ist (Lancaster und Adams, 1986).

In vielen Neuronen folgt auf eine Serie von Aktionpotentialen eine mehrere Sekunden andauernde Hyperpolarisation. Diese Hyperpolarisation kann in drei unterschiedliche Phasen eingeteilt werden. In den Pyramidenzellen des Hippocampus folgt dem Aktionspotential eine schnelle Hyperpolarisation (fAHP, fast AHP), welche im allgemeinen zwischen 1-10 ms dauert und haupsächlich durch den schnellen Ca^{2+} aktivierten Kaliumstrom I_C hervorgerufen wird (Storm, 1990). Der schnelle I_C-Strom ist sowohl spannungs- als auch Ca^{2+} -abhängig und wird durch Depolarisation auf Potentiale positiver als –40 mV aktiviert. Die Ca²⁺-Abhängigkeit des I_C konnte durch Medien mit variablen Ca²⁺-Konzentrationen oder durch Applikation von Ca²⁺-Kanalblockern wie Cadmium, Mangan oder Kobalt nachgewiesen werden (Storm, 1985; Lancaster und Adams, 1986). Eine pharmakologische Charakterisierung zeigte, daß der I_C-Strom eine hohe Sensitivität gegenüber TEA und CTX (Charybdotoxin) aufweist.

An die Phase der schnellen Hyperpolarisation schließt sich die des langsamen hyperpolarisierenden Nachpotentials (AHP) an, welche zwischen einigen 100 ms bis zu einigen Sekunden andauern kann. Die hyperpolarisierenden Nachpotentiale können aufgrund ihrer kinetischen und pharmakologischen Eigenschaften in zwei Gruppen mAHP (medium AHP) und sAHP (slow AHP) eingeteilt und unterschieden werden (Sah, 1996). Für das in vielen erregbaren Zellen vorkommende schnellere mAHP, das sich durch eine relativ schnelle Aktivierung (< 10ms) und Stromabnahme auszeichnet, ist der Strom IAHP verantwortlich; er ist gegenüber dem Bienengift Apamin sensitiv. Das schnellere hyperpolarisierende Nachpotential spielt eine entscheidende Rolle bei der Determinierung der tonischen Feuerungsrate in Neuronen und ist an der Adaptation der Impulsfrequenz beteiligt (Pennefather et al., 1985). Für das langsamere Nachpotential sAHP, welches die späte Phase der Impulsfrequenzadaption kontrolliert, ist der Strom sI_{AHP} verantwortlich. Im Gegensatz zum mAHP wurde dieses nur in einigen Unterarten von Neuronen, wie zum Beispiel in den CA1-Pyramidenzellen des Hippocampus beschrieben (Lancaster und Adams, 1986). Das sAHP zeigt eine langsame Aktivierungskinetik (mehrere Sekunden) und der ihm zugrunde liegende sI_{AHP}-Strom ist insensitiv gegenüber dem Bienengift Apamin und anderen K⁺-Kanalblockern wie z.B. TEA (Sah, 1996). Eine besondere Eigenschaft des sI_{AHP}-Strom ist seine Modulation durch Monoamine (z.B. Noradrenalin, Serotonin und Dopamin), Acetylcholin und Glutamat, die alle inhibierend wirken (Storm, 1990; Sah, 1996). Neurone bei denen der sI_{AHP} inhibiert ist, weisen eine erhöhte Erregbarkeit auf, die Adaptation der Feurerungsrate ist stark erniedrigt und die Anzahl der generierten Aktionspotentiale bei einem Stimulus stark erhöht (Sah, 1996). Genauere Untersuchungen in CA1-Pyramidenzellen zeigten, daß die Monoamine die cAMP-Konzentration erhöhen und so die cAMP-abhängige Proteinkinase A (PKA) aktivieren, welche dann letztendlich den sI_{AHP} moduliert (Pedarzani und Storm, 1993).